1
|
Dang X, Feng Y, Zheng P, Liu D, Nuerbiye Y, Liao Z, Liu F, Che Z. The mechanism of Shoutai Wan in the treatment of recurrent spontaneous abortion - A review. Heliyon 2024; 10:e33213. [PMID: 39021899 PMCID: PMC11252737 DOI: 10.1016/j.heliyon.2024.e33213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Recurrent spontaneous abortion (RSA) is a prevalent pregnancy complication with a complex and poorly understood pathogenesis. Shoutai Wan (STW), a traditional Chinese medicine formula, is renowned for its kidney tonifying and fetus tranquilizing effects. It is used to treat miscarriages associated with kidney deficiency, hyperemesis gravidarum, and fetal restlessness. Recently, there has been an increase in experimental studies exploring the use of STW for RSA treatment, making progress in understanding its molecular mechanisms and signaling pathways. This review aims to systematically elucidate the mechanisms by which STW enhances cellular antioxidant capacity, attenuates inflammation, and improves the environment for embryo implantation. This involves regulating multiple signaling pathways, including Nuclear factor-erythroid 2-related factor 2/Heme oxygenase-1, JAK kinase 1/Signal transducer and activator of transcription 3, NOD-like receptor pyrin domain-containing protein/Caspase-1/Gasdermin D, Human Leukocyte Antigen G, Mitogen-activated protein kinase, and Serum and glucocorticoid-regulated kinase 1/Epithelial sodium channel. This review provides a theoretical reference for the clinical application and further experimental researches on the treatment of RSA with STW.
Collapse
Affiliation(s)
- Xue Dang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yanchen Feng
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Pan Zheng
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Diyan Liu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yusupu Nuerbiye
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ziyun Liao
- College of Acupuncture, Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Feixiang Liu
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450099, China
| | - Zhiying Che
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
2
|
Chen S, Liu H, Wang Y, Wang S, Yang B, Sun D, Sun P. Overexpression of lncRNA LINC00665 inhibits the proliferation and chondroblast differentiation of bone marrow mesenchymal stem cells by targeting miR-214-3p. J Orthop Surg Res 2024; 19:2. [PMID: 38167456 PMCID: PMC10762961 DOI: 10.1186/s13018-023-04475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Osteoarthritis is a chronic disease mainly involving the damage of articular cartilage and the whole articular tissue, which is the main cause of disability in the elderly. To explore more effective treatment measures, this study analyzed the regulatory role and molecular mechanism of lncRNA LINC00665 (LINC00665) in the chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), providing a valuable theoretical basis for the pathogenesis and patient treatment of osteoarthritis. METHODS Osteoarthritis tissues and healthy tissues were obtained from 52 patients with osteoarthritis and 34 amputated patients without osteoarthritis, and the levels of LINC00665 and miR-214-3p were assessed by RT-qPCR. BMSCs were cultured and induced chondrogenic differentiation. The proliferation ability of BMSCs was detected by CCK-8 method, and the apoptosis level of BMSCs was evaluated by flow cytometry. The content of proteoglycan-glycosaminoglycan (GAG) in cartilage matrix was determined by Alcian blue staining. In addition, the binding relationship between LINC00665 and miR-214-3p was verified by luciferase reporter assay, and the molecular mechanism was further analyzed. RESULTS In osteoarthritis tissues, LINC00665 was elevated and miR-214-3p was down-regulated. With the chondrogenic differentiation of BMSCs, the level of GAG increased, and LINC00665 expression gradually decreased, while miR-214-3p level was on the contrary. After transfection of pcDNA3.1-LINC00665 in BMSCs, cell proliferation capacity was decreased, apoptosis rate was increased, and GAG content was reduced. Moreover, LINC00665 sponged miR-214-3p and negatively regulate its expression. Transfection of pcDNA3.1-LINC00665-miR-214-3p mimic changed the regulation of pcDNA3.1-LINC00665 on the viability and chondrogenic differentiation of BMSCs. CONCLUSIONS Overexpression of lncRNA LINC00665 inhibited the proliferation and chondrogenic differentiation of BMSCs by targeting miR-214-3p. The LINC00665/miR-214-3p axis may improve joint damage and alleviate the progression of osteoarthritis.
Collapse
Affiliation(s)
- Siyuan Chen
- Surgery of Spinal Degeneration and Deformity, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Hui Liu
- Department of Nursing, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, 066000, China
| | - Yue Wang
- Department of Nursing, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, 066000, China
| | - Shuyuan Wang
- Department of Nursing, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, 066000, China
| | - Bo Yang
- Department of Nursing, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, 066000, China
| | - Di Sun
- Department of Orthopedics, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, 066000, China
| | - Pengxiao Sun
- First Department of Joint, Xi'an International Medical Center Hospital, No.777, Xitai Road, Gaoxin District, Xi'an, 710000, China.
| |
Collapse
|
3
|
Bu X, Pan W, Wang J, Liu L, Yin Z, Jin H, Liu Q, Zheng L, Sun H, Gao Y, Ping B. Therapeutic Effects of HLA-G5 Overexpressing hAMSCs on aGVHD After Allo-HSCT: Involving in the Gut Microbiota at the Intestinal Barrier. J Inflamm Res 2023; 16:3669-3685. [PMID: 37645691 PMCID: PMC10461746 DOI: 10.2147/jir.s420747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Background Acute graft-versus-host disease (aGVHD) initiated by intestinal barrier dysfunction and gut microbiota dysbiosis, remains one of the main obstacles for patients undergoing allogenic hematopoietic stem cell transplantation (allo-HSCT) to achieve good prognosis. Studies have suggested that mesenchymal stem cells (MSCs) can suppress immune responses and reduce inflammation, and human leukocyte antigen-G5 (HLA-G5) plays an important role in the immunomodulatory effects of MSCs, but very little is known about the potential mechanisms in aGVHD. Thus, we explored the effect of HLA-G5 on the immunosuppressive properties of human amnion MSCs (hAMSCs) and demonstrated its mechanism related to the gut microbiota at the intestinal barrier in aGVHD. Methods Patients undergoing allo-HSCT were enrolled to detect the levels of plasma-soluble HLA-G (sHLA-G) and regulatory T cells (Tregs). Humanized aGVHD mouse models were established and treated with hAMSCs or HLA-G5 overexpressing hAMSCs (ov-HLA-G5-hAMSCs) to explore the mechanism of HLA-G5 mediated immunosuppressive properties of hAMSCs and the effect of ov-HLA-G5-hAMSCs on the gut microbiota at the intestinal barrier in aGVHD. Results The plasma levels of sHLA-G on day +30 after allo-HSCT in aGVHD patients were lower than those in patients without aGVHD, and the sHLA-G levels were positively correlated with Tregs percentages. ov-HLA-G5-hAMSCs had the potential to inhibit the expansion of CD3+CD4+ T and CD3+CD8+ T cells and promote Tregs differentiation, suppress proinflammatory cytokine secretion but promote anti-inflammatory cytokines release. Besides, ov-HLA-G5-hAMSCs also could reverse the intestinal barrier dysfunction and gut microbiota dysbiosis in aGVHD. Conclusion We demonstrated that HLA-G might work with Tregs to create a regulatory network together to reduce the occurrence of aGVHD. HLA-G5 mediated hAMSCs to exert higher immunosuppressive properties in vivo and reverse the immune imbalance caused by T lymphocytes and cytokines. Furthermore, HLA-G5 overexpressing hAMSCs could restore gut microbiota and intestinal barriers, thereby ameliorating aGVHD.
Collapse
Affiliation(s)
- Xiaoyin Bu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Department of Hematology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Weifeng Pan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Junhui Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Liping Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Zhao Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Haitao Sun
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Ya Gao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Baohong Ping
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Department of Hematology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| |
Collapse
|
4
|
Chen DP, Wang PN, Hour AL, Lin WT, Hsu FP, Wang WT, Tseng CP. The association between genetic variants at 3'-UTR and 5'-URR of HLA-G gene and the clinical outcomes of patients with leukemia receiving hematopoietic stem cell transplantation. Front Immunol 2023; 14:1093514. [PMID: 36911734 PMCID: PMC9995383 DOI: 10.3389/fimmu.2023.1093514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
In addition to the classical human leukocyte antigen (HLA) genes, the outcomes of post-hematopoietic stem cell transplantation (HSCT) are associated with human leukocyte antigen (HLA)-related genes and non-HLA genes involved in immune regulation. HLA-G gene plays an important role in immune tolerance, assisting immune escape of tumor cells, and decrease of transplant rejection. In this study, we explored the association of genetic variants at the 3'-untranslated region (3'-UTR) and 5'-upstream regulatory region (5'-URR) of HLA-G gene with the adverse outcomes of patients with leukemia receiving HSCT. The genomic DNAs of 164 patients who had acute leukemia and received HSCT were collected for analysis. Nine single nucleotide polymorphisms (SNPs) and six haplotypes in the 3'-UTR and 27 SNPs and 6 haplotypes in the 5'-URR were selected to investigate their relationship with the development of adverse outcomes for patients receiving HSCT, including mortality, relapse, and graft-versus-host disease. Our results revealed that two SNPs (rs371194629 and rs9380142) and one haplotype (UTR-3) located in the 3'-UTR and two SNPs (rs3823321 and rs1736934) and one haplotype (G0104a) located in the 5'-URR of HLA-G were associated with the occurrence of chronic GVHD or development of any forms of GVHD. No SNP was found to associate with the occurrence of mortality and relapse for patients receiving HSCT. These SNPs and haplotypes may play important roles in regulating immune tolerance of allografts post-HSCT that can be used to predict the risk of poor outcomes after receiving HSCT and giving preventive treatment to patients on time.
Collapse
Affiliation(s)
- Ding-Ping Chen
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Nan Wang
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ai-Ling Hour
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wei-Tzu Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Fang-Ping Hsu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-Ting Wang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ching-Ping Tseng
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
5
|
Clinical progress in MSC-based therapies for the management of severe COVID-19. Cytokine Growth Factor Rev 2022; 68:25-36. [PMID: 35843774 PMCID: PMC9259053 DOI: 10.1016/j.cytogfr.2022.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 01/30/2023]
Abstract
Considering the high impact that severe Coronavirus disease 2019 (COVID-19) cases still pose on public health and their complex pharmacological management, the search for new therapeutic alternatives is essential. Mesenchymal stromal cells (MSCs) could be promising candidates as they present important immunomodulatory and anti-inflammatory properties that can combat the acute severe respiratory distress syndrome (ARDS) and the cytokine storm occurring in COVID-19, two processes that are mainly driven by an immunological misbalance. In this review, we provide a comprehensive overview of the intricate inflammatory process derived from the immune dysregulation that occurs in COVID-19, discussing the potential that the cytokines and growth factors that constitute the MSC-derived secretome present to treat the disease. Moreover, we revise the latest clinical progress made in the field, discussing the most important findings of the clinical trials conducted to date, which follow 2 different approaches: MSC-based cell therapy or the administration of the secretome by itself, as a cell-free therapy.
Collapse
|
6
|
Bucova M, Kluckova K, Kozak J, Rychly B, Suchankova M, Svajdler M, Matejcik V, Steno J, Zsemlye E, Durmanova V. HLA-G 14bp Ins/Del Polymorphism, Plasma Level of Soluble HLA-G, and Association with IL-6/IL-10 Ratio and Survival of Glioma Patients. Diagnostics (Basel) 2022; 12:1099. [PMID: 35626255 PMCID: PMC9139224 DOI: 10.3390/diagnostics12051099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
HLA-G is an immune checkpoint molecule with immunosuppressive and anti-inflammatory activities, and its expression and level of its soluble form (sHLA-G) may play an important role in tumor prognosis. The HLA-G 14bp ins/del polymorphism and the plasma level of soluble HLA-G (sHLA-G) were investigated by a polymerase chain reaction and ELISA, respectively, in 59 glioma patients. A significantly higher proportion of glioma patients had the 14 nt insert in both homozygous and heterozygous states compared to the control group. Glioma patients also had higher plasma levels of sHLA-G. Patients with methylated MGMT promoters had lower levels of sHLA-G than those with unmethylated MGMT promoters. The level of sHLA-G negatively correlated with the overall survival of patients. Glioblastoma patients who survived more than one year after diagnosis had lower levels of sHLA-G than those surviving less than one year. Patients with sHLA-G levels below the cut-off value of 40 U/mL survived significantly longer than patients with sHLA-G levels above 40 U/mL. The levels of sHLA-G were also negatively correlated with the level of IL-6 (p = 0.0004) and positively with IL-10/IL-6 (p = 0.046). Conclusion: The presence of the 14 nt insert in both homozygous and heterozygous states of the HLA-G 14bp ins/del polymorphism is more frequent in glioma patients and the elevated plasma levels of sHLA-G are negatively associated with their survival.
Collapse
Affiliation(s)
- Maria Bucova
- Faculty of Medicine, Institute of Immunology, Comenius University, 813 72 Bratislava, Slovakia; (K.K.); (M.S.); (E.Z.); (V.D.)
| | - Kristina Kluckova
- Faculty of Medicine, Institute of Immunology, Comenius University, 813 72 Bratislava, Slovakia; (K.K.); (M.S.); (E.Z.); (V.D.)
| | - Jan Kozak
- Department of Neurosurgery, Faculty of Medicine, Comenius University and University Hospital, 833 05 Bratislava, Slovakia; (J.K.); (V.M.); (J.S.)
| | - Boris Rychly
- Alpha Medical, Ltd., 841 01 Bratislava, Slovakia;
| | - Magda Suchankova
- Faculty of Medicine, Institute of Immunology, Comenius University, 813 72 Bratislava, Slovakia; (K.K.); (M.S.); (E.Z.); (V.D.)
| | - Marian Svajdler
- Cytopathos Ltd., 831 03 Bratislava, Slovakia;
- Sikl’s Department of Pathology, the Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
| | - Viktor Matejcik
- Department of Neurosurgery, Faculty of Medicine, Comenius University and University Hospital, 833 05 Bratislava, Slovakia; (J.K.); (V.M.); (J.S.)
| | - Juraj Steno
- Department of Neurosurgery, Faculty of Medicine, Comenius University and University Hospital, 833 05 Bratislava, Slovakia; (J.K.); (V.M.); (J.S.)
| | - Eszter Zsemlye
- Faculty of Medicine, Institute of Immunology, Comenius University, 813 72 Bratislava, Slovakia; (K.K.); (M.S.); (E.Z.); (V.D.)
| | - Vladimira Durmanova
- Faculty of Medicine, Institute of Immunology, Comenius University, 813 72 Bratislava, Slovakia; (K.K.); (M.S.); (E.Z.); (V.D.)
| |
Collapse
|
7
|
Rashidi S, Vieira C, Tuteja R, Mansouri R, Ali-Hassanzadeh M, Muro A, Nguewa P, Manzano-Román R. Immunomodulatory Potential of Non-Classical HLA-G in Infections including COVID-19 and Parasitic Diseases. Biomolecules 2022; 12:257. [PMID: 35204759 PMCID: PMC8961671 DOI: 10.3390/biom12020257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/23/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
Human Leukocyte Antigen-G (HLA-G), a polymorphic non-classical HLA (HLA-Ib) with immune-regulatory properties in cancers and infectious diseases, presents both membrane-bound and soluble (sHLA-G) isoforms. Polymorphism has implications in host responses to pathogen infections and in pathogenesis. Differential expression patterns of HLA-G/sHLA-G or its polymorphism seem to be related to different pathological conditions, potentially acting as a disease progression biomarker. Pathogen antigens might be involved in the regulation of both membrane-bound and sHLA-G levels and impact immune responses during co-infections. The upregulation of HLA-G in viral and bacterial infections induce tolerance to infection. Recently, sHLA-G was found useful to identify the prognosis of Coronavirus disease 2019 (COVID-19) among patients and it was observed that the high levels of sHLA-G are associated with worse prognosis. The use of pathogens, such as Plasmodium falciparum, as immune modulators for other infections could be extended for the modulation of membrane-bound HLA-G in COVID-19-infected tissues. Overall, such information might open new avenues concerning the effect of some pathogens such as parasites in decreasing the expression level of HLA-G to restrict pathogenesis in some infections or to influence the immune responses after vaccination among others.
Collapse
Affiliation(s)
- Sajad Rashidi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran;
| | - Carmen Vieira
- Infectious and Tropical Diseases Group (E-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain; (C.V.); (A.M.)
| | - Renu Tuteja
- Parasite Biology Group, ICGEB, Aruna Asaf Ali Marg, New Delhi 110067, India;
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd 8915173143, Iran;
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft 7861615765, Iran;
| | - Antonio Muro
- Infectious and Tropical Diseases Group (E-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain; (C.V.); (A.M.)
| | - Paul Nguewa
- Department of Microbiology and Parasitology, ISTUN Institute of Tropical Health, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/ Irunlarrea 1, 31008 Pamplona, Spain
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Group (E-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain; (C.V.); (A.M.)
| |
Collapse
|