1
|
A Very Rare Case of Hypereosinophilic Syndrome Secondary to Natural Killer/T-Cell Lymphoma. Case Rep Otolaryngol 2018; 2018:5965029. [PMID: 29785315 PMCID: PMC5892269 DOI: 10.1155/2018/5965029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 02/06/2018] [Accepted: 02/18/2018] [Indexed: 11/18/2022] Open
Abstract
Hypereosinophilic syndrome (HES) is a systemic disease characterized by an increased peripheral blood eosinophil count accompanied by systemic organ dysfunction. HES is classified into idiopathic HES, primary (neoplastic) HES (HESN), and secondary (reactive) HES (HESR). In this case report, a patient who developed peripheral blood eosinophilia and granulation tissue in the pharynx and paranasal sinus, which was initially diagnosed as chronic eosinophilic leukemia (CEL), categorized as HESN, but was eventually identified after the patient had died as natural killer/T-cell (NK/T) lymphoma, nasal type (ENKL), categorized as HESR, is presented. ENKL-induced HES is very rare but must be considered.
Collapse
|
2
|
Ibata M, Iwasaki J, Fujioka Y, Nakagawa K, Darmanin S, Onozawa M, Hashimoto D, Ohba Y, Hatakeyama S, Teshima T, Kondo T. Leukemogenic kinase FIP1L1-PDGFRA and a small ubiquitin-like modifier E3 ligase, PIAS1, form a positive cross-talk through their enzymatic activities. Cancer Sci 2017; 108:200-207. [PMID: 27960034 PMCID: PMC5367148 DOI: 10.1111/cas.13129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/21/2016] [Accepted: 11/30/2016] [Indexed: 11/30/2022] Open
Abstract
Fusion tyrosine kinases play a crucial role in the development of hematological malignancies. FIP1L1‐PDGFRA is a leukemogenic fusion kinase that causes chronic eosinophilic leukemia. As a constitutively active kinase, FIP1L1‐PDGFRA stimulates downstream signaling molecules, leading to cellular proliferation and the generation of an anti‐apoptotic state. Contribution of the N‐terminal FIP1L1 portion is necessary for FIP1L1‐PDGFRA to exert its full transforming activity, but the underlying mechanisms have not been fully characterized. We identified PIAS1 as a FIP1L1‐PDGFRA association molecule by yeast two‐hybrid screening. Our analyses indicate that the FIP1L1 portion of FIP1L1‐PDGFRA is required for efficient association with PIAS1. As a consequence of the association, FIP1L1‐PDGFRA phosphorylates PIAS1. Moreover, the kinase activity of FIP1L1‐PDGFRA stabilizes PIAS1. Therefore, PIAS1 is one of the downstream targets of FIP1L1‐PDGFRA. Moreover, we found that PIAS1, as a SUMO E3 ligase, sumoylates and stabilizes FIP1L1‐PDGFRA. In addition, suppression of PIAS1 activity by a knockdown experiment resulted in destabilization of FIP1L1‐PDGFRA. Therefore, FIP1L1‐PDGFRA and PIAS1 form a positive cross‐talk through their enzymatic activities. Suppression of sumoylation by ginkgolic acid, a small molecule compound inhibiting a SUMO E1‐activating enzyme, also destabilizes FIP1L1‐PDGFRA, and while the tyrosine kinase inhibitor imatinib suppresses FIP1L1‐PDGFRA‐dependent cell growth, ginkgolic acid or siRNA of PIAS1 has a synergistic effect with imatinib. In conclusion, our results suggest that sumoylation by PIAS1 is a potential target in the treatment of FIP1L1‐PDGFRA‐positive chronic eosinophilic leukemia.
Collapse
Affiliation(s)
- Makoto Ibata
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Junko Iwasaki
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoichiro Fujioka
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koji Nakagawa
- Department of Laboratory of Pathophysiology and Therapeutics, Hokkaido University Faculty of Pharmaceutical Sciences, Sapporo, Japan
| | - Stephanie Darmanin
- Department of Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Masahiro Onozawa
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Daigo Hashimoto
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takeshi Kondo
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
3
|
Mohammad S, Gotoh A, Morishita S, Komatsu N. Imatinib-sensitive myeloid neoplasm with low allele burden of FIP1L1-PDGFRA fusion gene in an elderly patient. Geriatr Gerontol Int 2016; 16:1346-1348. [PMID: 28028904 DOI: 10.1111/ggi.12733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sherwet Mohammad
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan.,Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Akihiko Gotoh
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Soji Morishita
- Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University School of Medicine, Tokyo, Japan
| | - Norio Komatsu
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Sugimoto Y, Sada A, Shimokariya Y, Monma F, Ohishi K, Masuya M, Nobori T, Matsui T, Katayama N. A novel FOXP1-PDGFRA fusion gene in myeloproliferative neoplasm with eosinophilia. Cancer Genet 2015; 208:508-12. [DOI: 10.1016/j.cancergen.2015.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 06/28/2015] [Accepted: 07/08/2015] [Indexed: 11/28/2022]
|
5
|
Uchida T, Kitaura J, Nakahara F, Togami K, Inoue D, Maehara A, Nishimura K, Kawabata KC, Doki N, Kakihana K, Yoshioka K, Izawa K, Oki T, Sada A, Harada Y, Ohashi K, Katayama Y, Matsui T, Harada H, Kitamura T. Hes1 upregulation contributes to the development of FIP1L1-PDGRA-positive leukemia in blast crisis. Exp Hematol 2014; 42:369-379.e3. [PMID: 24486648 DOI: 10.1016/j.exphem.2014.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 01/17/2014] [Accepted: 01/19/2014] [Indexed: 01/21/2023]
Abstract
We have previously shown that elevated expression of Hairy enhancer of split 1 (Hes1) contributes to blast crisis transition in Bcr-Abl-positive chronic myelogenous leukemia. Here we investigate whether Hes1 is involved in the development of other myeloid neoplasms. Notably, Hes1 expression was elevated in only a few cases of 65 samples with different types of myeloid neoplasms. Interestingly, elevated expression of Hes1 was found in two of five samples of Fip1-like1 platelet-derived growth factor receptor-α (FIP1L1-PDGFA)-positive myeloid neoplasms associated with eosinophilia. Whereas FIP1L1-PDGFRα alone induced acute T-cell leukemia or myeloproliferative neoplasms in mouse bone marrow transplantation models, mice transplanted with bone marrow cells expressing both Hes1 and FIP1L1-PDGFRα developed acute leukemia characterized by an expansion of myeloid blasts and leukemic cells without eosinophilic granules. FIP1L1-PDGFRα conferred cytokine-independent growth to Hes1-transduced common myeloid progenitors, interleukin-3-dependent cells. Imatinib inhibited the growth of common myeloid progenitors expressing Hes1 with FIP1L1-PDGFRα, but not with imatinib-resistant FIP1L1-PDGFRα mutants harboring T674I or D842V. In contrast, ponatinib efficiently eradicated leukemic cells expressing Hes1 and the imatinib-resistant FLP1L1-PDGFRΑ mutant in vitro and in vivo. Thus, we have established mouse models of FIP1L1-PDGFRA-positive leukemia in myeloid blast crisis, which will help elucidate the pathogenesis of the disease and develop a new treatment for it.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antineoplastic Agents/pharmacology
- Basic Helix-Loop-Helix Transcription Factors/biosynthesis
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Benzamides/pharmacology
- Blast Crisis/genetics
- Blast Crisis/metabolism
- Blast Crisis/pathology
- Female
- Gene Expression Regulation, Leukemic
- Homeodomain Proteins/biosynthesis
- Homeodomain Proteins/genetics
- Humans
- Imatinib Mesylate
- Interleukin-3/biosynthesis
- Interleukin-3/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mutation, Missense
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Piperazines/pharmacology
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Pyrimidines/pharmacology
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Transcription Factor HES-1
- mRNA Cleavage and Polyadenylation Factors/genetics
- mRNA Cleavage and Polyadenylation Factors/metabolism
Collapse
Affiliation(s)
- Tomoyuki Uchida
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jiro Kitaura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Fumio Nakahara
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Katsuhiro Togami
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Daichi Inoue
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akie Maehara
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koutarou Nishimura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kimihito C Kawabata
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Noriko Doki
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Kazuhiko Kakihana
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Kosuke Yoshioka
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Kumi Izawa
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshihiko Oki
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akiko Sada
- Heamatology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuka Harada
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan; Division of Radiation Information Registry, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kazuteru Ohashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yoshio Katayama
- Heamatology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshimitsu Matsui
- Heamatology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hironori Harada
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan; Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Kobayashi D, Kogawa K, Imai K, Tanaka T, Sada A, Nonoyama S. Hyper-eosinophilia in granular acute B-cell lymphoblastic leukemia with myeloid antigen expression. Pediatr Int 2012; 54:543-6. [PMID: 22830543 DOI: 10.1111/j.1442-200x.2011.03471.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acute lymphoblastic leukemia with eosinophilia (ALLEo) is a rare but a distinctive clinical entity. Clinical features of idiopathic hyper-eosinophilic syndrome (HES) can be seen in patients with ALLEo. We report a 10-year-old girl, in whom HES was initially suspected but further investigation confirmed the diagnosis of acute B-cell lymphoblastic leukemia with myeloid antigen expression. Clinical response to chemotherapy was excellent with achievement of complete remission for 4 years. Serum interleukin-3 and -5 were elevated at presentation and normalized with disappearance of eosinophilia after induction therapy, supporting the reactive nature of eosinophilia in ALLEo. Hematologic malignancy should be considered in patients with hyper-eosinophilia, before attributing it to HES.
Collapse
Affiliation(s)
- Daisuke Kobayashi
- Carman and Ann Adams Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, Michigan 48201-2119, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
The hypereosinophilic syndromes (HES) encompass a spectrum of diseases that have increased blood eosinophils and tissue damage in common. The clinical manifestations are protean and may involve any organ system, but especially the skin. Our understanding of these diseases has drastically changed over the past 15 years, along with new classifications that characterize patients with marked eosinophilia. One HES variant, myeloproliferative, is actually chronic eosinophilic leukaemia with a unique genetic marker, FIP1L1-PDGFRA. Such patients are well-controlled by administration of the kinase inhibitor, imatinib, and remissions appear durable with continued imatinib therapy. FIP1L1-PDGFRA is expressed in several cell lineages, thus explaining increases in neutrophils and mast cells in HES. The lymphocytic HES variant is associated with T-cell clones producing interleukin-5 (IL-5) and can evolve into lymphoma. While myeloproliferative and lymphocytic HES are well established and permit elimination of the term, idiopathic, to these varieties, most HES patients do not fall into these categories and are classified as complex (using the 2006 Workshop Report). A recent study showed that a monoclonal antibody to IL-5, mepolizumab, reduced glucocorticoid therapy in HES patients who did not possess the FIP1L1-PDGFRA mutation while controlling eosinophilia and preventing recurrence or progression of tissue damage. These advances augur well for continued progress in the understanding and treatment of HES.
Collapse
Affiliation(s)
- Gerald J Gleich
- Departments of Dermatology and Medicine, The Health Sciences Center, School of Medicine, University of Utah, Salt Lake City, UT 84103, USA.
| | | |
Collapse
|