1
|
Jiang C, Yan Y, Long T, Xu J, Chang C, Kang M, Wang X, Chen Y, Qiu J. Ferroptosis: a potential therapeutic target in cardio-cerebrovascular diseases. Mol Cell Biochem 2025:10.1007/s11010-025-05262-7. [PMID: 40148662 DOI: 10.1007/s11010-025-05262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Cardio-cerebrovascular diseases (CCVDs) are the leading cause of global mortality, yet effective treatment options remain limited. Ferroptosis, a novel form of regulated cell death, has emerged as a critical player in various CCVDs, including atherosclerosis, myocardial infarction, ischemia-reperfusion injury, cardiomyopathy, and ischemic/hemorrhagic strokes. This review highlights the core mechanisms of ferroptosis, its pathological implications in CCVDs, and the therapeutic potential of targeting this process. Additionally, it explores the role of Chinese herbal medicines (CHMs) in mitigating ferroptosis, offering novel therapeutic strategies for CCVDs management. Ferroptosis is regulated by several key pathways. The GPX4-GSH-System Xc- axis is central to ferroptosis execution, involving GPX4 using GSH to neutralize lipid peroxides, with system Xc- being crucial for GSH synthesis. The NAD(P)H/FSP1/CoQ10 axis involves FSP1 regenerating CoQ10 via NAD(P)H, inhibiting lipid peroxidation independently of GPX4. Lipid peroxidation, driven by PUFAs and enzymes like ACSL4 and LPCAT3, and iron metabolism, regulated by proteins like TfR1 and ferritin, are also crucial for ferroptosis. Inhibiting ferroptosis shows promise in managing CCVDs. In atherosclerosis, ferroptosis inhibitors reduce iron accumulation and lipid peroxidation. In myocardial infarction, inhibitors protect cardiomyocytes by preserving GPX4 and SLC7A11 levels. In ischemia-reperfusion injury, targeting ferroptosis reduces myocardial and cerebral damage. In diabetic cardiomyopathy, Nrf2 activators alleviate oxidative stress and iron metabolism irregularities. CHMs offer natural compounds that mitigate ferroptosis. They possess antioxidant properties, chelate iron, and modulate signaling pathways like Nrf2 and AMPK. For example, Salvia miltiorrhiza and Astragalus membranaceus reduce oxidative stress, while some CHMs chelate iron, reducing its availability for ferroptosis. In conclusion, ferroptosis plays a pivotal role in CCVDs, and targeting it offers novel therapeutic avenues. CHMs show promise in reducing ferroptosis and improving patient outcomes. Future research should explore combination therapies and further elucidate the molecular interactions in ferroptosis.
Collapse
Affiliation(s)
- Chenlong Jiang
- School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Yang Yan
- Department of Cardiology, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Tianlin Long
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Jiawei Xu
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Cuicui Chang
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
- Department of Cardiology, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Meili Kang
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Xuanqi Wang
- Department of Cardiology, First Hospital of Northwestern University, Northwest University, No. 512 Xianning East Road, Xi'an, 710043, Shaanxi, China.
| | - Yuhua Chen
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China.
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China.
- School of Life and Health Science, Hainan University, No. 58 People's Avenue, Haikou, 570100, Hainan, China.
| | - Junlin Qiu
- Department of Cardiology, First Hospital of Northwestern University, Northwest University, No. 512 Xianning East Road, Xi'an, 710043, Shaanxi, China.
| |
Collapse
|
2
|
Satehi MB, Karimi M, Eskandari A, Mahmoodi H. The effect of aqueous extract of Iranian oak ( Quercus brantii) on lipid profile and liver enzymes in beta-thalassemia patients: a randomized controlled trial, double-blind, placebo-controlled. Front Nutr 2025; 12:1537420. [PMID: 40206948 PMCID: PMC11978670 DOI: 10.3389/fnut.2025.1537420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Background and aim Beta-thalassemia major patients often require regular blood transfusions, leading to iron overload, oxidative stress, and disturbances in lipid metabolism. The common use of vitamins and iron chelators helps mitigate some of these effects, but lipid profile abnormalities persist. The oak fruit (Quercus brantii) is rich in antioxidant compounds, such as flavonoids and polyphenols, which may help address these issues. This study aimed to investigate the effects of the aqueous extract of Iranian oak on the lipid profile and liver enzymes in beta-thalassemia major patients. Materials and methods This randomized, double-blind, placebo-controlled clinical trial included 60 beta-thalassemia major patients (29 males, 31 females; age 10-60 years) who regularly received blood transfusions and deferoxamine. Participants were divided into two groups: the intervention group received Iranian oak extract capsules (300 mg/day), and the control group received placebo capsules for 3 months. Lipid profiles (cholesterol, triglycerides, HDL, LDL) and liver enzymes (ALT, AST) were measured before and after the intervention. Results The control group exhibited a significant increase in triglyceride levels (from 167 to 184 mg/dL, p < 0.03), while no significant changes were observed in the intervention group. In contrast, total cholesterol significantly decreased in the oak extract group (from 125 to 112 mg/dL, p < 0.003). HDL levels decreased in both groups (p = 0.008 for the intervention group; p = 0.016 for the control group). No significant differences were found in LDL, ALT, or AST levels between the two groups. Conclusion The aqueous extract of Iranian oak demonstrated potential lipid-modulating effects by preventing triglyceride increases and reducing cholesterol levels in beta-thalassemia major patients. These findings suggest that the antioxidant properties of the oak extract may help manage lipid abnormalities associated with iron overload, improving cardiovascular risk profiles in these patients. Further studies with larger sample sizes and extended follow-up are recommended to confirm these benefits. Clinical trial tegistration http://www.irct.ir, identifier IRCT2015101411819N4.
Collapse
Affiliation(s)
- Mahdi Babamir Satehi
- Clinical Biochemistry Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahdi Karimi
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ataollah Eskandari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Mahmoodi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Chen Y, Meng Z, Li Y, Liu S, Hu P, Luo E. Advanced glycation end products and reactive oxygen species: uncovering the potential role of ferroptosis in diabetic complications. Mol Med 2024; 30:141. [PMID: 39251935 PMCID: PMC11385660 DOI: 10.1186/s10020-024-00905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Advanced glycation end products (AGEs) are a diverse range of compounds that are formed when free amino groups of proteins, lipids, and nucleic acids are carbonylated by reactive carbonyl species or glycosylated by reducing sugars. Hyperglycemia in patients with diabetes can cause an overabundance of AGEs. Excess AGEs are generally acknowledged as major contributing factors to the development of diabetic complications because of their ability to break down the extracellular matrix directly and initiate intracellular signaling pathways by binding to the receptor for advanced glycation end products (RAGE). Inflammation and oxidative stress are the two most well-defined pathophysiological states induced by the AGE-RAGE interaction. In addition to oxidative stress, AGEs can also inhibit antioxidative systems and disturb iron homeostasis, all of which may induce ferroptosis. Ferroptosis is a newly identified contributor to diabetic complications. This review outlines the formation of AGEs in individuals with diabetes, explores the oxidative damage resulting from downstream reactions of the AGE-RAGE axis, and proposes a novel connection between AGEs and the ferroptosis pathway. This study introduces the concept of a vicious cycle involving AGEs, oxidative stress, and ferroptosis in the development of diabetic complications.
Collapse
Affiliation(s)
- Yanchi Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zihan Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yong Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Pei Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Li J, Lv A, Chen M, Xu L, Huang H. Activating transcription factor 4 in erythroid development and β -thalassemia: a powerful regulator with therapeutic potential. Ann Hematol 2024; 103:2659-2670. [PMID: 37906269 DOI: 10.1007/s00277-023-05508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
Activating transcription factor 4 (ATF4) is a fundamental basic region/leucine zipper transcription factor, responds to various stress signals, and plays crucial roles in normal metabolic and stress response processes. Although its functions in human health and disease are not completely understood, compelling evidence underscores ATF4 is indispensable for multiple stages and lineages of erythroid development, including the regulation of fetal liver hematopoietic stem cells, induction of terminal erythroid differentiation, and maintenance of erythroid homeostasis. β -Thalassemia is a blood disorder arising from mutations in the β -globin gene. Reactivating the expression of the γ -globin gene in adult patients has emerged as a promising therapeutic strategy for ameliorating clinical symptoms associated with β -thalassemia. Recent research has suggested that ATF4 contributes to decreased fetal hemoglobin (HbF) level through its binding to potent negative regulators of HbF, such as BCL11A and MYB. Notably, evidence also suggests a contrasting outcome where increased ATF4 protein levels are associated with enhanced HbF at the transcriptional level. Consequently, the identification of mechanisms that modulate ATF4-mediated γ -globin transcription and its effects on erythroid development may unveil novel targets for β -thalassemia treatment.
Collapse
Affiliation(s)
- Jingmin Li
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Aixiang Lv
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Meihuan Chen
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Liangpu Xu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Hailong Huang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China.
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, 350001, Fujian Province, People's Republic of China.
| |
Collapse
|
5
|
Penglong T, Saensuwanna A, Jantapaso H, Phuwakanjana P, Jearawiriyapaisarn N, Paiboonsukwong K, Wanichsuwan W, Srinoun K. miR-214 aggravates oxidative stress in thalassemic erythroid cells by targeting ATF4. PLoS One 2024; 19:e0300958. [PMID: 38625890 PMCID: PMC11020981 DOI: 10.1371/journal.pone.0300958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/07/2024] [Indexed: 04/18/2024] Open
Abstract
Oxidative damage to erythroid cells plays a key role in the pathogenesis of thalassemia. The oxidative stress in thalassemia is potentiated by heme, nonheme iron, and free iron produced by the Fenton reaction, due to degradation of the unstable hemoglobin and iron overload. In addition, the levels of antioxidant enzymes and molecules are significantly decreased in erythrocytes in α- and β-thalassemia. The control of oxidative stress in red blood cells (RBCs) is known to be mediated by microRNAs (miRNAs). In erythroid cells, microR-214 (miR-214) has been reported to respond to external oxidative stress. However, the molecular mechanisms underlying this phenomenon remain unclear, especially during thalassemic erythropoiesis. In the present study, to further understand how miR-214 aggravates oxidative stress in thalassemia erythroid cells, we investigated the molecular mechanism of miR-214 and its regulation of the oxidative status in thalassemia erythrocytes. We have reported a biphasic expression of miR-214 in β- and α-thalassemia. In the present study the effect of miR-214 expression was investigated by using miR -inhibitor and -mimic transfection in erythroid cell lines induced by hemin. Our study showed a biphasic expression of miR-214 in β- and α-thalassemia. Subsequently, we examined the effect of miR-214 on erythroid differentiation in thalassemia. Our study reveals the loss-of-function of miR-214 during translational activation of activating transcription factor 4 mRNA, leading to decreased reactive oxygen species levels and increased glutathione levels in thalassemia erythroid cell. Our results suggest that the expression of activating transcription factor 4 regulated by miR-214 is important for oxidative stress modulation in thalassemic erythroid cells. Our findings can help to better understand the molecular mechanism of miRNA and transcription factors in regulation of oxidative status in erythroid cells, particularly in thalassemia, and could be useful for managing and relieving severe anemia symptoms in patients in the future.
Collapse
Affiliation(s)
- Tipparat Penglong
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Apisara Saensuwanna
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Husanai Jantapaso
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Pongpon Phuwakanjana
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Natee Jearawiriyapaisarn
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Kittiphong Paiboonsukwong
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Worrawit Wanichsuwan
- Medical Science Research and Innovation Institute, Research and Development Office, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kanitta Srinoun
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
6
|
Lou X, Zhang Y, Guo J, Gao L, Ding Y, Zhuo X, Lei Q, Bian J, Lei R, Gong W, Zhang X, Jiao Q. What is the impact of ferroptosis on diabetic cardiomyopathy: a systematic review. Heart Fail Rev 2024; 29:1-11. [PMID: 37555989 DOI: 10.1007/s10741-023-10336-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Iron overload increases the production of harmful reactive oxygen species in the Fenton reaction, which causes oxidative stress in the body and lipid peroxidation in the cell membrane, and eventually leads to ferroptosis. Diabetes is associated with increased intracellular oxidative stress, inflammation, autophagy, microRNA alterations, and advanced glycation end products (AGEs), which cause cardiac remodeling and cardiac diastolic contractile dysfunction, leading to the development of diabetic cardiomyopathy (DCM). While these factors are also closely associated with ferroptosis, more and more studies have shown that iron-mediated ferroptosis is an important causative factor in DCM. In order to gain fresh insights into the functions of ferroptosis in DCM, this review methodically summarizes the traits and mechanisms connected with ferroptosis and DCM.
Collapse
Affiliation(s)
- Xiaokun Lou
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Yuanyuan Zhang
- Department of Cardiovascular Ultrasonic Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junfeng Guo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Lina Gao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Yingying Ding
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Xinyu Zhuo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Qingqing Lei
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Jing Bian
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Rumei Lei
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Wenyan Gong
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China.
- Hangzhou Institute of Cardiovascular Disease, Hangzhou, 310000, China.
| | - Xingwei Zhang
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China.
- Hangzhou Institute of Cardiovascular Disease, Hangzhou, 310000, China.
| | - Qibin Jiao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
7
|
Fratta Pasini AM, Stranieri C, Busti F, Di Leo EG, Girelli D, Cominacini L. New Insights into the Role of Ferroptosis in Cardiovascular Diseases. Cells 2023; 12:cells12060867. [PMID: 36980208 PMCID: PMC10047059 DOI: 10.3390/cells12060867] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the principal cause of disease burden and death worldwide. Ferroptosis is a new form of regulated cell death mainly characterized by altered iron metabolism, increased polyunsaturated fatty acid peroxidation by reactive oxygen species, depletion of glutathione and inactivation of glutathione peroxidase 4. Recently, a series of studies have indicated that ferroptosis is involved in the death of cardiac and vascular cells and has a key impact on the mechanisms leading to CVDs such as ischemic heart disease, ischemia/reperfusion injury, cardiomyopathies, and heart failure. In this article, we reviewed the molecular mechanism of ferroptosis and the current understanding of the pathophysiological role of ferroptosis in ischemic heart disease and in some cardiomyopathies. Moreover, the comprehension of the machinery governing ferroptosis in vascular cells and cardiomyocytes may provide new insights into preventive and therapeutic strategies in CVDs.
Collapse
|
8
|
Li H, Lin R, Li H, Ou R, Wang K, Lin J, Li C. MicroRNA-92a-3p-mediated inhibition of BCL11A upregulates γ-globin expression and inhibits oxidative stress and apoptosis in erythroid precursor cells. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:1152-1162. [PMID: 36178486 DOI: 10.1080/16078454.2022.2128258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE This study attempted to investigate miR-92a-3p expression in peripheral blood of patients with severe β-thalassemia, and the effect and action mechanism of miR-92a-3p on γ-globin expression and oxidative stress in erythroid precursor cells. METHODS CD34+ hematopoietic progenitor cells (HPCs) were isolated from peripheral blood of healthy volunteers and patients with severe β-thalassemia. The levels of miR-92a-3p, BCL11A, and γ-globin were measured in erythroid precursor cells. High-performance liquid chromatography (HPLC) was used to analyze hemoglobin F (HbF) content. HPCs were induced with erythroid differentiation and erythroid precursor cells were then obtained. The relevance between miR-92a-3p and BCL11A was studied using dual luciferase reporter gene assay, and the correlation between miR-92a-3p and HbF was assayed by Pearson correlation analysis. Reactive oxygen species (ROS), glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD) in erythroid precursor cells were tested to evaluate oxidative stress. Cell apoptosis was examined by flow cytometry. RESULTS Remarkably higher expression of miR-92a-3p was observed in erythroid precursor cells. Increased expression of miR-92a-3p resulted in elevated levels of γ-globin, GSH, and SOD, reduced expression of ROS and MDA, and decreased cell apoptosis. BCL11A was identified as a target of miR-92a-3p and to be downregulated by miR-92a-3p. Moreover, BCL11A knockdown alone increased the expression of γ-globin, SOD and GSH, and repressed the levels of ROS and MDA and cell apoptosis, and the following inhibition of miR-92a-3p changed these patterns. CONCLUSIONS Our data indicated that miR-92a-3p might increase γ-globin level and reduce oxidative stress and apoptosis in erythroid precursor cells by downregulating BCL11A.
Collapse
Affiliation(s)
- Huili Li
- Department of Pediatrics, The First School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Ruoping Lin
- Department of Pediatrics, Huizhou First Maternal and Child Health Care Hospital, Huizhou, People's Republic of China
| | - Huan Li
- Department of Laboratory, Nanfang-Chunfu Children's Institute of Hematology & Oncology, Dongguan, People's Republic of China
| | - Rilan Ou
- Department of Laboratory, Nanfang-Chunfu Children's Institute of Hematology & Oncology, Dongguan, People's Republic of China
| | - Kaiping Wang
- Department of Pediatrics, Huizhou First Maternal and Child Health Care Hospital, Huizhou, People's Republic of China
| | - Junrong Lin
- Department of Pediatrics, Huizhou First Maternal and Child Health Care Hospital, Huizhou, People's Republic of China
| | - Chunfu Li
- Department of Pediatrics, The First School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
9
|
Lokesh KN, Raichur AM. Bioactive nutraceutical ligands and their efficiency to chelate elemental iron of varying dynamic oxidation states to mitigate associated clinical conditions. Crit Rev Food Sci Nutr 2022; 64:517-543. [PMID: 35943179 DOI: 10.1080/10408398.2022.2106936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The natural bioactive or nutraceuticals exhibit several health benefits, including anti-inflammatory, anti-cancer, metal chelation, antiviral, and antimicrobial activity. The inherent limitation of nutraceuticals or bioactive ligand(s) in terms of poor pharmacokinetic and other physicochemical properties affects their overall therapeutic efficiency. The excess of iron in the physiological compartments and its varying dynamic oxidation state [Fe(II) and Fe(III)] precipitates various clinical conditions such as non-transferrin bound iron (NTBI), labile iron pool (LIP), ferroptosis, cancer, etc. Though several natural bioactive ligands are proposed to chelate iron, the efficiency of bioactive ligands is limited due to poor bioavailability, denticity, and other related physicochemical properties. The present review provides insight into the relevance of studying the dynamic oxidation state of iron(II) and iron(III) in the physiological compartments and its clinical significance for selecting diagnostics and therapeutic regimes. We suggested a three-pronged approach, i.e., diagnosis, selection of therapeutic regime (natural bioactive), and integration of novel drug delivery systems (NDDS) or nanotechnology-based principles. This systematic approach improves the overall therapeutic efficiency of natural iron chelators to manage iron overload-related clinical conditions.
Collapse
Affiliation(s)
- K N Lokesh
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
10
|
Feng J, Wang J, Wang Y, Huang X, Shao T, Deng X, Cao Y, Zhou M, Zhao C. Oxidative Stress and Lipid Peroxidation: Prospective Associations Between Ferroptosis and Delayed Wound Healing in Diabetic Ulcers. Front Cell Dev Biol 2022; 10:898657. [PMID: 35874833 PMCID: PMC9304626 DOI: 10.3389/fcell.2022.898657] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/20/2022] [Indexed: 12/21/2022] Open
Abstract
Diabetic ulcers are one of the major complications of diabetes, and patients usually suffer from amputation and death due to delayed ulcer wound healing. Persistent inflammation and oxidative stress at the wound site are the main manifestations of delayed wound healing in diabetic ulcers. In addition, chronic hyperglycemia in patients can lead to circulatory accumulation of lipid peroxidation products and impaired iron metabolism pathways leading to the presence of multiple free irons in plasma. Ferroptosis, a newly discovered form of cell death, is characterized by intracellular iron overload and accumulation of iron-dependent lipid peroxides. These indicate that ferroptosis is one of the potential mechanisms of delayed wound healing in diabetic ulcers and will hopefully be a novel therapeutic target for delayed wound healing in diabetic patients. This review explored the pathogenesis of diabetic ulcer wound healing, reveals that oxidative stress and lipid peroxidation are common pathological mechanisms of ferroptosis and delayed wound healing in diabetic ulcers. Based on strong evidence, it is speculated that ferroptosis and diabetic ulcers are closely related, and have value of in-depth research. We attempted to clarify prospective associations between ferroptosis and diabetic ulcers in terms of GPX4, iron overload, ferroptosis inhibitors, AGEs, and HO-1, to provide new ideas for exploring the clinical treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jialin Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoting Huang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tengteng Shao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaofei Deng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Advanced Glycation End-Products (AGEs): Formation, Chemistry, Classification, Receptors, and Diseases Related to AGEs. Cells 2022; 11:cells11081312. [PMID: 35455991 PMCID: PMC9029922 DOI: 10.3390/cells11081312] [Citation(s) in RCA: 286] [Impact Index Per Article: 95.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023] Open
Abstract
Advanced glycation end-products (AGEs) constitute a non-homogenous, chemically diverse group of compounds formed either exogeneously or endogeneously on the course of various pathways in the human body. In general, they are formed non-enzymatically by condensation between carbonyl groups of reducing sugars and free amine groups of nucleic acids, proteins, or lipids, followed by further rearrangements yielding stable, irreversible end-products. In the last decades, AGEs have aroused the interest of the scientific community due to the increasing evidence of their involvement in many pathophysiological processes and diseases, such as diabetes, cancer, cardiovascular, neurodegenerative diseases, and even infection with the SARS-CoV-2 virus. They are recognized by several cellular receptors and trigger many signaling pathways related to inflammation and oxidative stress. Despite many experimental research outcomes published recently, the complexity of their engagement in human physiology and pathophysiological states requires further elucidation. This review focuses on the receptors of AGEs, especially on the structural aspects of receptor-ligand interaction, and the diseases in which AGEs are involved. It also aims to present AGE classification in subgroups and to describe the basic processes leading to both exogeneous and endogeneous AGE formation.
Collapse
|
12
|
Ge W, Jie J, Yao J, Li W, Cheng Y, Lu W. Advanced glycation end products promote osteoporosis by inducing ferroptosis in osteoblasts. Mol Med Rep 2022; 25:140. [PMID: 35211757 PMCID: PMC8908347 DOI: 10.3892/mmr.2022.12656] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
Advanced glycation end products (AGEs) have been widely reported to play an important role in osteoporosis (OP), particularly in diabetes-related OP. The aim of the present study was to investigate the effect of AGEs on osteoblast function and the underlying mechanisms. The level of bone mineral density (BMD), serum AGEs and fasting blood glucose (FBG) was measured in patients with OP and healthy individuals, and the correlation between AGE levels and BMD or FBG was then analyzed. For the in vitro experiments, the hFOB1.19 osteoblast cell line was cultured in medium containing AGEs and serum from healthy individuals or patients with OP, and with or without type-2 diabetes mellitus (T2DM). Cell proliferation, differentiation, mineralization, apoptosis and ferroptosis were evaluated using Cell Counting Kit-8 and alkaline phosphatase (ALP) assays, Alizarin red and TUNEL staining, iron indicator, lipid peroxidation tests and western blot analysis, respectively. In a separate set of experiments, the ferroptosis inhibitor, deferoxamine (DFO), was also added to the culture medium of cells treated with AGEs and serum from patients with OP and T2DM. The results demonstrated that patients with OP had a higher level of serum AGEs and FBG compared with that in healthy individuals. The level of serum AGEs in patients with OP was negatively correlated with BMD, but was positively correlated with FBG. In addition, AGEs and serum from patients with OP markedly inhibited hFOB1.19 cell proliferation, ALP production and mineralized nodule formation. Apoptosis and ferroptosis were significantly promoted by AGEs and serum from patients with OP. Moreover, serum from OP patients with T2DM caused stronger effect than that from OP patients with normal FBG. However, DFO reversed the effects induced by AGEs and serum from patients with OP and T2DM on hFOB1.19 cells. Collectively, AGEs could disrupt the functions of osteoblasts by inducing cell ferroptosis, thus contributing to OP.
Collapse
Affiliation(s)
- Weiwei Ge
- Department of Radiology, Pukou Branch of Jiangsu People's Hospital (Nanjing Pukou District Central Hospital), Nanjing, Jiangsu 210018, P.R. China
| | - Jian Jie
- Department of Orthopedics, Pukou Branch of Jiangsu People's Hospital (Nanjing Pukou District Central Hospital), Nanjing, Jiangsu 210018, P.R. China
| | - Jie Yao
- Department of Radiology, Nanjing Central Hospital (Nanjing Municipal Government Hospital), Nanjing, Jiangsu 210018, P.R. China
| | - Wei Li
- Department of Radiology, Pukou Branch of Jiangsu People's Hospital (Nanjing Pukou District Central Hospital), Nanjing, Jiangsu 210018, P.R. China
| | - Yahui Cheng
- Department of Radiology, Pukou Branch of Jiangsu People's Hospital (Nanjing Pukou District Central Hospital), Nanjing, Jiangsu 210018, P.R. China
| | - Wenjuan Lu
- Department of Radiology, Nanjing Central Hospital (Nanjing Municipal Government Hospital), Nanjing, Jiangsu 210018, P.R. China
| |
Collapse
|
13
|
Wang X, Chen X, Zhou W, Men H, Bao T, Sun Y, Wang Q, Tan Y, Keller BB, Tong Q, Zheng Y, Cai L. Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways. Acta Pharm Sin B 2022; 12:708-722. [PMID: 35256941 PMCID: PMC8897044 DOI: 10.1016/j.apsb.2021.10.005] [Citation(s) in RCA: 288] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/21/2021] [Accepted: 09/14/2021] [Indexed: 01/11/2023] Open
Abstract
Herein, we define the role of ferroptosis in the pathogenesis of diabetic cardiomyopathy (DCM) by examining the expression of key regulators of ferroptosis in mice with DCM and a new ex vivo DCM model. Advanced glycation end-products (AGEs), an important pathogenic factor of DCM, were found to induce ferroptosis in engineered cardiac tissues (ECTs), as reflected through increased levels of Ptgs2 and lipid peroxides and decreased ferritin and SLC7A11 levels. Typical morphological changes of ferroptosis in cardiomyocytes were observed using transmission electron microscopy. Inhibition of ferroptosis with ferrostatin-1 and deferoxamine prevented AGE-induced ECT remodeling and dysfunction. Ferroptosis was also evidenced in the heart of type 2 diabetic mice with DCM. Inhibition of ferroptosis by liproxstatin-1 prevented the development of diastolic dysfunction at 3 months after the onset of diabetes. Nuclear factor erythroid 2-related factor 2 (NRF2) activated by sulforaphane inhibited cardiac cell ferroptosis in both AGE-treated ECTs and hearts of DCM mice by upregulating ferritin and SLC7A11 levels. The protective effect of sulforaphane on ferroptosis was AMP-activated protein kinase (AMPK)-dependent. These findings suggest that ferroptosis plays an essential role in the pathogenesis of DCM; sulforaphane prevents ferroptosis and associated pathogenesis via AMPK-mediated NRF2 activation. This suggests a feasible therapeutic approach with sulforaphane to clinically prevent ferroptosis and DCM.
Collapse
Affiliation(s)
- Xiang Wang
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun 130021, China
| | - Xinxin Chen
- Department of Burn Surgery, First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Wenqian Zhou
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun 130021, China
| | - Hongbo Men
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun 130021, China
| | - Terigen Bao
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun 130021, China
| | - Yike Sun
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun 130021, China
| | - Quanwei Wang
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun 130021, China
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bradley B. Keller
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Cincinnati Children's Heart Institute, Greater Louisville and Western Kentucky Practice, Louisville, KY 40202, USA
| | - Qian Tong
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun 130021, China
| | - Yang Zheng
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun 130021, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
14
|
Leal LB, Nogueira MS, Mageski JGA, Martini TP, Barauna VG, Dos Santos L, de Carvalho LFDCES. Diagnosis of Systemic Diseases Using Infrared Spectroscopy: Detection of Iron Overload in Plasma-Preliminary Study. Biol Trace Elem Res 2021; 199:3737-3751. [PMID: 33415581 DOI: 10.1007/s12011-020-02510-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Despite the important role of iron in cellular homeostasis, iron overload (IO) is associated with systemic and tissue deposits which damage several organs. In order to reduce the impact caused by IO, invasive diagnosis exams (e.g., biopsies) and minimally invasive methods were developed including computed tomography and magnetic resonance imaging. However, current diagnostic methods are still time-consuming and expensive. A cost-effective solution is using Fourier-transform infrared spectroscopy (FTIR) for real-time and molecular-sensitive biofluid analysis during conventional laboratory exams. In this study, we performed the first evaluation of the accuracy of FTIR for IO diagnosis. The study was performed by collecting FTIR spectra of plasma samples of five rats intravenously injected with iron-dextran and five control rats. We developed a classification model based on principal component analysis and supervised methods including J48, random forest, multilayer perceptron, and radial basis function network. We achieved 100% accuracy for the classification of the IO status and provided a list of possible biomolecules related to the vibrational modes detected. In this preliminary study, we give a first step towards real-time diagnosis for acute IO or intoxication. Furthermore, we have expanded the literature knowledge regarding the pathophysiological changes induced by iron overload.
Collapse
Affiliation(s)
- Leonardo Barbosa Leal
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Marechal Campos Ave, 1468, Maruípe, Vitória, Espírito Santo, 29040-090, Brazil.
| | - Marcelo Saito Nogueira
- Tyndall National Institute/University College Cork - Lee Maltings Complex, Dyke Parade, Cork, T12R5CP, Ireland
| | - Jandinay Gonzaga Alexandre Mageski
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Marechal Campos Ave, 1468, Maruípe, Vitória, Espírito Santo, 29040-090, Brazil
| | - Thiago Pereira Martini
- Institute of Science and Technology, Federal University of Sao Paulo, São José dos Campos, Brazil
| | - Valério Garrone Barauna
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Marechal Campos Ave, 1468, Maruípe, Vitória, Espírito Santo, 29040-090, Brazil
| | - Leonardo Dos Santos
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Marechal Campos Ave, 1468, Maruípe, Vitória, Espírito Santo, 29040-090, Brazil
| | - Luis Felipe das Chagas E Silva de Carvalho
- Universidade de Taubaté. R. dos Operários, 09 - Centro, Taubaté, São Paulo, 12020-340, Brazil
- Centro Universitário Braz Cubas, Av. Francisco Rodrigues Filho, 1233 - Vila Mogilar, Mogi das Cruzes, São Paulo, Brazil
| |
Collapse
|
15
|
Copper, Iron, Selenium and Lipo-Glycemic Dysmetabolism in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22179461. [PMID: 34502369 PMCID: PMC8431716 DOI: 10.3390/ijms22179461] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
The aim of the present review is to discuss traditional hypotheses on the etiopathogenesis of Alzheimer's disease (AD), as well as the role of metabolic-syndrome-related mechanisms in AD development with a special focus on advanced glycation end-products (AGEs) and their role in metal-induced neurodegeneration in AD. Persistent hyperglycemia along with oxidative stress results in increased protein glycation and formation of AGEs. The latter were shown to possess a wide spectrum of neurotoxic effects including increased Aβ generation and aggregation. In addition, AGE binding to receptor for AGE (RAGE) induces a variety of pathways contributing to neuroinflammation. The existing data also demonstrate that AGE toxicity seems to mediate the involvement of copper (Cu) and potentially other metals in AD pathogenesis. Specifically, Cu promotes AGE formation, AGE-Aβ cross-linking and up-regulation of RAGE expression. Moreover, Aβ glycation was shown to increase prooxidant effects of Cu through Fenton chemistry. Given the role of AGE and RAGE, as well as metal toxicity in AD pathogenesis, it is proposed that metal chelation and/or incretins may slow down oxidative damage. In addition, selenium (Se) compounds seem to attenuate the intracellular toxicity of the deranged tau and Aβ, as well as inhibiting AGE accumulation and metal-induced neurotoxicity.
Collapse
|
16
|
Chen Y, Guo TL. Dietary advanced glycation end-products elicit toxicological effects by disrupting gut microbiome and immune homeostasis. J Immunotoxicol 2021; 18:93-104. [PMID: 34436982 PMCID: PMC9885815 DOI: 10.1080/1547691x.2021.1959677] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The aging immune system is characterized by a low-grade chronic systemic inflammatory state ("inflammaging") marked by elevated serum levels of inflammatory molecules such as interleukin (IL)-6 and C-reactive protein (CRP). These inflammatory markers were also reported to be strong predictors for the development/severity of Type 2 diabetes, obesity, and COVID-19. The levels of these markers have been positively associated with those of advanced glycation end-products (AGEs) generated via non-enzymatic glycation and oxidation of proteins and lipids during normal aging and metabolism. Based on the above observations, it is clinically important to elucidate how dietary AGEs modulate inflammation and might thus increase the risk for aging-exacerbated diseases. The present narrative review discusses the potential pro-inflammatory properties of dietary AGEs with a focus on the inflammatory mediators CRP, IL-6 and ferritin, and their relations to aging in general and Type 2 diabetes in particular. In addition, underlying mechanisms - including those related to gut microbiota and the receptors for AGEs, and the roles AGEs might play in affecting physiologies of the healthy elderly, obese individuals, and diabetics are discussed in regard to any greater susceptibility to COVID-19.
Collapse
Affiliation(s)
- Yingjia Chen
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Tai L. Guo
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
17
|
Livshits L, Barshtein G, Arbell D, Gural A, Levin C, Guizouarn H. Do We Store Packed Red Blood Cells under "Quasi-Diabetic" Conditions? Biomolecules 2021; 11:biom11070992. [PMID: 34356616 PMCID: PMC8301930 DOI: 10.3390/biom11070992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 01/28/2023] Open
Abstract
Red blood cell (RBC) transfusion is one of the most common therapeutic procedures in modern medicine. Although frequently lifesaving, it often has deleterious side effects. RBC quality is one of the critical factors for transfusion efficacy and safety. The role of various factors in the cells’ ability to maintain their functionality during storage is widely discussed in professional literature. Thus, the extra- and intracellular factors inducing an accelerated RBC aging need to be identified and therapeutically modified. Despite the extensively studied in vivo effect of chronic hyperglycemia on RBC hemodynamic and metabolic properties, as well as on their lifespan, only limited attention has been directed at the high sugar concentration in RBCs storage media, a possible cause of damage to red blood cells. This mini-review aims to compare the biophysical and biochemical changes observed in the red blood cells during cold storage and in patients with non-insulin-dependent diabetes mellitus (NIDDM). Given the well-described corresponding RBC alterations in NIDDM and during cold storage, we may regard the stored (especially long-stored) RBCs as “quasi-diabetic”. Keeping in mind that these RBC modifications may be crucial for the initial steps of microvascular pathogenesis, suitable preventive care for the transfused patients should be considered. We hope that our hypothesis will stimulate targeted experimental research to establish a relationship between a high sugar concentration in a storage medium and a deterioration in cells’ functional properties during storage.
Collapse
Affiliation(s)
- Leonid Livshits
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, CH-8057 Zurich, Switzerland;
| | - Gregory Barshtein
- Biochemistry Department, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
- Correspondence: ; Tel.: +972-2-6758309
| | - Dan Arbell
- Pediatric Surgery Department, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Alexander Gural
- Department of Hematology, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Carina Levin
- Pediatric Hematology Unit, Emek Medical Center, Afula 1834111, Israel;
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Hélène Guizouarn
- Institut de Biologie Valrose, Université Côte d’Azur, CNRS, Inserm, 28 Av. Valrose, 06100 Nice, France;
| |
Collapse
|
18
|
Li Y, Zhang F, Zhang X, Fu Z, Wang L, Zhao C, Guo G, Zhou X, Ji L. The impact of ferritin on the disassociation of HbA1c and mean plasma glucose. J Diabetes 2021; 13:512-520. [PMID: 33249774 DOI: 10.1111/1753-0407.13138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE To explore the impact of ferritin level on the disassociation of glycated hemoglobin A1c (HbA1c) and mean plasma glucose (MPG). RESEACH DESIGN AND METHODS We used a 2012-2013 cross-sectional survey conducted in Pinggu district, Beijing including 3095 Chinese participants aged 25-75 years. We categorized their glycemic status by interviewing for diagnosed diabetes and by measuring HbA1c, fasting plasma glucose (FPG), and 2-hours post-load plasma glucose (2-hours PPG). We fitted a multivariable regression model to explore the impact of ferritin on the association of HbA1c or glycated albumin (GA) and mean plasma glucose. RESULTS A total of 5.65% of participants were diagnosed as diabetes using HbA1c criteria, and 9.79% using oral glucose tolerance test criteria. Compared with males, females had significantly lower hemoglobin levels (159.82 ± 11.56 vs 135.93 ± 12.62) and lower ferritin levels (113.00 [68.55, 185.50] vs 33.40 [12.40, 70.13]). Linear regression analysis performed in different groups classified by different diagnose criterion indicated that the correlation between MPG and HbA1c differs in different tertiles of ferritin (lowest vs middle vs highest: R2 = 0.507 vs 0.645 vs 0.687 in female; R2 = 0.415 vs 0.715 vs 0.615 in male), and the association between MPG and HbA1c diminished in the lowest tertile of ferritin. CONCLUSIONS Ferritin level might affect the association between glucose and HbA1c, which should be taken into account when using HbA1c as a diagnosis criterion for diabetes and prediabetes.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Endocrinology and Metabolism, Beijing Pinggu Hospital, Beijing, China
| | - Fang Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Xiuying Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Zuodi Fu
- Department of Endocrinology and Metabolism, Beijing Pinggu Hospital, Beijing, China
| | - Lianying Wang
- Department of Endocrinology and Metabolism, Beijing Pinggu Hospital, Beijing, China
| | - Cuiling Zhao
- Department of Endocrinology and Metabolism, Beijing Pinggu Hospital, Beijing, China
| | - Guangxia Guo
- Department of Endocrinology and Metabolism, Beijing Pinggu Hospital, Beijing, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| |
Collapse
|
19
|
Iron and Advanced Glycation End Products: Emerging Role of Iron in Androgen Deficiency in Obesity. Antioxidants (Basel) 2020; 9:antiox9030261. [PMID: 32235809 PMCID: PMC7139764 DOI: 10.3390/antiox9030261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 12/27/2022] Open
Abstract
The literature suggests a bidirectional relationship between testosterone (T) and iron, but mechanisms underlying this relationship remain unclear. We investigated effects of iron on advanced glycation end products (AGEs) in obesity-related androgen deficiency. In total, 111 men were recruited, and iron biomarkers and N(ɛ)-(carboxymethyl)lysine (CML) were measured. In an animal study, rats were fed a 50% high-fat diet (HFD) with (0.25, 1, and 2 g ferric iron/kg diet) or without ferric citrate for 12 weeks. Obese rats supplemented with >1 g iron/kg diet had decreased testicular total T compared to HFD alone. Immunohistochemical staining showed that >1 g of ferric iron increased iron and AGE retention in testicular interstitial tissues, which is associated with increased expression of the receptor for AGEs (RAGE), tumor necrosis factor-α, and nitric oxide. Compared with normal weight, overweight/obese men had lower T levels and higher rates of hypogonadism (19% vs. 11.3%) and iron overload (29.8% vs.15.9%). A correlation analysis showed serum total T was positively correlated with transferrin saturation (r = 0.242, p = 0.007) and cathepsin D (r = 0.330, p = 0.001), but negatively correlated with red blood cell aggregation (r = −0.419, p<0.0001) and CML (r = −0.209, p < 0.05). In conclusion, AGEs may partially explain the underlying relationship between dysregulated iron and T deficiency.
Collapse
|
20
|
Rodrigues de Morais T, Gambero A. Iron chelators in obesity therapy – Old drugs from a new perspective? Eur J Pharmacol 2019; 861:172614. [DOI: 10.1016/j.ejphar.2019.172614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/16/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023]
|
21
|
Srinoun K, Sathirapongsasuti N, Paiboonsukwong K, Sretrirutchai S, Wongchanchailert M, Fucharoen S. miR-144 regulates oxidative stress tolerance of thalassemic erythroid cell via targeting NRF2. Ann Hematol 2019; 98:2045-2052. [PMID: 31243572 DOI: 10.1007/s00277-019-03737-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
Thalassemia has a high prevalence in Thailand. Oxidative damage to erythroid cells is known to be one of the major etiologies in thalassemia pathophysiology. Oxidative stress status of thalassemia is potentiated by the heme, nonheme iron, and free iron resulting from imbalanced globin synthesis. In addition, levels of antioxidant proteins are reduced in α-thalassemia and β-thalassemia erythrocytes. However, the primary molecular mechanism for this phenotype remains unknown. Our study showed a high expression of miR-144 in β- and α-thalassemia. An increased miR-144 expression leads to decreased expression of nuclear factor erythroid 2-related factor 2 (NRF2) target, especially in α-thalassemia. In α-thalassemia, miR-144 and NRF2 target are associated with glutathione level and anemia severity. To study the effect of miR-144 expression, the gain-loss of miR-144 expression was performed by miR inhibitor and mimic transfection in the erythroblastic cell line. This study reveals that miR-144 expression was upregulated, whereas NRF2 expression and glutathione levels were decreased in comparison with the untreated condition after miR mimic transfection, while the reduction of miR-144 expression contributed to the increased NRF2 expression and glutathione level compared with the untreated condition after miR inhibitor transfection. Moreover, miR-144 overexpression leads to significantly increased sensitivity to oxidative stress at indicated concentrations of hydrogen peroxide (H2O2) and rescued by miR-144 inhibitor. Taken together, our findings suggest that dysregulation of miR-144 may play a role in the reduced ability of erythrocyte to deal with oxidative stress and increased RBC hemolysis susceptibility especially in thalassemia.
Collapse
Affiliation(s)
- Kanitta Srinoun
- Faculty of Medical Technology, Prince of Songkla University, 15, Kanjanavanit Rd. Hat Yai, Songkhla, 90110, Thailand.
| | - Nuankanya Sathirapongsasuti
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 25/25, 270 Rama VI Rd., Ratchathewi, Bangkok, 10400, Thailand
| | - Kittiphong Paiboonsukwong
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, 25/25, Putthamonthon Sai 4 Rd. Salaya, Putthamonthon, Nakron Pratom, 73170, Thailand
| | - Somporn Sretrirutchai
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, 15, Kanjanavanit Rd. Hat Yai, Songkhla, 90110, Thailand
| | - Malai Wongchanchailert
- Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, 15, Kanjanavanit Rd. Hat Yai, Songkhla, 90110, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, 25/25, Putthamonthon Sai 4 Rd. Salaya, Putthamonthon, Nakron Pratom, 73170, Thailand
| |
Collapse
|
22
|
Zhao W, Zhang WL, Yang B, Sun J, Yang MW. NIPA2 regulates osteoblast function via its effect on apoptosis pathways in type 2 diabetes osteoporosis. Biochem Biophys Res Commun 2019; 513:883-890. [PMID: 31003774 DOI: 10.1016/j.bbrc.2019.04.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes osteoporosis has recently become a hot topic in the study of diabetic complications, but the specific mechanism of its development remains unclear. Non-imprinted in Prader-Willi/Angelman syndrome region protein 2 (NIPA2), a highly-selective magnesium ion transporter, has been found to be associated with type 2 diabetes. In this study we aimed to investigate the specific role and mechanism of NIPA2 in the pathogenesis of type 2 diabetes osteoporosis. We first used western blotting, PCR, immunofluorescence, and magnesium ion probes to detect changes of NIPA2 and intracellular magnesium levels in osteoblasts at different concentrations of advanced glycation end products (AGEs). We then up- or down-regulated NIPA2 using a lentivirus and analyzed apoptotic biomarkers as well as the osteogenic ability of osteoblasts. We found that AGEs dose-dependently down-regulated the expression of NIPA2 in osteoblasts. NIPA2 also regulated osteoblast apoptosis by affecting the intracellular magnesium level and further affecting the osteogenic capacity of osteoblasts. Our study revealed the changes of NIPA2 in response to AGEs in the environment, as well as its function and mechanism in osteoblasts, demonstrating its important role in the pathogenesis of type 2 diabetes osteoporosis. The study suggests that NIPA2 is a potential target for the treatment of type 2 diabetes osteoporosis.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei-Lin Zhang
- Department of Orthopedics, The Fourth Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bo Yang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jun Sun
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mao-Wei Yang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
23
|
Salman Z, Yılmaz T, Mehmetçik G. The relationship between ferritin levels and oxidative stress parameters in serum of β-thalassemia major patients. Arch Biochem Biophys 2018; 659:42-46. [PMID: 30287235 DOI: 10.1016/j.abb.2018.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/29/2018] [Accepted: 09/19/2018] [Indexed: 11/24/2022]
Affiliation(s)
- Ziya Salman
- Department of Biochemistry, Faculty of Pharmacy, Near East University, Nicosia, Mersin 10, Turkey.
| | - Tamer Yılmaz
- Department of Biochemistry, Faculty of Dentistry, Near East University, Nicosia, Mersin 10, Turkey.
| | - Güldal Mehmetçik
- Department of Biochemistry, Faculty of Pharmacy, International Cyprus University, Mersin 10, Turkey.
| |
Collapse
|
24
|
Koonyosying P, Kongkarnka S, Uthaipibull C, Svasti S, Fucharoen S, Srichairatanakool S. Green tea extract modulates oxidative tissue injury in beta-thalassemic mice by chelation of redox iron and inhibition of lipid peroxidation. Biomed Pharmacother 2018; 108:1694-1702. [PMID: 30372872 DOI: 10.1016/j.biopha.2018.10.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/10/2018] [Accepted: 10/03/2018] [Indexed: 02/08/2023] Open
Abstract
Iron overload in patients with β-thalassemia can cause oxidative organ dysfunction. Iron chelation along with antioxidant supplementation can ameliorate such complications and prolong lives. Green tea extract (GTE) rich in epigallocatechin-3-gallate (EGCG) exhibits anti-oxidation and iron chelation properties in β-knockout thalassemic (BKO) mice diagnosed with iron overload. We investigated the effects of GTE and deferiprone (DFP) alone in combination with one another, and upon the levels of redox-active iron, lipid-peroxidation product, insulin and hepcidin in BKO mice. A state of iron overload was induced in the mice via a trimethylhexanoyl-ferrocene supplemented (Fe) diet for 3 months, and the mice were treated daily with either: DFP (50 mg/kg), DFP (50 mg/kg) plus GTE (50 mg EGCG equivalent/kg), or GTE alone for 2 months. Plasma non-transferrin bound iron (NTBI), malondialdehyde (MDA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), hepcidin and insulin; tissue iron and MDA were measured. DFP, GTE and GTE + DFP effectively decreased plasma MDA (p < 0.05), NTBI and ALT, and increased plasma hepcidin and insulin. All the treatments also reduced iron accumulation and MDA production in both the pancreas and liver in the mice. However, the combination therapy demonstrated no advantages over monotherapy. The findings suggest GTE improved liver and pancreatic β-cell functions in iron-overloaded β-thalassemia mice by diminishing redox iron and free radicals, while inhibiting lipid peroxidation. Consequently, there are indications that GTE holds significant potential for clinical use.
Collapse
Affiliation(s)
- Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sarawut Kongkarnka
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chairat Uthaipibull
- Protein-Ligand Engineering and Molecular Biology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Bioscience, Mahidol University Salaya Campus, Nakornpathom, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Bioscience, Mahidol University Salaya Campus, Nakornpathom, Thailand
| | | |
Collapse
|
25
|
Tzounakas VL, Valsami SI, Kriebardis AG, Papassideri IS, Seghatchian J, Antonelou MH. Red cell transfusion in paediatric patients with thalassaemia and sickle cell disease: Current status, challenges and perspectives. Transfus Apher Sci 2018; 57:347-357. [PMID: 29880248 DOI: 10.1016/j.transci.2018.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Notwithstanding the high safety level of the currently available blood for transfusion and the decreasing frequency of transfusion-related complications, administration of labile blood products to paediatric patients still poses unique challenges and considerations. The incidence of thalassaemia and sickle cell disease in the paediatric population may be high enough under specific racial and geographical contexts. Red cell transfusion is the cornerstone of β-thalassaemia treatment and one of the most effective ways to prevent or correct specific acute and chronic complications of sickle cell disease. However, this life-saving strategy comes with its own complications, such as additional iron overload, alloimmunization and haemolytic reactions, among others. In paediatrics, the dependency of the transfusion outcome upon disease and other recipient characteristics is more prominent compared with the adults, owing to differences in developmental maturity and physiology that render them more susceptible to common risks, exacerbate the host response to transfused cells, and modify the type or the clinical severity of the transfusion-related morbidity. The adverse branch of red cell transfusion is likely the overall effect of several factors acting synergistically to shape the clinical phenotype of this therapy, including inherent donor/blood unit variables, like antigenicity, red cell deformability and extracellular vesicles, as well as recipient variables, such as history of alloimmunization and inflammation level at time of transfusion. This review focuses on paediatric patients with β-thalassaemia and sickle cell disease as a recipient group with distinct transfusion-related characteristics, and introduces new concepts for consideration, not adequately studied and elucidated so far.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Serena I Valsami
- Department of Blood Transfusion, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios G Kriebardis
- Department of Medical Laboratories, Technological and Educational Institute of Athens, Athens, Greece
| | - Issidora S Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Jerard Seghatchian
- International Consultancy in Blood Component Quality/Safety Improvement, Audit/Inspection and DDR Strategy, London, UK.
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| |
Collapse
|