1
|
Li SQ, Yu CZ, Xu LP, Wang Y, Zhang XH, Chen H, Chen YH, Wang FR, Sun YQ, Yan CH, Lv M, Mo XD, Liu YR, Liu KY, Zhao XS, Zhao XY, Huang XJ, Chang YJ. Pretransplantation risk factors for positive MRD after allogeneic stem cell transplantation in AML patients: a prospective study. Bone Marrow Transplant 2025; 60:277-285. [PMID: 39550501 DOI: 10.1038/s41409-024-02466-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
We aimed to prospectively explore the risk factors for measurable residual disease (MRD) positivity after allogeneic stem cell transplantation (allo-SCT) in AML patients (n = 478). The cumulative incidences (CIs) of post-SCT MRD positivity at 100 days, 360 days and 3 years were 4.6%, 12.1% and 18.3%, respectively. Positive pre-SCT MRD and pre-SCT active disease were risk factors for post-SCT MRD positivity at both 360 days and 3 years (P < 0.001). European LeukemiaNet (ELN) 2017 risk stratification was a risk factor for positive post-SCT MRD at 360 days (P = 0.044). A scoring system for predicting post-SCT MRD positivity at 360 days was established by using pre-SCT MRD, pre-SCT active disease and ELN 2017 risk stratification. The CI of positive post-SCT MRD at 3 years was 13.2%, 23.7%, and 43.9% for patients with scores of 0, 1, and 2, respectively (P < 0.001). Multivariate analysis demonstrated that the scoring system was associated with a higher CI of post-SCT MRD positivity, leukemia relapse and inferior survival. Our data indicate that positive pre-SCT MRD status, pre-SCT active disease, and ELN 2017 risk stratification are risk factors for positive post-SCT MRD status in AML patients.
Collapse
Affiliation(s)
- Si-Qi Li
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chun-Zi Yu
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Huan Chen
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu-Hong Chen
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Feng-Rong Wang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu-Qian Sun
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chen-Hua Yan
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Meng Lv
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Dong Mo
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yan-Rong Liu
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying-Jun Chang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| |
Collapse
|
2
|
Mo X, Zhang W, Fu G, Chang Y, Zhang X, Xu L, Wang Y, Yan C, Shen M, Wei Q, Yan C, Huang X. Single-cell immune landscape of measurable residual disease in acute myeloid leukemia. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2309-2322. [PMID: 39034351 DOI: 10.1007/s11427-024-2666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Measurable residual disease (MRD) is a powerful prognostic factor of relapse in acute myeloid leukemia (AML). We applied the single-cell RNA sequencing to bone marrow (BM) samples from patients with (n=20) and without (n=12) MRD after allogeneic hematopoietic stem cell transplantation. A comprehensive immune landscape with 184,231 cells was created. Compared with CD8+ T cells enriched in the MRD-negative group (MRD-_CD8), those enriched in the MRD-positive group (MRD+_CD8) showed lower expression levels of cytotoxicity-related genes. Three monocyte clusters (i.e., MRD+_M) and three B-cell clusters (i.e., MRD+_B) were enriched in the MRD-positive group. Conversion from an MRD-positive state to an MRD-negative state was accompanied by an increase in MRD-_CD8 clusters and vice versa. MRD-enriched cell clusters employed the macrophage migration inhibitory factor pathway to regulate MRD-_CD8 clusters. These findings revealed the characteristics of the immune cell landscape in MRD positivity, which will allow for a better understanding of the immune mechanisms for MRD conversion.
Collapse
Affiliation(s)
- Xiaodong Mo
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Guomei Fu
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Yingjun Chang
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaohui Zhang
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Lanping Xu
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Yu Wang
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Chenhua Yan
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Mengzhu Shen
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Qiuxia Wei
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Changjian Yan
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaojun Huang
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100044, China.
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, 100044, China.
| |
Collapse
|
3
|
van der Linde R, Gatt PN, Smith S, Fernandez MA, Vaughan L, Blyth E, Curnow J, Brown DA, Tegg E, Sasson SC. Measurable Residual Disease (MRD) by Flow Cytometry in Adult B-Acute Lymphoblastic Leukaemia (B-ALL) and Acute Myeloid Leukaemia (AML): Correlation with Molecular MRD Testing and Clinical Outcome at One Year. Cancers (Basel) 2023; 15:5064. [PMID: 37894431 PMCID: PMC10605425 DOI: 10.3390/cancers15205064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Measurable residual disease (MRD) detected by flow cytometry (FC) is well established in paediatric B- lymphoblastic leukaemia (B-ALL) and adult chronic lymphocytic leukaemia (CLL), but its utility in adult B-ALL and adult acute myeloid leukaemia (AML) is less clear. In this prospective MRD study, one of the largest in Australia to date, we examined consecutive bone marrow aspirates from adult participants with B-ALL (n = 47) and AML (n = 87) sent for FC-MRD testing at a quaternary referral hospital in Sydney. FC-MRD results were correlated to corresponding Mol-MRD testing where available and clinical outcomes at three-month intervals over 1 year. B-ALL showed a moderate positive correlation (rs = 0.401, p < 0.001), while there was no correlation between FC-MRD and Mol-MRD for AML (rs = 0.13, p = 0.237). Five FC-MRD patterns were identified which had significant associations with relapse (X2(4) = 31.17(4), p > 0.001) and survival (X2(4) = 13.67, p = 0.008) in AML, but not in B-ALL. The three-month MRD results were also strongly associated with survival in AML, while the association in B-ALL was less evident. There was a moderate correlation between FC-MRD and Mol-MRD in B-ALL but not AML. The association of FC-MRD with relapse and survival was stronger in AML than in B-ALL. Overall, these findings suggest divergent utilities of FC-MRD in AML and B-ALL.
Collapse
Affiliation(s)
- Riana van der Linde
- Department of Laboratory Haematology, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (L.V.); (E.T.)
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia; (P.N.G.); (E.B.); (J.C.); (D.A.B.); (S.C.S.)
| | - Prudence N. Gatt
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia; (P.N.G.); (E.B.); (J.C.); (D.A.B.); (S.C.S.)
- Westmead Institute for Medical Research, University of Sydney, Sydney, NSW 2145, Australia
| | - Sandy Smith
- Flow Cytometry Unit, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (S.S.); (M.A.F.)
| | - Marian A. Fernandez
- Flow Cytometry Unit, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (S.S.); (M.A.F.)
| | - Lachlin Vaughan
- Department of Laboratory Haematology, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (L.V.); (E.T.)
- Department of Haematology, Western Sydney Local Health District, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Emily Blyth
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia; (P.N.G.); (E.B.); (J.C.); (D.A.B.); (S.C.S.)
- Westmead Institute for Medical Research, University of Sydney, Sydney, NSW 2145, Australia
- Department of Haematology, Western Sydney Local Health District, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Jennifer Curnow
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia; (P.N.G.); (E.B.); (J.C.); (D.A.B.); (S.C.S.)
- Department of Haematology, Western Sydney Local Health District, Westmead Hospital, Westmead, NSW 2145, Australia
| | - David A. Brown
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia; (P.N.G.); (E.B.); (J.C.); (D.A.B.); (S.C.S.)
- Westmead Institute for Medical Research, University of Sydney, Sydney, NSW 2145, Australia
- Department of Clinical Immunology and Immunopathology, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Elizabeth Tegg
- Department of Laboratory Haematology, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (L.V.); (E.T.)
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia; (P.N.G.); (E.B.); (J.C.); (D.A.B.); (S.C.S.)
| | - Sarah C. Sasson
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia; (P.N.G.); (E.B.); (J.C.); (D.A.B.); (S.C.S.)
- Department of Clinical Immunology and Immunopathology, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
4
|
Measurable residual disease in adult acute myeloid leukaemia: evaluation of a multidimensional 'radar' flow cytometric plot analysis method. Pathology 2023; 55:383-390. [PMID: 36725446 DOI: 10.1016/j.pathol.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/11/2022] [Accepted: 10/09/2022] [Indexed: 01/01/2023]
Abstract
Measurable residual disease (MRD) monitoring in acute myeloid leukaemia (AML) is becoming increasingly important and is predominantly performed by multiparameter flow cytometry (MFC) or quantitative polymerase chain reactions (RT-qPCR). We investigated the use of multidimensional plots (MD-MFC) for AML MRD monitoring in an adult cohort. AML MRD was determined using a novel MD-MFC method for 115 MRD samples. Results were correlated with traditional two-dimensional MFC (2D-MFC) and molecular methods. Using the standard cut-off of 0.1% CD45+ cells, concordance was 99/115 (p=0.332). Eighty-four of 115 were concordant using a very low reporting limit of 0.01% (p=0.216). MRD <0.1% by either method was present in 40 of 115 samples. Fifteen of 40 were MD-MFC positive and 2D-MFC negative. Of these two of 15 had a molecular MRD marker and both were positive. Molecular MRD markers were available in 36 of 115 cases. Twenty-one of 36 (58%) were concordant with MD-MFC. Eight of 36 had detectable molecular MRD only and eight of 36 had positive MD-MFC only. There was no correlation between either the MFC method and the molecular results. In summary, there is good correlation between MD- and 2D-MFC-MRD and no correlation between the MFC and molecular methods.
Collapse
|
5
|
Liu XX, Pan XA, Gao MG, Kong J, Jiang H, Chang YJ, Zhang XH, Wang Y, Liu KY, Chen Z, Zhao XS, Huang XJ. The adverse impact of ecotropic viral integration site-1 (EVI1) overexpression on the prognosis of acute myeloid leukemia with KMT2A gene rearrangement in different risk stratification subtypes. Int J Lab Hematol 2023; 45:195-203. [PMID: 36358022 DOI: 10.1111/ijlh.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
INTRODUCTION AML patients with KMT2A-MLLT3 and other 11q23 abnormalities belong to the intermediate and high-risk level groups, respectively. Whether the poor prognostic value of Ecotropic Viral Integration site-1 (EVI1) overexpression suits either the subtypes of KMT2A-MLLT3 or Non-KMT2A-MLLT3 AML patients (intermediate and high risk group) needs to be further investigated. METHODS We retrospectively analyzed the clinical characteristics of 166 KMT2A-r and KMT2A-PTD AML patients. RESULTS For the Non-KMT2A-MLLT3 group, patients in the EVI1-high subgroup had shorter OS and DFS and higher CIR than those in the EVI1-low subgroup (p = .027, p = .018, and p = .020, respectively). Additionally, both KMT2A-MLLT3 and Non-KMT2A-MLLT3 patients who received chemotherapy alone had poorer prognosis than patients who also received allogeneic hematopoietic stem cell transplant (allo-HSCT) regardless of their EVI1 expression level (all p < .001). For transplanted patients with KMT2A-MLLT3 or Non-KMT2A-MLLT3 rearrangement, the EVI1-high subgroup had worse prognosis than the EVI1-low subgroup (all p < .05). The 2-year CIR of the KMT2A-MLLT3 and Non-KMT2A-MLLT3 groups with high EVI1 expression was high (52% and 49.6%, respectively). However, for patients with low EVI1 expression, the 2-year CIR of transplanted patients with KMT2A-MLLT3 and Non-KMT2A-MLLT3 was relatively low. CONCLUSIONS Our study showed that for the Non-KMT2A-MLLT3 group, the EVI1-high group had shorter OS and DFS than the EVI1-low group. High EVI1 expression showed an adverse effect in AML with KMT2A rearrangement in different risk stratification subtypes. For the EVI1-high patients with non-KMT2A-MLLT3 rearrangement, other novel regimens towards relapse should be taken into consideration.
Collapse
Affiliation(s)
- Xin-Xin Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Beijing Hightrust Diagnostics, Co., Ltd, Beijing, China
| | - Xin-An Pan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Meng-Ge Gao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jun Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ying-Jun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zhong Chen
- Beijing Hightrust Diagnostics, Co., Ltd, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Beijing Hightrust Diagnostics, Co., Ltd, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
6
|
Zhang YW, Su L, Tan YH, Lin H, Liu XL, Liu QJ, Sun JN, Zhang M, Du YZ, Song F, Han W, Gao SJ. Measurable residual disease detected by flow cytometry independently predicts prognoses of NPM1-mutated acute myeloid leukemia. Ann Hematol 2023; 102:337-347. [PMID: 36378304 DOI: 10.1007/s00277-022-05033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia (AML) with NPM1 mutation is a distinct genetic entity with favorable outcomes. Nevertheless, emerging evidence suggests that NPM1-mutated AML is still a highly heterogeneous disorder. In this study, 266 patients with AML with NPM1 mutations were retrospectively analyzed to evaluate the associations between variant allele frequency (VAF) of NPM1 mutations, co-mutated genes, measurable residual disease (MRD), and patient outcomes. Multiparameter flow cytometry (MFC) and real-time quantitative polymerase chain reaction (RT-PCR) were used for monitoring MRD. Ultimately, 106 patients were included in the long-term follow-up period. Patients with high NPM1 VAF (≥ 42.43%) had poorer 2-year relapse-free survival (RFS) (55.7% vs. 70.2%, P = 0.017) and overall survival (OS) (63.7% vs. 82.0%, P = 0.027) than those with low VAF. DNMT3A mutations negatively influenced the outcomes of patients with NPM1 mutations. Patients with high DNMT3A VAF or NPM1/DNMT3A/FLT3-ITD triple mutations had shorter RFS and significantly lower OS than that in controls. After two cycles of chemotherapy, patients with positive MFC MRD results had lower RFS (MRD+ vs. MRD-:44.9% vs. 67.6%, P = 0.007) and OS (61.5% vs. 76.6%, P = 0.011) than those without positive MFC MRD results. In multivariate analysis, high NPM1 VAF (hazard ratio [HR] = 2.045; P = 0.034) and positive MRD after two cycles of chemotherapy (HR = 3.289; P = 0.003) were independent risk factors for RFS; MRD positivity after two cycles of chemotherapy (HR = 3.293; P = 0.008) independently predicted the OS of the patients. These results indicate that VAF of both NPM1 gene itself or certain co-occurring gene pre-treatment and MRD post-treatment are potential markers for restratifying the prognoses of patients AML having NPM1 mutations.
Collapse
Affiliation(s)
- Yun-Wei Zhang
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Long Su
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Ye-Hui Tan
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Hai Lin
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Xiao-Liang Liu
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Qiu-Ju Liu
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Jing-Nan Sun
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Ming Zhang
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Ya-Zhe Du
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Fei Song
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Wei Han
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Su-Jun Gao
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
7
|
Malagola M, Polverelli N, Beghin A, Bolda F, Comini M, Farina M, Morello E, Radici V, Accorsi Buttini E, Bernardi S, Re F, Leoni A, Bonometti D, Brugnoni D, Lanfranchi A, Russo D. Bone marrow CD34+ molecular chimerism as an early predictor of relapse after allogeneic stem cell transplantation in patients with acute myeloid leukemia. Front Oncol 2023; 13:1133418. [PMID: 36950550 PMCID: PMC10025489 DOI: 10.3389/fonc.2023.1133418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Background Minimal residual disease (MRD) monitoring is an important tool to optimally address post-transplant management of acute myeloid leukemia (AML) patients. Methods We retrospectively analyzed the impact of bone marrow CD34+ molecular chimerism and WT1 on the outcome of a consecutive series of 168 AML patients submitted to allogeneic stem cell transplantation. Results The cumulative incidence of relapse (CIR) was significantly lower in patients with donor chimerism on CD34+ cells ≥ 97.5% and WT1 < 213 copies/ABL x 10^4 both at 1st month (p=0.008 and p<0.001) and at 3rd month (p<0.001 for both). By combining chimerism and WT1 at 3rd month, 13 patients with chimerism < 97.5% or WT1 > 213 showed intermediate prognosis. 12 of these patients fell in this category because of molecular chimerism < 97.5% at a time-point in which WT1 was < 213. Conclusions Our results confirm that lineage-specific molecular chimerism and WT1 after allo-SCT (1st and 3rd month) are useful MRD markers. When considered together at 3rd month, CD34+ molecular chimerism could represent an earlier predictor of relapse compared to WT1. Further studies are necessary to confirm this preliminary observation.
Collapse
Affiliation(s)
- Michele Malagola
- Blood Diseases and Cell Therapies unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- *Correspondence: Michele Malagola,
| | - Nicola Polverelli
- Blood Diseases and Cell Therapies unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandra Beghin
- Stem Cell Laboratory, Section of Hematology and Blood Coagulation, Clinical Chemistry Laboratory, Diagnostics Department, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Federica Bolda
- Stem Cell Laboratory, Section of Hematology and Blood Coagulation, Clinical Chemistry Laboratory, Diagnostics Department, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Marta Comini
- Stem Cell Laboratory, Section of Hematology and Blood Coagulation, Clinical Chemistry Laboratory, Diagnostics Department, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Mirko Farina
- Blood Diseases and Cell Therapies unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Enrico Morello
- Blood Diseases and Cell Therapies unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Vera Radici
- Blood Diseases and Cell Therapies unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Eugenia Accorsi Buttini
- Blood Diseases and Cell Therapies unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Simona Bernardi
- Blood Diseases and Cell Therapies unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Centro di Ricerca Emato-oncologico AIL (CREA) , “ASST-Spedali Civili” Hospital of Brescia, Brescia, Italy
| | - Federica Re
- Blood Diseases and Cell Therapies unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Centro di Ricerca Emato-oncologico AIL (CREA) , “ASST-Spedali Civili” Hospital of Brescia, Brescia, Italy
| | - Alessandro Leoni
- Blood Diseases and Cell Therapies unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Centro di Ricerca Emato-oncologico AIL (CREA) , “ASST-Spedali Civili” Hospital of Brescia, Brescia, Italy
| | - Davide Bonometti
- Department of Hematology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Duilio Brugnoni
- Department of Laboratory Diagnostics, ASST Spedali Civili, Brescia, Italy
| | - Arnalda Lanfranchi
- Stem Cell Laboratory, Section of Hematology and Blood Coagulation, Clinical Chemistry Laboratory, Diagnostics Department, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Domenico Russo
- Blood Diseases and Cell Therapies unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
8
|
Liu XX, Kong J, Pan SA, Liu J, Qin YZ, Chang YJ, Wang Y, Zhang XH, Xu LP, Huang XJ, Zhao XS. [Dynamic assessment of WT1 for predicting the relapse of acute myeloid leukemia patients with MLL rearrangements after hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:785-787. [PMID: 36709175 PMCID: PMC9613485 DOI: 10.3760/cma.j.issn.0253-2727.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 11/24/2022]
Affiliation(s)
- X X Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - J Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - S A Pan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - J Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Z Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y J Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X H Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - L P Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X J Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X S Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
9
|
NPM1-mutation-based measurable residual disease assessment after completion of two courses of post-remission therapy is a valuable clinical predictor of the prognosis of acute myeloid leukemia. Int J Hematol 2022; 116:199-214. [DOI: 10.1007/s12185-022-03328-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
|
10
|
Kong J, Gao MG, Qin YZ, Wang Y, Yan CH, Sun YQ, Chang YJ, Xu LP, Zhang XH, Liu KY, Huang XJ, Zhao XS. Monitoring of post-transplant MLL-PTD as minimal residual disease can predict relapse after allogeneic HSCT in patients with acute myeloid leukemia and myelodysplastic syndrome. BMC Cancer 2022; 22:11. [PMID: 34979982 PMCID: PMC8721994 DOI: 10.1186/s12885-021-09051-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/23/2021] [Indexed: 12/04/2022] Open
Abstract
Background The mixed-lineage leukemia (MLL) gene is located on chromosome 11q23. The MLL gene can be rearranged to generate partial tandem duplications (MLL-PTD), which occurs in about 5-10% of acute myeloid leukemia (AML) with a normal karyotype and in 5-6% of myelodysplastic syndrome (MDS) patients. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is currently one of the curative therapies available for AML and MDS with excess blasts (MDS-EB). However, how the prognosis of patients with high levels of MLL-PTD after allo-HSCT, and whether MLL-PTD could be used as a reliable indicator for minimal residual disease (MRD) monitoring in transplant patients remains unknown. Our study purposed to analyze the dynamic changes of MLL-PTD peri-transplantation and the best threshold for predicting relapse after transplantation. Methods We retrospectively collected the clinical data of 48 patients with MLL-PTD AML or MDS-EB who underwent allo-HSCT in Peking University People’s Hospital. The MLL-PTD was examined by real-time quantitative polymerase chain reaction (RQ-PCR) at the diagnosis, before transplantation and the fixed time points after transplantation. Detectable MLL-PTD/ABL > 0.08% was defined as MLL-PTD positive in this study. Results The 48 patients included 33 AML patients and 15 MDS-EB patients. The median follow-up time was 26(0.7-56) months after HSCT. In AML patients, 7 patients (21.2%) died of treatment-related mortality (TRM), 6 patients (18.2%) underwent hematological relapse and died ultimately. Of the 15 patients with MDS-EB, 2 patients (13.3%) died of infection. The 3-year cumulative incidence of relapse (CIR), overall survival (OS), disease-free survival (DFS) and TRM were 13.7 ± 5.2, 67.8 ± 6.9, 68.1 ± 6.8 and 20.3% ± 6.1%, respectively. ROC curve showed that post-transplant MLL-PTD ≥ 1.0% was the optimal cut-off value for predicting hematological relapse after allo-HSCT. There was statistical difference between post-transplant MLL-PTD ≥ 1.0% and MLL-PTD < 1.0% groups (3-year CIR: 75% ± 15.3% vs. 0%, P < 0.001; 3-year OS: 25.0 ± 15.3% vs. 80.7% ± 6.6%, P < 0.001; 3-year DFS: 25.0 ± 15.3% vs. 80.7 ± 6.6%, P < 0.001; 3-year TRM: 0 vs. 19.3 ± 6.6%, P = 0.277). However, whether MLL-PTD ≥ 1% or MLL-PTD < 1% before transplantation has no significant difference on the prognosis. Conclusions Our study indicated that MLL-PTD had a certain stability and could effectively reflect the change of tumor burden. The expression level of MLL-PTD after transplantation can serve as an effective indicator for predicting relapse.
Collapse
Affiliation(s)
- Jun Kong
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No 11 Xizhimen South Street, Beijing, 100044, China
| | - Meng-Ge Gao
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No 11 Xizhimen South Street, Beijing, 100044, China
| | - Ya-Zhen Qin
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No 11 Xizhimen South Street, Beijing, 100044, China
| | - Yu Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No 11 Xizhimen South Street, Beijing, 100044, China
| | - Chen-Hua Yan
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No 11 Xizhimen South Street, Beijing, 100044, China.,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing, China
| | - Yu-Qian Sun
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No 11 Xizhimen South Street, Beijing, 100044, China
| | - Ying-Jun Chang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No 11 Xizhimen South Street, Beijing, 100044, China.,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Lan-Ping Xu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No 11 Xizhimen South Street, Beijing, 100044, China.,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing, China
| | - Xiao-Hui Zhang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No 11 Xizhimen South Street, Beijing, 100044, China
| | - Kai-Yan Liu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No 11 Xizhimen South Street, Beijing, 100044, China
| | - Xiao-Jun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No 11 Xizhimen South Street, Beijing, 100044, China.,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, 100044, China
| | - Xiao-Su Zhao
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No 11 Xizhimen South Street, Beijing, 100044, China. .,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing, China. .,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.
| |
Collapse
|
11
|
Yu T, Chi J, Wang L. Clinical values of gene alterations as marker of minimal residual disease in non-M3 acute myeloid leukemia. Hematology 2021; 26:848-859. [PMID: 34674615 DOI: 10.1080/16078454.2021.1990503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a malignant disease of the hematopoietic system. Residual leukemic cells after treatment are associated with relapse. Thus, detecting minimal residual disease (MRD) is significant. Major techniques for MRD assessment include multiparameter flow cytometry (MFC), polymerase chain reaction (PCR), and next-generation sequencing (NGS). At a molecular level, AML is the consequence of collaboration of several gene alterations. Some of these gene alterations can also be used as MRD markers to evaluate the level of residual leukemic cells by PCR and NGS. However, when as MRD markers, different gene alterations have different clinical values. This paper aims to summarize the characteristics of various MRD markers, so as to better predict the clinical outcome of AML patients and guide the treatment.
Collapse
Affiliation(s)
- Tingyu Yu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jianxiang Chi
- Center for the Study of Hematological Malignancies, Nicosia, Cyprus
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
12
|
Zhang XH, Chen J, Han MZ, Huang H, Jiang EL, Jiang M, Lai YR, Liu DH, Liu QF, Liu T, Ren HY, Song YP, Sun ZM, Tang XW, Wang JM, Wu DP, Xu LP, Zhang X, Zhou DB, Huang XJ. The consensus from The Chinese Society of Hematology on indications, conditioning regimens and donor selection for allogeneic hematopoietic stem cell transplantation: 2021 update. J Hematol Oncol 2021; 14:145. [PMID: 34526099 PMCID: PMC8441240 DOI: 10.1186/s13045-021-01159-2] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
The consensus recommendations in 2018 from The Chinese Society of Hematology (CSH) on indications, conditioning regimens and donor selection for allogeneic hematopoietic stem cell transplantation (allo-HSCT) facilitated the standardization of clinical practices of allo-HSCT in China and progressive integration with the world. There have been new developments since the initial publication. To integrate recent developments and further improve the consensus, a panel of experts from the CSH recently updated the consensus recommendations, which are summarized as follows: (1) there is a new algorithm for selecting appropriate donors for allo-HSCT candidates. Haploidentical donors (HIDs) are the preferred donor choice over matched sibling donors (MSDs) for patients with high-risk leukemia or elderly patients with young offspring donors in experienced centers. This replaces the previous algorithm for donor selection, which favored MSDs over HIDs. (2) Patients with refractory/relapsed lymphoblastic malignancies are now encouraged to undergo salvage treatment with novel immunotherapies prior to HSCT. (3) The consensus has been updated to reflect additional evidence for the application of allo-HSCT in specific groups of patients with hematological malignancies (intermediate-risk acute myeloid leukemia (AML), favorable-risk AML with positive minimal residual disease, and standard-risk acute lymphoblastic leukemia). (4) The consensus has been updated to reflect additional evidence for the application of HSCT in patients with nonmalignant diseases, such as severe aplastic anemia and inherited diseases. (5) The consensus has been updated to reflect additional evidence for the administration of anti-thymocyte globulin, granulocyte colony-stimulating factors and post-transplantation cyclophosphamide in HID-HSCT.
Collapse
Affiliation(s)
- Xiao-hui Zhang
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Jing Chen
- Shanghai Children’s Medical Center, Shanghai, China
| | - Ming-Zhe Han
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Hematologic Disease, Tianjin, China
| | - He Huang
- First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Er-lie Jiang
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Hematologic Disease, Tianjin, China
| | - Ming Jiang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yong-rong Lai
- The First Affiliated Hospital of Guangxi Medical University, Guilin, China
| | - Dai-hong Liu
- General Hospital of PLA (People’s Liberation Army of China), Beijing, China
| | - Qi-Fa Liu
- Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Ting Liu
- West China Hospital, Sichuan University, Chengdu, China
| | - Han-yun Ren
- Peking University First Hospital, Beijing, China
| | - Yong-Ping Song
- Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zi-min Sun
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Xiao-wen Tang
- The First Affiliated Hospital of Soochow Hospital, National Clinical Research Center for Hematologic Disease, Suzhou, China
| | - Jian-min Wang
- Changhai Hospital of Shanghai, Naval Medical University, Shanghai, China
| | - De-pei Wu
- The First Affiliated Hospital of Soochow Hospital, National Clinical Research Center for Hematologic Disease, Suzhou, China
| | - Lan-ping Xu
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xi Zhang
- Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Dao-bin Zhou
- Peking Union Medical College Hospital, Beijing, China
| | - Xiao-jun Huang
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
13
|
Dix C, Lo TH, Clark G, Abadir E. Measurable Residual Disease in Acute Myeloid Leukemia Using Flow Cytometry: A Review of Where We Are and Where We Are Going. J Clin Med 2020; 9:E1714. [PMID: 32503122 PMCID: PMC7357042 DOI: 10.3390/jcm9061714] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
The detection of measurable residual disease (MRD) has become a key investigation that plays a role in the prognostication and management of several hematologic malignancies. Acute myeloid leukemia (AML) is the most common acute leukemia in adults and the role of MRD in AML is still emerging. Prognostic markers are complex, largely based upon genetic and cytogenetic aberrations. MRD is now being incorporated into prognostic models and is a powerful predictor of relapse. While PCR-based MRD methods are sensitive and specific, many patients do not have an identifiable molecular marker. Immunophenotypic MRD methods using multiparametric flow cytometry (MFC) are widely applicable, and are based on the identification of surface marker combinations that are present on leukemic cells but not normal hematopoietic cells. Current techniques include a "different from normal" and/or a "leukemia-associated immunophenotype" approach. Limitations of MFC-based MRD analyses include the lack of standardization, the reliance on a high-quality marrow aspirate, and variable sensitivity. Emerging techniques that look to improve the detection of leukemic cells use dimensional reduction analysis, incorporating more leukemia specific markers and identifying leukemic stem cells. This review will discuss current methods together with new and emerging techniques to determine the role of MFC MRD analysis.
Collapse
Affiliation(s)
- Caroline Dix
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Tsun-Ho Lo
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW 2139, Australia; (T.-H.L.); (G.C.)
- Immunology, Sydpath, St Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
| | - Georgina Clark
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW 2139, Australia; (T.-H.L.); (G.C.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2039, Australia
| | - Edward Abadir
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW 2139, Australia; (T.-H.L.); (G.C.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2039, Australia
| |
Collapse
|
14
|
Gao M, Zhao X. Residual disease by flow cytometry in patients with nucleophosmin-mutated acute myeloblastic leukemia. Ann Hematol 2020; 99:2703-2704. [PMID: 32307567 DOI: 10.1007/s00277-020-04037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/10/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Mengge Gao
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Peking University People's Hospital, No 11 Xizhimen South Street, Beijing, 100044, China
| | - Xiaosu Zhao
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Peking University People's Hospital, No 11 Xizhimen South Street, Beijing, 100044, China.
| |
Collapse
|
15
|
Sorigue M, Espasa A, Zamora L, Junca J. Residual disease by flow cytometry in patients with nucleophosmin-mutated acute myeloblastic leukemia. Ann Hematol 2020; 99:1135-1136. [PMID: 32170360 DOI: 10.1007/s00277-020-03997-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/11/2020] [Indexed: 11/21/2022]
Affiliation(s)
- Marc Sorigue
- Hematology Laboratory, ICO-Hospital Germans Trias i Pujol, Functional cytomics-IJC, Universitat Autònoma de Barcelona, Ctra. Canyet s/n, 08916, Badalona, Barcelona, Spain.
| | - Andrea Espasa
- Hematology Laboratory, ICO-Hospital Germans Trias i Pujol, Functional cytomics-IJC, Universitat Autònoma de Barcelona, Ctra. Canyet s/n, 08916, Badalona, Barcelona, Spain
| | - Lurdes Zamora
- Hematology Laboratory, ICO-Hospital Germans Trias i Pujol, Functional cytomics-IJC, Universitat Autònoma de Barcelona, Ctra. Canyet s/n, 08916, Badalona, Barcelona, Spain
| | - Jordi Junca
- Hematology Laboratory, ICO-Hospital Germans Trias i Pujol, Functional cytomics-IJC, Universitat Autònoma de Barcelona, Ctra. Canyet s/n, 08916, Badalona, Barcelona, Spain
| |
Collapse
|