1
|
Pan H, Xu R, Zhang Y. Role of SPRY4 in health and disease. Front Oncol 2024; 14:1376873. [PMID: 38686189 PMCID: PMC11056578 DOI: 10.3389/fonc.2024.1376873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
SPRY4 is a protein encoding gene that belongs to the Spry family. It inhibits the mitogen-activated protein kinase (MAPK) signaling pathway and plays a role in various biological functions under normal and pathological conditions. The SPRY4 protein has a specific structure and interacts with other molecules to regulate cellular behavior. It serves as a negative feedback inhibitor of the receptor protein tyrosine kinases (RTK) signaling pathway and interferes with cell proliferation and migration. SPRY4 also influences inflammation, oxidative stress, and cell apoptosis. In different types of tumors, SPRY4 can act as a tumor suppressor or an oncogene. Its dysregulation is associated with the development and progression of various cancers, including colorectal cancer, glioblastoma, hepatocellular carcinoma, perihilar cholangiocarcinoma, gastric cancer, breast cancer, and lung cancer. SPRY4 is also involved in organ development and is associated with ischemic diseases. Further research is ongoing to understand the expression and function of SPRY4 in specific tumor microenvironments and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjie Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Caraffini V, Geiger O, Rosenberger A, Hatzl S, Perfler B, Berg JL, Lim C, Strobl H, Kashofer K, Schauer S, Beham-Schmid C, Hoefler G, Geissler K, Quehenberger F, Kolch W, Athineos D, Blyth K, Wölfler A, Sill H, Zebisch A. Loss of RAF kinase inhibitor protein is involved in myelomonocytic differentiation and aggravates RAS-driven myeloid leukemogenesis. Haematologica 2020; 105:375-386. [PMID: 31097632 PMCID: PMC7012480 DOI: 10.3324/haematol.2018.209650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
RAS-signaling mutations induce the myelomonocytic differentiation and proliferation of hematopoietic stem and progenitor cells. Moreover, they are important players in the development of myeloid neoplasias. RAF kinase inhibitor protein (RKIP) is a negative regulator of RAS-signaling. As RKIP loss has recently been described in RAS-mutated myelomonocytic acute myeloid leukemia, we now aimed to analyze its role in myelomonocytic differentiation and RAS-driven leukemogenesis. Therefore, we initially analyzed RKIP expression during human and murine hematopoietic differentiation and observed that it is high in hematopoietic stem and progenitor cells and lymphoid cells but decreases in cells belonging to the myeloid lineage. By employing short hairpin RNA knockdown experiments in CD34+ umbilical cord blood cells and the undifferentiated acute myeloid leukemia cell line HL-60, we show that RKIP loss is indeed functionally involved in myelomonocytic lineage commitment and drives the myelomonocytic differentiation of hematopoietic stem and progenitor cells. These results could be confirmed in vivo, where Rkip deletion induced a myelomonocytic differentiation bias in mice by amplifying the effects of granulocyte macrophage-colony-stimulating factor. We further show that RKIP is of relevance for RAS-driven myelomonocytic leukemogenesis by demonstrating that Rkip deletion aggravates the development of a myeloproliferative disease in NrasG12D -mutated mice. Mechanistically, we demonstrate that RKIP loss increases the activity of the RAS-MAPK/ERK signaling module. Finally, we prove the clinical relevance of these findings by showing that RKIP loss is a frequent event in chronic myelomonocytic leukemia, and that it co-occurs with RAS-signaling mutations. Taken together, these data establish RKIP as novel player in RAS-driven myeloid leukemogenesis.
Collapse
Affiliation(s)
| | - Olivia Geiger
- Division of Hematology, Medical University of Graz, Graz, Austria
| | | | - Stefan Hatzl
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Bianca Perfler
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Johannes L Berg
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Clarice Lim
- Otto Loewi Research Center, Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Herbert Strobl
- Otto Loewi Research Center, Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Karl Kashofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Silvia Schauer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Christine Beham-Schmid
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Klaus Geissler
- 5 Medical Department with Hematology, Oncology and Palliative Medicine, Hospital Hietzing, Vienna, Austria
- Sigmund Freud University, Vienna, Austria
| | - Franz Quehenberger
- Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Walter Kolch
- Systems Biology Ireland and Conway Institute, University College Dublin, Dublin, Ireland
| | | | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Albert Wölfler
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, Graz, Austria
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
3
|
Kayser S, Feszler M, Krzykalla J, Schick M, Kramer M, Benner A, Thol F, Platzbecker U, Müller-Tidow C, Ho AD, Ehninger G, Heuser M, Schlenk RF, Thiede C, Röllig C, Krämer A. Clinical impact of KMT2C and SPRY4 expression levels in intensively treated younger adult acute myeloid leukemia patients. Eur J Haematol 2017; 99:544-552. [PMID: 28940816 DOI: 10.1111/ejh.12972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate the prognostic impact of gene expression levels (ELs) of two tumor suppressor genes, sprouty 4 (SPRY4, located on 5q) and lysine methyltransferase 2C (KMT2C, located on 7q) in correlation with clinical characteristics and genetic abnormalities assessed at initial diagnosis in acute myeloid leukemia (AML). METHOD Gene expression levels were measured on cDNA by RT-qPCR from diagnostic bone marrow samples of 275 intensively treated adult AML patients (median age, 48 years). RESULTS KMT2C ELs were significantly lower in abn7q/-7 (P = .001), whereas SPRY4 ELs were not associated with abn5q/-5. Higher KMT2C and SPRY4 ELs were significantly associated with lower genetic risk groups as defined by the European LeukemiaNet classification. Additionally, KMT2C ELs were lower in cytogenetically normal patients with DNMT3A (P = .01) or FLT3-ITD mutations (P = .05). KMT2C ELs were not associated with prognosis, whereas higher SPRY4 ELs showed a favorable impact on event-free (EFS, P = .01), relapse-free (RFS, P = .01) and in-trend on overall survival (P = .06) for cytogenetically abnormal patients, which was confirmed in multivariable analysis for EFS (HR, 0.84; 95%-CI, 0.73-0.97; P = .02) and RFS (HR, 0.85; 95%-CI, 0.73-0.98; P = .02). CONCLUSION Our data indicate that KMT2C ELs are associated with specific genetic features and that SPRY4 ELs may add prognostic information.
Collapse
Affiliation(s)
- Sabine Kayser
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Maximilian Feszler
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Julia Krzykalla
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Schick
- Genomics & Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Kramer
- Department of Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felicitas Thol
- Department of Hematology, Hemostasis, Oncology and Stem cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Uwe Platzbecker
- Department of Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Anthony D Ho
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Gerhard Ehninger
- Department of Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Richard F Schlenk
- NCT Trial Center, National Center for Tumor Diseases, Heidelberg, Germany
| | - Christian Thiede
- Department of Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - Christoph Röllig
- Department of Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - Alwin Krämer
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
4
|
|
5
|
Halaban R, Krauthammer M. RASopathy Gene Mutations in Melanoma. J Invest Dermatol 2016; 136:1755-1759. [PMID: 27236105 DOI: 10.1016/j.jid.2016.05.095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/17/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
Abstract
Next-generation sequencing of melanomas has unraveled critical driver genes and genomic abnormalities, mostly defined as occurring at high frequency. In addition, less abundant mutations are present that link melanoma to a set of disorders, commonly called RASopathies. These disorders, which include neurofibromatosis and Noonan and Legius syndromes, harbor germline mutations in various RAS/mitogen-activated protein kinase signaling pathway genes. We highlight shared amino acid substitutions between this set of RASopathy mutations and those observed in large-scale melanoma sequencing data, uncovering a significant overlap. We review the evidence that these mutations activate the RAS/mitogen-activated protein kinase pathway in melanoma and are involved in melanomagenesis. Furthermore, we discuss the observations that two or more RASopathy mutations often co-occur in melanoma and may act synergistically on activating the pathway.
Collapse
Affiliation(s)
- Ruth Halaban
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA.
| | - Michael Krauthammer
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA; Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Hatzl S, Geiger O, Kuepper MK, Caraffini V, Seime T, Furlan T, Nussbaumer E, Wieser R, Pichler M, Scheideler M, Nowek K, Jongen-Lavrencic M, Quehenberger F, Wölfler A, Troppmair J, Sill H, Zebisch A. Increased Expression of miR-23a Mediates a Loss of Expression in the RAF Kinase Inhibitor Protein RKIP. Cancer Res 2016; 76:3644-54. [PMID: 27197200 DOI: 10.1158/0008-5472.can-15-3049] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/07/2016] [Indexed: 02/07/2023]
Abstract
RAF kinase inhibitor protein (RKIP) is a seminal regulator of intracellular signaling and exhibits both antimetastatic and antitumorigenic properties. Decreased expression of RKIP has been described in several human malignancies, including acute myelogenous leukemia (AML). As the mechanisms leading to RKIP loss in AML are still unclear, we aimed to analyze the potential involvement of miRNAs within this study. miRNA microarray and qPCR data of more than 400 AML patient specimens revealed correlation between decreased expression of RKIP and increased expression of miR-23a, a member of the miR-23a/27a/24-2 cluster. In functional experiments, overexpression of miR-23a decreased RKIP mRNA and protein expression, whereas miR-23a inhibition caused the opposite effect. By using an RKIP 3'-untranslated region luciferase reporter construct with and without mutation or deletion of the putative miR-23a-binding site, we could show that RKIP modulation by miR-23a is mediated via direct binding to this region. Importantly, miR-23a overexpression induced a significant increase of proliferation in hematopoietic cells. Simultaneous transfection of an RKIP expression construct lacking the miR-23a-binding sites reversed this phenotype, indicating that this effect is truly mediated via downregulation of RKIP. Finally, by analyzing more than 4,300 primary patient specimens via database retrieval from The Cancer Genome Atlas, we could highlight the importance of the miR-23a/RKIP axis in a broad range of human cancer entities. In conclusion, we have identified miR-23a as a negative regulator of RKIP expression in AML and have provided data that suggest the importance of our observation beyond this tumor entity. Cancer Res; 76(12); 3644-54. ©2016 AACR.
Collapse
Affiliation(s)
- Stefan Hatzl
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Olivia Geiger
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Maja Kim Kuepper
- Division of Hematology, Medical University of Graz, Graz, Austria
| | | | - Till Seime
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Tobias Furlan
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Erika Nussbaumer
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Rotraud Wieser
- Department of Medicine I, Medical University of Vienna, Vienna, Austria and Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
| | - Martin Pichler
- Division of Oncology, Medical University of Graz, Graz, Austria. Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marcel Scheideler
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Munich, Germany. University Hospital, Heidelberg University, Heidelberg, Germany. German Center for Diabetes Research (DZD), Neuherberg, Germany. Technical University of Munich, Munich, Germany
| | - Katarzyna Nowek
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Franz Quehenberger
- Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Albert Wölfler
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, Graz, Austria.
| |
Collapse
|