1
|
Paul B, Rodriguez C, Usmani SZ. BCMA-Targeted Biologic Therapies: The Next Standard of Care in Multiple Myeloma Therapy. Drugs 2022; 82:613-631. [PMID: 35412114 PMCID: PMC9554894 DOI: 10.1007/s40265-022-01697-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 11/03/2022]
Abstract
With recent advances in myeloma therapy, patients can achieve long-term remissions, but eventually relapses will occur. Triple-class refractory myeloma (disease that is refractory to an immunomodulatory agent, a proteasome inhibitor, and an anti-CD38 monoclonal antibody) and penta-refractory myeloma (disease that is refractory to two proteasome inhibitors, two immunomodulatory agents, and an anti-CD38 antibody) are associated with a particularly poor prognosis, and novel treatments are desperately needed for these patients. Targeting B cell maturation antigen (BCMA), which is ubiquitously expressed on plasma cells, has emerged as a well-tolerated and highly efficacious strategy in patients with relapsed and refractory myeloma. Several mechanisms of targeting BCMA are currently under investigation, including antibody-drug conjugates, bispecific antibodies, and chimeric antigen receptor T cells and natural killer (NK) cells, all with unique side effect profiles. Early phase clinical trials showed unprecedented response rates in highly refractory myeloma patients, leading to the recent approvals of some of these agents. Still, many questions remain with regard to this target, including how best to target it, how to treat patients who have progressed on a BCMA-targeting therapy, and whether response rates will deepen if these agents are used in earlier lines of therapy. In this review, we examine the rationale for targeting BCMA and summarize the data for several agents across multiple classes of BCMA-targeting therapeutics, paying special attention to the diverse mechanisms and unique challenges of each therapeutic class.
Collapse
Affiliation(s)
- Barry Paul
- Division of Plasma Cell Disorders, Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute/Atrium Health, Charlotte, NC, USA
| | | | - Saad Z Usmani
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Zhang K, Roy NK, Vicioso Y, Woo J, Beck R, de Lima M, Caimi P, Feinberg D, Parameswaran R. BAFF receptor antibody for mantle cell lymphoma therapy. Oncoimmunology 2021; 10:1893501. [PMID: 33747637 PMCID: PMC7939563 DOI: 10.1080/2162402x.2021.1893501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive form of B cell non-Hodgkin’s lymphoma and remains incurable under current treatment modalities. One of the main reasons for treatment failure is the development of drug resistance. Accumulating evidence suggests that B cell activating factor (BAFF) and BAFF receptor (BAFF-R) play an important role in the proliferation and survival of malignant B cells. High serum BAFF levels are often correlated with poor drug response and relapse in MCL patients. Our study shows that BAFF-R is expressed on both MCL patient cells and cell lines. BAFF-R knockdown leads to MCL cell death showing the importance of BAFF-R signaling in MCL survival. Moderate knockdown of BAFF-R in MCL cells did not affect its viability, but sensitized them to cytarabine treatment in vitro and in vivo, with prolonged mice survival. Anti-BAFF-R antibody treatment promoted drug-induced MCL cell death. Conversely, the addition of recombinant BAFF (rhBAFF) to MCL cells protected them from cytarabine-induced apoptosis. We tested the efficacy of a humanized defucosylated ADCC optimized anti-BAFF-R antibody in killing MCL. Our data show both in vitro and in vivo efficacy of this antibody for MCL therapy. To conclude, our data indicate that BAFF/BAFF-R signaling is crucial for survival and involved in drug resistance of MCL. Targeting BAFF-R using BAFF-R antibody might be a promising therapeutical strategy to treat MCL patients resistant to chemotherapy.
Collapse
Affiliation(s)
- Keman Zhang
- Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nand K Roy
- Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yorleny Vicioso
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Janghee Woo
- Novartis Institute for BioMedical Research, Translational Clinical Oncology, NJ, USA
| | - Rose Beck
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Marcos de Lima
- Hematology and Oncology, University Hospitals, Cleveland, Ohio, USA.,The Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Paolo Caimi
- Hematology and Oncology, University Hospitals, Cleveland, Ohio, USA.,The Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Daniel Feinberg
- Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Reshmi Parameswaran
- Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,The Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Potential Role of microRNAs in inducing Drug Resistance in Patients with Multiple Myeloma. Cells 2021; 10:cells10020448. [PMID: 33672466 PMCID: PMC7923438 DOI: 10.3390/cells10020448] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
The prognosis for newly diagnosed subjects with multiple myeloma (MM) has significantly progressed in recent years. However, most MM patients relapse and after several salvage therapies, the onset of multidrug resistance provokes the occurrence of a refractory disease. A continuous and bidirectional exchange of information takes place between the cells of the microenvironment and neoplastic cells to solicit the demands of cancer cells. Among the molecules serving as messengers, there are microRNAs (miRNA), a family of small noncoding RNAs that regulate gene expression. Numerous miRNAs are associated with drug resistance, also in MM, and the modulation of their expression or activity might be explored to reverse it. In this review we report the most recent studies concerning the relationship between miRNAs and chemoresistance to the most frequently used drugs, such as proteasome inhibitors, steroids, alkylating agents and immunomodulators. The experimental use of antagomirs or miRNA mimics have successfully been proven to counteract chemoresistance and display synergistic effects with antimyeloma drugs which could represent a fundamental moment to overcome resistance in MM treatment.
Collapse
|
4
|
Zhang Y, Shen XJ, Wu XH, Cong H, Ni HB, Ju SQ, Su JY. [miR-202 contributes to sensitizing MM cells to drug significantly via activing JNK/SAPK signaling pathway]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 37:987-992. [PMID: 27995886 PMCID: PMC7348509 DOI: 10.3760/cma.j.issn.0253-2727.2016.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
目的 研究microRNA-202(miR-202)对多发性骨髓瘤(MM)细胞生长的影响,并初步探讨miR-202在MM细胞药物敏感性中的作用机制。 方法 荧光定量PCR检测miR-202及其靶基因B淋巴细胞刺激因子(BAFF)在MM细胞中的表达水平。将miR-202模拟物、miR-202抑制物、BAFF干扰质粒(siBAFF)及其阴性对照转染U266细胞,Western blot检测Bcl-2家族和MAPK信号通路蛋白的表达。WST-1法、流式细胞术(Annexin V-FLUOS)分别检测转染后U266细胞的增殖和凋亡情况。 结果 U266细胞、MM患者CD138+细胞中miR-202 mRNA表达(分别为0.052±0.009、0.304±0.354)均低于健康对照组(3.550±1.126)(P<0.001,P=0.009),BAFF表达水平(5.700±0.734、9.576±2.887)均高于健康对照组(1.819±0.853)(P<0.001,P=0.006)。miR-202模拟物转染组细胞增殖抑制率高于对照组[(56.04±0.02)%对(18.89±0.32)%,P=0.002]。Western blot结果显示,转染miR-202模拟物后,U266细胞Bcl-2表达下调约24%,而Bax蛋白的表达上调约1.24倍,miR-202模拟物组细胞凋亡率高于对照组[(49.60 ± 4.89)%对(26.20 ± 1.28)%,P=0.029]。硼替佐米和miR-202模拟物联合组细胞凋亡率为(51.23 ± 5.41)%,高于硼替佐米单独处理组(31.70 ± 4.40)%和硼替佐米与模拟物对照联合处理组[(51.23±5.41)%对(31.70±4.40)%,P=0.047;(51.23±5.41)%对(27.94±4.04)%,P=0.028)],而miR-202模拟物联合沙利度胺和地塞米松与miR-202模拟物对照组相比差异无统计学意义[(11.66±1.91)%对(10.63±1.74)%,P=0.700;(16.35±1.32)%对(17.43±1.95)%,P=0.400]。miR-202模拟物联合硼替佐米对U266细胞的增殖抑制率高于硼替佐米单独处理组[(36.93±5.98)%对(18.18±4.10)%,P=0.029]。miR-202模拟物及硼替佐米处理U266细胞后,p-JNK蛋白表达水平下调。 结论 miR-202模拟物和硼替佐米可协同抑制MM细胞增殖、诱导其凋亡,可能通过miR-202负向调控靶基因BAFF的表达、抑制JNK/SAPK信号通路的活化来实现的。
Collapse
Affiliation(s)
- Y Zhang
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong Jiangsu 226001, China
| | | | | | | | | | | | - J Y Su
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong Jiangsu 226001, China
| |
Collapse
|
5
|
Abramson HN. Monoclonal Antibodies for the Treatment of Multiple Myeloma: An Update. Int J Mol Sci 2018; 19:E3924. [PMID: 30544512 PMCID: PMC6321340 DOI: 10.3390/ijms19123924] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/22/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022] Open
Abstract
The past two decades have seen a revolution in multiple myeloma (MM) therapy with the introduction of several small molecules, mostly orally effective, whose mechanisms are based on proteasome inhibition, histone deacetylase (HDAC) blockade, and immunomodulation. Immunotherapeutic approaches to MM treatment using monoclonal antibodies (mAbs), while long in development, began to reap success with the identification of CD38 and SLAMF7 as suitable targets for development, culminating in the 2015 Food and Drug Administration (FDA) approval of daratumumab and elotuzumab, respectively. This review highlights additional mAbs now in the developmental pipeline. Isatuximab, another anti-CD38 mAb, currently is under study in four phase III trials and may offer certain advantages over daratumumab. Several antibody-drug conjugates (ADCs) in the early stages of development are described, including JNJ-63723283, which has attained FDA breakthrough status for MM. Other mAbs described in this review include denosumab, recently approved for myeloma-associated bone loss, and checkpoint inhibitors, although the future status of the latter combined with immunomodulators has been clouded by unacceptably high death rates that caused the FDA to issue clinical holds on several of these trials. Also highlighted are the therapies based on the B Cell Maturation Antigen (BCMA), another very promising target for anti-myeloma development.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
6
|
Cho SF, Anderson KC, Tai YT. Targeting B Cell Maturation Antigen (BCMA) in Multiple Myeloma: Potential Uses of BCMA-Based Immunotherapy. Front Immunol 2018; 9:1821. [PMID: 30147690 PMCID: PMC6095983 DOI: 10.3389/fimmu.2018.01821] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023] Open
Abstract
The approval of the first two monoclonal antibodies targeting CD38 (daratumumab) and SLAMF7 (elotuzumab) in late 2015 for treating relapsed and refractory multiple myeloma (RRMM) was a critical advance for immunotherapies for multiple myeloma (MM). Importantly, the outcome of patients continues to improve with the incorporation of this new class of agents with current MM therapies. However, both antigens are also expressed on other normal tissues including hematopoietic lineages and immune effector cells, which may limit their long-term clinical use. B cell maturation antigen (BCMA), a transmembrane glycoprotein in the tumor necrosis factor receptor superfamily 17 (TNFRSF17), is expressed at significantly higher levels in all patient MM cells but not on other normal tissues except normal plasma cells. Importantly, it is an antigen targeted by chimeric antigen receptor (CAR) T-cells, which have already shown significant clinical activities in patients with RRMM who have undergone at least three prior treatments, including a proteasome inhibitor and an immunomodulatory agent. Moreover, the first anti-BCMA antibody–drug conjugate also has achieved significant clinical responses in patients who failed at least three prior lines of therapy, including an anti-CD38 antibody, a proteasome inhibitor, and an immunomodulatory agent. Both BCMA targeting immunotherapies were granted breakthrough status for patients with RRMM by FDA in Nov 2017. Other promising BCMA-based immunotherapeutic macromolecules including bispecific T-cell engagers, bispecific molecules, bispecific or trispecific antibodies, as well as improved forms of next generation CAR T cells, also demonstrate high anti-MM activity in preclinical and even early clinical studies. Here, we focus on the biology of this promising MM target antigen and then highlight preclinical and clinical data of current BCMA-targeted immunotherapies with various mechanisms of action. These crucial studies will enhance selective anti-MM response, transform the treatment paradigm, and extend disease-free survival in MM.
Collapse
Affiliation(s)
- Shih-Feng Cho
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Yu-Tzu Tai
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Inflammatory and Anti-Inflammatory Equilibrium, Proliferative and Antiproliferative Balance: The Role of Cytokines in Multiple Myeloma. Mediators Inflamm 2017; 2017:1852517. [PMID: 29089667 PMCID: PMC5635476 DOI: 10.1155/2017/1852517] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/11/2017] [Indexed: 12/23/2022] Open
Abstract
Multiple myeloma (MM) is typically exemplified by a desynchronized cytokine system with increased levels of inflammatory cytokines. We focused on the contrast between inflammatory and anti-inflammatory systems by assessing the role of cytokines and their influence on MM. The aim of this review is to summarize the available information to date concerning this equilibrium to provide an overview of the research exploring the roles of serum cytokines in MM. However, the association between MM and inflammatory cytokines appears to be inadequate, and other functions, such as pro-proliferative or antiproliferative effects, can assume the role of cytokines in the genesis and progression of MM. It is possible that inflammation, when guided by cancer-specific Th1 cells, may inhibit tumour onset and progression. In a Th1 microenvironment, proinflammatory cytokines (e.g., IL-6 and IL-1) may contribute to tumour eradication by attracting leucocytes from the circulation and by increasing CD4 + T cell activity. Hence, caution should be used when considering therapies that target factors with pro- or anti-inflammatory activity. Drugs that may reduce the tumour-suppressive Th1-driven inflammatory immune response should be avoided. A better understanding of the relationship between inflammation and myeloma will ensure more effective therapeutic interventions.
Collapse
|
8
|
Pan J, Sun Y, Zhang N, Li J, Ta F, Wei W, Yu S, Ai L. Characteristics of BAFF and APRIL factor expression in multiple myeloma and clinical significance. Oncol Lett 2017; 14:2657-2662. [PMID: 28928810 PMCID: PMC5588141 DOI: 10.3892/ol.2017.6528] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 02/10/2017] [Indexed: 02/06/2023] Open
Abstract
The characteristics of the proliferation of B-cell activating factor (BAFF) and the proliferation-inducing ligand (APRIL) mRNA expression in mononuclear cell in multiple myeloma patients were detected, and the correlation was analyzed between the BAFF and APRIL concentrations in plasma and tumor burden parameters of multiple myeloma. Bone marrow samples from 60 patients with multiple myeloma and 20 healthy persons taken as controls, were collected. Bone marrow mononuclear cells (BMMCs) were harvested, and plasma was extracted. BAFF and APRIL mRNA expression was quantified using real-time fluorescent quantitative PCR in the BMMCs. ELISA was used to detect the characteristics of gene and protein expression of BAFF and APRIL in KM3 cell line. The BAFF and APRIL mRNA expression in initial treatment group, remission group and non-remission group were markedly higher than that in control group (P<0.05). The expression in initial treatment group and non-remission group was markedly higher than that of the control group (P<0.05). APRIL mRNA expression in mononuclear cells in stage III patients was markedly higher than that in stage II patients (P<0.05). There was positive correlation between APRIL and BAFF concentration in multiple myeloma (P=0.0027). In conclusion, for the gene and protein expression of BAFF and APRIL in patients with multiple myeloma, the initial treatment group and non-remission are higher than control and remission group. The higher the stage was, the more the factors were expressed. Characteristics of expression of BAFF and APRIL may be used as a new index to evaluate the prognosis of multiple myeloma.
Collapse
Affiliation(s)
- Jing Pan
- Department of Hematology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yuanyuan Sun
- Department of Hematology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Ning Zhang
- Department of Hematology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Jianming Li
- Medical College, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Fangxin Ta
- Medical Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Wei Wei
- Department of Hematology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Shanshan Yu
- Department of Hematology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Limei Ai
- Department of Hematology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
9
|
Abdelgawad IA, Radwan NH, Shafik RE, Shokralla HA. Significance of Proliferation Markers and Prognostic Factors in Egyptian Patients with Multiple Myeloma. Asian Pac J Cancer Prev 2017; 17:1351-5. [PMID: 27039771 DOI: 10.7314/apjcp.2016.17.3.1351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple myeloma (MM) is influenced by genetic and micro-environmental changes. Malignant plasma cells produce an abnormal monoclonal immunoglobulin, as well as cytokines, such as IL-10 and IL-6 which stimulate cells of the bone marrow microenvironment (BMM) and cause dysfunction and failure of many organs. B cell activating factor (BAFF), IL6 and IL10 are known to influence the growth and survival of malignant clones. AIM The objectives of the present study were to investigate the circulating levels of BAFF , IL-10 and IL-6, correlate them with well-known parameters of disease activity in patients with MM, and to detect their impact on patients' survival. MATERIALS AND METHODS This study was conducted on 89 newly diagnosed MM patients and seventy apparently healthy volunteers as a normal control group. BAFF, IL6, IL10 were measured by ELISA for both groups and survival analysis was performed for all patients. RESULTS Studied markers were higher in the MM patients compared to the normal control subjects. Patients survival was improved by high serum BAFF levels. CONCLUSIONS High levels of BAFF were found to improve patients' survival. BAFF and IL-6 can be considered probable diagnostic markers for MM.
Collapse
Affiliation(s)
- Iman A Abdelgawad
- Clinical Pathology Department, NCI, Cairo University, Cairo, Egypt E-mail :
| | | | | | | |
Collapse
|
10
|
Raje NS, Moreau P, Terpos E, Benboubker L, Grząśko N, Holstein SA, Oriol A, Huang SY, Beksac M, Kuliczkowski K, Tai DF, Wooldridge JE, Conti I, Kaiser CJ, Nguyen TS, Cronier DM, Palumbo A. Phase 2 study of tabalumab, a human anti-B-cell activating factor antibody, with bortezomib and dexamethasone in patients with previously treated multiple myeloma. Br J Haematol 2016; 176:783-795. [PMID: 28005265 DOI: 10.1111/bjh.14483] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/10/2016] [Indexed: 01/07/2023]
Abstract
In this double-blind, Phase 2 study, 220 patients with relapsed/refractory multiple myeloma were randomly assigned 1:1:1 to receive placebo (N = 72), tabalumab 100 mg (N = 74), or tabalumab 300 mg (N = 74), each in combination with dexamethasone 20 mg and subcutaneous bortezomib 1·3 mg/m2 on a 21-day cycle. No significant intergroup differences were observed among primary (median progression-free survival [mPFS]) or secondary efficacy outcomes. The mPFS was 6·6, 7·5 and 7·6 months for the tabalumab 100, 300 mg and placebo groups, respectively (tabalumab 100 mg vs. placebo Hazard ratio (HR) [95% confidence interval (CI)] = 1·13 [0·80-1·59], P = 0·480; tabalumab 300 mg vs. placebo HR [95% CI] = 1·03 [0·72-1·45], P = 0·884). The most commonly-reported treatment-emergent adverse events were thrombocytopenia (37%), fatigue (37%), diarrhoea (35%) and constipation (32%). Across treatments, patients with low baseline BAFF (also termed TNFSF13B) expression (n = 162) had significantly longer mPFS than those with high BAFF expression (n = 55), using the 75th percentile cut-off point (mPFS [95% CI] = 8·3 [7·0-9·3] months vs. 5·8 [3·7-6·6] months; HR [95% CI] = 1·59 [1·11-2·29], P = 0·015). Although generally well tolerated, PFS was not improved during treatment with tabalumab compared to placebo. A higher dose of 300 mg tabalumab did not improve efficacy compared to the 100 mg dose. Nonetheless, BAFF appears to have some prognostic value in patients with multiple myeloma.
Collapse
Affiliation(s)
| | | | - Evangelos Terpos
- National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Lotfi Benboubker
- Hôpital Bretonneau, Centre Hospitalier Régional Universitaire (CHRU), Tours, France
| | - Norbert Grząśko
- Medical University of Lublin and Department of Haematology, St. John's Cancer Centre, Lublin, Poland
| | | | - Albert Oriol
- Institut Català d'Oncologia (ICO) and Institut de Recerca contra la Leucèmia Josep Carreras (IJC), Hospital Germans Trias i Pujol, Badalona, Spain
| | - Shang-Yi Huang
- National Taiwan University, Medical College and Hospital, Taipei, Taiwan
| | - Meral Beksac
- Ankara University Ibn Sina Hospital, Ankara, Turkey
| | | | | | | | | | | | | | | | - Antonio Palumbo
- Myeloma Unit, Division of Haematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
11
|
Al-Hujaily EM, Oldham RAA, Hari P, Medin JA. Development of Novel Immunotherapies for Multiple Myeloma. Int J Mol Sci 2016; 17:E1506. [PMID: 27618026 PMCID: PMC5037783 DOI: 10.3390/ijms17091506] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/24/2016] [Accepted: 09/01/2016] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a disorder of terminally differentiated plasma cells characterized by clonal expansion in the bone marrow (BM). It is the second-most common hematologic malignancy. Despite significant advances in therapeutic strategies, MM remains a predominantly incurable disease emphasizing the need for the development of new treatment regimens. Immunotherapy is a promising treatment modality to circumvent challenges in the management of MM. Many novel immunotherapy strategies, such as adoptive cell therapy and monoclonal antibodies, are currently under investigation in clinical trials, with some already demonstrating a positive impact on patient survival. In this review, we will summarize the current standards of care and discuss major new approaches in immunotherapy for MM.
Collapse
Affiliation(s)
- Ensaf M Al-Hujaily
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Robyn A A Oldham
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
| | - Parameswaran Hari
- Department of Medicine, Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Jeffrey A Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- The Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
12
|
Shen X, Guo Y, Qi J, Shi W, Wu X, Ju S. Binding of B-cell maturation antigen to B-cell activating factor induces survival of multiple myeloma cells by activating Akt and JNK signaling pathways. Cell Biochem Funct 2016; 34:104-10. [PMID: 26914861 DOI: 10.1002/cbf.3169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Xianjuan Shen
- Surgical Comprehensive Laboratory; Affiliated Hospital of Nantong University; Nantong China
| | | | - Jing Qi
- Surgical Comprehensive Laboratory; Affiliated Hospital of Nantong University; Nantong China
| | - Wei Shi
- Surgical Comprehensive Laboratory; Affiliated Hospital of Nantong University; Nantong China
| | - Xinhua Wu
- Surgical Comprehensive Laboratory; Affiliated Hospital of Nantong University; Nantong China
| | - Shaoqing Ju
- Surgical Comprehensive Laboratory; Affiliated Hospital of Nantong University; Nantong China
- Nantong University; Nantong China
- Laboratory Medicine Center; Affiliated Hospital of Nantong University; Nantong China
| |
Collapse
|
13
|
Shen X, Guo Y, Qi J, Shi W, Wu X, Ni H, Ju S. Study on the Association Between miRNA-202 Expression and Drug Sensitivity in Multiple Myeloma Cells. Pathol Oncol Res 2015; 22:531-9. [DOI: 10.1007/s12253-015-0035-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/15/2015] [Indexed: 11/24/2022]
|
14
|
Ayed AO, Chang LJ, Moreb JS. Immunotherapy for multiple myeloma: Current status and future directions. Crit Rev Oncol Hematol 2015; 96:399-412. [DOI: 10.1016/j.critrevonc.2015.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/26/2015] [Accepted: 06/15/2015] [Indexed: 01/01/2023] Open
|
15
|
miRNA-202 in bone marrow stromal cells affects the growth and adhesion of multiple myeloma cells by regulating B cell-activating factor. Clin Exp Med 2015; 16:307-16. [PMID: 25971527 DOI: 10.1007/s10238-015-0355-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
Bone marrow stromal cells (BMSCs) up-regulate B cell-activating factor (BAFF) in multiple myeloma. Increasing experimental evidence has shown that microRNAs play a causal role in hematology tumorigenesis. In this study, we characterized the role of miR-202 in regulating the expression of BAFF in BMSCs. It was found that expressions of BAFF mRNA and protein were increased in BMSCs treated with miR-202 inhibitor. The growth rate of miR-202 mimics transfection cells was significantly lower than that of non-transfected cells. The expression of Bcl-2 protein was down-regulated, and Bax protein was up-regulated after miR-202 mimics transfection. Over-expression of miR-202 in BMSCs rendered MM cells more sensitive to bortezomib. More significantly, the regulatory effect of miR-202 could inhibit the activation of NF-κB pathway in BMSCs. These results suggest that miR-202 functions as a modulator that can negatively regulate BAFF by inhibiting MM cell survival, growth, and adhesion in the bone marrow microenvironment.
Collapse
|
16
|
Alexandrakis MG, Goulidaki N, Pappa CA, Boula A, Psarakis F, Neonakis I, Tsirakis G. Interleukin-10 Induces Both Plasma Cell Proliferation and Angiogenesis in Multiple Myeloma. Pathol Oncol Res 2015; 21:929-34. [PMID: 25743259 DOI: 10.1007/s12253-015-9921-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 02/20/2015] [Indexed: 12/22/2022]
Abstract
In multiple myeloma the angiogenic process is enhanced by various mediators. Among them interleukin-10 (IL-10), secreted mainly by myeloma-associated macrophages seems to participate in myeloma progression with variable manners. The aim of the study was to measure serum levels of IL-10 in various stages of MM patients and to correlate them with various angiogenic cytokines, such as vascular endothelial growth factor and angiopoietin-2 and with known proliferation parameters, such as serum levels of B-cell activating factor and bone marrow infiltration by myeloma plasma cells, in order to explore their clinical significance. We measured serum levels of the above parameters by ELISA in 54 newly diagnosed MM patients. All of them were higher in MM patients and were increasing in parallel with disease progression. Furthermore, IL-10 correlated positively with both angiogenic cytokines and proliferation markers. This correlation of IL-10 with both angiogenic cytokines and markers of disease activity implicates that they all have an important role in MM pathogenesis and progression.
Collapse
Affiliation(s)
- Michael G Alexandrakis
- Hematology Department, University Hospital of Heraklion, PO BOX 1352, Stavrakia, Heraklion, Crete, 71110, Greece
| | | | | | | | | | | | | |
Collapse
|
17
|
Hengeveld PJ, Kersten MJ. B-cell activating factor in the pathophysiology of multiple myeloma: a target for therapy? Blood Cancer J 2015; 5:e282. [PMID: 25723853 PMCID: PMC4349256 DOI: 10.1038/bcj.2015.3] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/02/2015] [Accepted: 01/21/2015] [Indexed: 01/28/2023] Open
Abstract
Multiple myeloma (MM) is a currently incurable malignancy of plasma cells. Malignant myeloma cells (MMCs) are heavily dependent upon the bone marrow (BM) microenvironment for their survival. One component of this tumor microenvironment, B-Cell Activating Factor (BAFF), has been implicated as a key player in this interaction. This review discusses the role of BAFF in the pathophysiology of MM, and the potential of BAFF-inhibitory therapy for the treatment of MM. Multiple studies have shown that BAFF functions as a survival factor for MMCs. Furthermore, MMCs express several BAFF-binding receptors. Of these, only Transmembrane Activator and CAML Interactor (TACI) correlates with the MMC's capability to ligate BAFF. Additionally, the level of expression of TACI correlates with the level of the MMC's BM dependency. Ligation of BAFF receptors on MMCs causes activation of the Nuclear Factor of κ-B (NF-κB) pathway, a crucial pathway for the pathogenesis of many B-cell malignancies. Serum BAFF levels are significantly elevated in MM patients when compared to healthy controls, and correlate inversely with overall survival. BAFF signaling is thus an interesting target for the treatment of MM. Several BAFF-inhibitory drugs are currently under evaluation for the treatment of MM. These include BAFF-monoclonal antibodies (tabalumab) and antibody-drug conjugates (GSK2857916).
Collapse
Affiliation(s)
- P J Hengeveld
- Department of Hematology, Academic Medical Center, Amsterdam, The Netherlands
| | - M J Kersten
- Department of Hematology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
18
|
McCranor BJ, Kim MJ, Cruz NM, Xue QL, Berger AE, Walston JD, Civin CI, Roy CN. Interleukin-6 directly impairs the erythroid development of human TF-1 erythroleukemic cells. Blood Cells Mol Dis 2014; 52:126-33. [PMID: 24119518 PMCID: PMC3947197 DOI: 10.1016/j.bcmd.2013.09.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 12/21/2022]
Abstract
Anemia of inflammation or chronic disease is a highly prevalent form of anemia. The inflammatory cytokine interleukin-6 (IL-6) negatively correlates with hemoglobin concentration in many disease states. The IL-6-hepcidin antimicrobial peptide axis promotes iron-restricted anemia; however the full role of IL-6 in anemia of inflammation is not well-defined. We previously reported that chronic inflammation had a negative impact on maturation of erythroid progenitors in a mouse model. We hypothesized that IL-6 may be responsible for impaired erythropoiesis, independent of iron restriction. To test the hypothesis we utilized the human erythroleukemia TF-1 cell line to model erythroid maturation and exposed them to varying doses of IL-6 over six days. At 10 ng/ml, IL-6 significantly repressed erythropoietin-dependent TF-1 erythroid maturation. While IL-6 did not decrease the expression of genes associated with hemoglobin synthesis, we observed impaired hemoglobin synthesis as demonstrated by decreased benzidine staining. We also observed that IL-6 down regulated expression of the gene SLC4a1 which is expressed late in erythropoiesis. Those findings suggested that IL-6-dependent inhibition of hemoglobin synthesis might occur. We investigated the impact of IL-6 on mitochondria. IL-6 decreased the mitochondrial membrane potential at all treatment doses, and significantly decreased mitochondrial mass at the highest dose. Our studies indicate that IL-6 may impair mitochondrial function in maturing erythroid cells resulting in impaired hemoglobin production and erythroid maturation. Our findings may indicate a novel pathway of action for IL-6 in the anemia of inflammation, and draw attention to the potential for new therapeutic targets that affect late erythroid development.
Collapse
Affiliation(s)
- Bryan J McCranor
- Division of Geriatric Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Min Jung Kim
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nicole M Cruz
- Division of Geriatric Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Qian-Li Xue
- Division of Geriatric Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Alan E Berger
- Lowe Family Genomics Core, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Jeremy D Walston
- Division of Geriatric Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Curt I Civin
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Cindy N Roy
- Division of Geriatric Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| |
Collapse
|
19
|
Byrne M, Katz J, Moreb J. Multiple Myeloma and Evolution of Novel Biomarkers and Therapies. Cancer Biomark 2014. [DOI: 10.1201/b16389-39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
BAFF and APRIL as TNF superfamily molecules and angiogenesis parallel progression of human multiple myeloma. Ann Hematol 2013; 93:635-44. [PMID: 24141333 PMCID: PMC3945232 DOI: 10.1007/s00277-013-1924-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/02/2013] [Indexed: 02/03/2023]
Abstract
Tumour necrosis factor alpha (TNF-α) is an inflammatory cytokine with a wide spectrum of biological activity, including angiogenesis. B cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL) are members of the TNF-α family. Vascular endothelial growth factor (VEGF), on the other hand, is one of the most characteristic pro-angiogenic cytokines produced by multiple cell types in multiple myeloma (MM). We have analysed BAFF and APRIL concentrations in parallel with pro-angiogenic cytokines in serum and trephine biopsy, and the bone marrow microvascular density (MVD) in 50 patients with newly diagnosed IgG MM and 24 healthy volunteers. The study showed statistically higher concentrations of BAFF, APRIL and TNF-α, as well as VEGF and its receptor, in MM patients compared to healthy volunteers and patients in advanced stages of the disease. A statistically positive correlation between the concentration of TNF-α and the expression of VEGF was demonstrated, and so was a positive link between BAFF, APRIL, MVD and lactate dehydrogenase (LDH). Furthermore, we observed a significant decrease in all studied cytokines after anti-angiogenic therapy, with meaningful differences between responders (at least partial remission) and patients with stable disease. It was also established that APRIL, but not BAFF, correlated with pro-angiogenic cytokines such as VEGF with its receptor, MVD and syndecan-1. Finally, our results showed that serum BAFF and APRIL levels could be useful biomarkers of MM disease activity and its progression which suggests that APRIL could be a possible novel therapeutic target in MM.
Collapse
|
21
|
Relationship between circulating BAFF serum levels with proliferating markers in patients with multiple myeloma. BIOMED RESEARCH INTERNATIONAL 2013; 2013:389579. [PMID: 23936794 PMCID: PMC3727116 DOI: 10.1155/2013/389579] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/09/2013] [Accepted: 06/23/2013] [Indexed: 01/07/2023]
Abstract
In multiple myeloma, there are many factors influencing the growth of the malignant clone in direct and indirect manners. BAFF is a growth factor for myeloma cells. The aim of the study was to measure its circulating levels in 54 pretreatment patients, along with serum levels of other proliferation markers, such as interleukins-6, -10, and -15, CRP, and beta-2 microglobulin, as well as bone marrow plasma cell infiltration and expression of Ki-67 PI, in various stages of the disease and after effective treatment in 28 of them. Serum levels of the previously mentioned factors were measured by ELISA, whereas bone marrow plasma cell infiltration and Ki-67 expression were estimated immunohistochemically. All measured parameters were higher in pretreated myeloma patients compared to healthy population and were also increasing with the progression of the disease. They all also decreased after effective therapy. Furthermore, all pretreatment values correlated to each other. BAFF seems to be an important growth factor for myeloma plasma cells. Measuring its serum levels, along with the previously mentioned cytokines, may provide important information regarding the degree of myeloma cells' proliferation. Therefore, they all could be used as markers of proliferation and disease activity.
Collapse
|
22
|
Al-Sadoon MK, Rabah DM, Badr G. Enhanced anticancer efficacy of snake venom combined with silica nanoparticles in a murine model of human multiple myeloma: Molecular targets for cell cycle arrest and apoptosis induction. Cell Immunol 2013; 284:129-38. [DOI: 10.1016/j.cellimm.2013.07.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 07/22/2013] [Accepted: 07/29/2013] [Indexed: 11/17/2022]
|