1
|
Chattopadhyay S, Lionel S, Selvarajan S, Devasia AJ, Korula A, Kulkarni U, Aboobacker FN, Lakshmi KM, Srivastava A, Mathews V, Abraham A, George B. Relapse and transformation to myelodysplastic syndrome and acute myeloid leukemia following immunosuppressive therapy for aplastic anemia is more common as compared to allogeneic stem cell transplantation with a negative impact on survival. Ann Hematol 2024; 103:749-758. [PMID: 38242970 DOI: 10.1007/s00277-024-05621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
We studied the incidence of relapse, transformation to myelodysplastic syndrome/acute myeloid leukemia, and survival in patients with aplastic anemia (AA) surviving more than 1 year after ATG/ALG-based immunosuppressive therapy (IST) between 1985 and 2020. Four-hundred seventy patients (413 adults and 57 children) were studied, and data were compared with 223 patients who underwent matched sibling donor transplant (MSD HSCT). Median follow-up is 50 months (12-359). Relapse occurred in 21.9% at a median time of 33.5 months (5-228) post IST. Twenty-six (5.5%) patients progressed to PNH, while 20 (4.3%) evolved to MDS/AML. Ten-year estimated overall survival (OS) is 80.9 ± 3% and was significantly better in patients without an event (85.1 ± 4%) compared to relapse (74.6% ± 6.2%) or clonal evolution (12.8% ± 11.8%) (p = 0.024). While the severity of AA (p = 0.011) and type of ATG (p = 0.028) used predicted relapse, only age at IST administration influenced clonal evolution (p = 0.018). Among HSCT recipients, relapse rates were 4.9% with no clonal evolution, and the 10-year OS was 94.5 ± 2%. In patients who survived 1 year following IST, outcomes were good except with clonal evolution to MDS/AML. These outcomes, however, were still inferior compared to matched sibling donor HSCT.
Collapse
Affiliation(s)
| | - Sharon Lionel
- Department of Haematology, Christian Medical College, Vellore, India
| | - Sushil Selvarajan
- Department of Haematology, Christian Medical College, Vellore, India
| | - Anup J Devasia
- Department of Haematology, Christian Medical College, Vellore, India
| | - Anu Korula
- Department of Haematology, Christian Medical College, Vellore, India
| | - Uday Kulkarni
- Department of Haematology, Christian Medical College, Vellore, India
| | | | - Kavitha M Lakshmi
- Department of Haematology, Christian Medical College, Vellore, India
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | - Aby Abraham
- Department of Haematology, Christian Medical College, Vellore, India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, India.
| |
Collapse
|
2
|
Chen C, Zhang Y, Lu D, Zhang Z, Yang J, Chen X, Zhou M, Mo W, Wang C, Cai Q, Li Y, Zhou R, Xu S, Zhou W, Deng T, Pan S, Xu Y, Wang S, Zhang Y. Predictive value of T cell receptor repertoire profiling for immunosuppressive therapy in severe aplastic anemia. Genes Dis 2024; 11:95-98. [PMID: 37588190 PMCID: PMC10425835 DOI: 10.1016/j.gendis.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/23/2023] [Indexed: 08/18/2023] Open
Affiliation(s)
- Cunte Chen
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Yuling Zhang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Dongpei Lu
- Guangzhou Junruikang Biotechnology Co., Ltd, Guangzhou, Guangdong 510700, China
| | - Zelong Zhang
- Guangzhou Junruikang Biotechnology Co., Ltd, Guangzhou, Guangdong 510700, China
| | - Jun Yang
- Guangzhou Junruikang Biotechnology Co., Ltd, Guangzhou, Guangdong 510700, China
| | - Xiaowei Chen
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Ming Zhou
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Wenjian Mo
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Caixia Wang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Qinghua Cai
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Yumiao Li
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Ruiqing Zhou
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Shilin Xu
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Wei Zhou
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Tingfen Deng
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Shiyi Pan
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Yanli Xu
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Yuping Zhang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| |
Collapse
|
3
|
Pan P, Chen C, Hong J, Gu Y. Autoimmune pathogenesis, immunosuppressive therapy and pharmacological mechanism in aplastic anemia. Int Immunopharmacol 2023; 117:110036. [PMID: 36940553 DOI: 10.1016/j.intimp.2023.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
Acquired aplastic anemia (AA) is an autoimmune disease of bone marrow failure mediated by abnormally activated T cells, manifested by severe depletion of hematopoietic stem and progenitor cells (HSPCs) and peripheral blood cells. Due to the limitation of donors for hematopoietic stem cell transplantation, immunosuppressive therapy (IST) is currently an effective first-line treatment. However, a significant proportion of AA patients remain ineligible for IST, relapse, and develop other hematologic malignancies, such as acute myeloid leukemia after IST. Therefore, it is important to elucidate the pathogenic mechanisms of AA and to identify treatable molecular targets, which is an attractive way to improve these outcomes. In this review, we summarize the immune-related pathogenesis of AA, pharmacological targets, and clinical effects of the current mainstream immunosuppressive agents. It provides new insight into the combination of immunosuppressive drugs with multiple targets, as well as the discovery of new druggable targets based on current intervention pathways.
Collapse
Affiliation(s)
- Pengpeng Pan
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, PR China
| | - Congcong Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, PR China
| | - Jian Hong
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China
| | - Yue Gu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
4
|
Zhang X, Yang W, Yang D, Wei J, Zhang P, Feng S, Jiang E, Zhang L, He Y, Zhang F, Han M. Comparison of hematopoietic stem cell transplantation and immunosuppressive therapy as the first-line treatment option for patients with severe hepatitis−associated aplastic anemia. Front Immunol 2023; 14:1146997. [PMID: 37006284 PMCID: PMC10063874 DOI: 10.3389/fimmu.2023.1146997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Hepatitis-associated aplastic anemia (HAAA) is a rare variant of acquired aplastic anemia characterized with a syndrome of bone marrow failure after hepatitis. We retrospectively analyzed the outcomes of consecutive severe HAAA patients who received immunosuppressive therapy (IST, n = 70), matched-sibling donor hematopoietic stem cell transplantation (MSD-HSCT, n = 26) or haploidentical-donor (HID) HSCT (n = 11) as the first-line treatment. In the IST group, the hematologic response (HR) rate was 55.71% at 6 months. In contrast, HSCT recipients exhibited significantly more rapid and sustained hematopoiesis (HR 76.92%, 96.15% and 96.15% at 3, 6 and 12months, respectively). The 5-year overall survival (OS) was not different among IST (83.7 ± 4.9%), MSD-HSCT (93.3 ± 6.4%) and HID-HSCT group (80.8 ± 12.3%). Compared with IST, MSD and HID-HSCT demonstrated a trend of superiority in the estimated 5-year failure-free survival rates (93.3 ± 6.4% vs 64.3 ± 6.0%, p = 0.05; 80.8 ± 12.3% vs 64.3 ± 6.0%, p = 0.57). In subsequent stratified analysis on age, we found that HID-HSCT showed its efficacy and safety among young patients. In sum, MSD-HSCT remains first-line treatment choice for HAAA, whereas HID-HSCT represents an alternative treatment choice in addition to IST for young patients (< 40 years) without a matched sibling donor.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Stem Cell Transplantation Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wenrui Yang
- Tianjin Institutes of Health Science, Tianjin, China
- Anemia Therapeutic Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Donglin Yang
- Stem Cell Transplantation Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jialin Wei
- Tianjin Institutes of Health Science, Tianjin, China
- Anemia Therapeutic Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ping Zhang
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Sizhou Feng
- Stem Cell Transplantation Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Erlie Jiang
- Stem Cell Transplantation Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Li Zhang
- Tianjin Institutes of Health Science, Tianjin, China
- Anemia Therapeutic Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- *Correspondence: Li Zhang, ; Yi He,
| | - Yi He
- Stem Cell Transplantation Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Fengkui Zhang
- Tianjin Institutes of Health Science, Tianjin, China
- Anemia Therapeutic Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Mingzhe Han
- Stem Cell Transplantation Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
5
|
Yang W, Liu X, Zhao X, Zhang L, Peng G, Ye L, Zhou K, Li Y, Li J, Fan H, Yang Y, Xiong Y, Jing L, Zhang F. Antihuman T lymphocyte porcine immunoglobulin combined with cyclosporine as first-line immunosuppressive therapy for severe aplastic anemia in China: a large single-center, 10-year retrospective study. Ther Adv Hematol 2023; 14:20406207221146031. [PMID: 36654738 PMCID: PMC9841861 DOI: 10.1177/20406207221146031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/05/2022] [Indexed: 01/15/2023] Open
Abstract
Background Antihuman T lymphocyte porcine immunoglobulin (p-ATG) has been the most common ATG preparation in immunosuppressive therapy (IST) in Chinese patients with severe aplastic anemia (SAA) since 2009. Objectives This study aimed to evaluate the early hematologic response and long-term outcomes of a large cohort of patients with SAA who received p-ATG plus cyclosporine (CsA) as first-line therapy from 2010 to 2019. Design This is a single-center retrospective study of medical records. Methods We analyzed the data of 1023 consecutive patients with acquired aplastic anemia (AA) who underwent p-ATG combined with CsA as a first-line IST treatment from 2010 to 2019 at our department. Results The median age of the patients was 24 (4-75) years, and the median follow-up time was 57.2 months (3 days-137.5 months). There was an early mortality rate of 2.8% with a median death time of 0.9 months (3 days-2.9 months). The overall response rates were 40.6% and 56.1% at 3 and 6 months, respectively. The 5-year cumulative incidences of relapse and clonal evolution were 9.0% [95% confidence interval (CI) = 4.2-16.0%] and 4.5% (95% CI = 1.4-10.6%), respectively. The 5-year overall survival (OS) and event-free survival rates were 83.7% (95% CI = 81.1-86.0%) and 50.4% (95% CI = 47.1-53.5%), respectively. Conclusion p-ATG combined with CsA for the treatment of AA is effective and safe, and p-ATG can be used as an alternative ATG preparation for the standard IST regimen in areas in which h-ATG is not available.
Collapse
Affiliation(s)
- Wenrui Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China,Wenrui Yang, Xu Liu, Xin Zhao, Li Zhang, Guangxin Peng, Lei Ye, Kang Zhou, Yuan Li, Jianping Li, Huihui Fan, Yang Yang, Youzhen Xiong, Fengkui Zhang is also affiliated to Tianjin Institutes of Health Science, Tianjin, China
| | - Xu Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China,Wenrui Yang, Xu Liu, Xin Zhao, Li Zhang, Guangxin Peng, Lei Ye, Kang Zhou, Yuan Li, Jianping Li, Huihui Fan, Yang Yang, Youzhen Xiong, Fengkui Zhang is also affiliated to Tianjin Institutes of Health Science, Tianjin, China
| | - Xin Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China,Wenrui Yang, Xu Liu, Xin Zhao, Li Zhang, Guangxin Peng, Lei Ye, Kang Zhou, Yuan Li, Jianping Li, Huihui Fan, Yang Yang, Youzhen Xiong, Fengkui Zhang is also affiliated to Tianjin Institutes of Health Science, Tianjin, China
| | - Li Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China,Wenrui Yang, Xu Liu, Xin Zhao, Li Zhang, Guangxin Peng, Lei Ye, Kang Zhou, Yuan Li, Jianping Li, Huihui Fan, Yang Yang, Youzhen Xiong, Fengkui Zhang is also affiliated to Tianjin Institutes of Health Science, Tianjin, China
| | - Guangxin Peng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China,Wenrui Yang, Xu Liu, Xin Zhao, Li Zhang, Guangxin Peng, Lei Ye, Kang Zhou, Yuan Li, Jianping Li, Huihui Fan, Yang Yang, Youzhen Xiong, Fengkui Zhang is also affiliated to Tianjin Institutes of Health Science, Tianjin, China
| | - Lei Ye
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China,Wenrui Yang, Xu Liu, Xin Zhao, Li Zhang, Guangxin Peng, Lei Ye, Kang Zhou, Yuan Li, Jianping Li, Huihui Fan, Yang Yang, Youzhen Xiong, Fengkui Zhang is also affiliated to Tianjin Institutes of Health Science, Tianjin, China
| | - Kang Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China,Wenrui Yang, Xu Liu, Xin Zhao, Li Zhang, Guangxin Peng, Lei Ye, Kang Zhou, Yuan Li, Jianping Li, Huihui Fan, Yang Yang, Youzhen Xiong, Fengkui Zhang is also affiliated to Tianjin Institutes of Health Science, Tianjin, China
| | - Yuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China,Wenrui Yang, Xu Liu, Xin Zhao, Li Zhang, Guangxin Peng, Lei Ye, Kang Zhou, Yuan Li, Jianping Li, Huihui Fan, Yang Yang, Youzhen Xiong, Fengkui Zhang is also affiliated to Tianjin Institutes of Health Science, Tianjin, China
| | - Jianping Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China,Wenrui Yang, Xu Liu, Xin Zhao, Li Zhang, Guangxin Peng, Lei Ye, Kang Zhou, Yuan Li, Jianping Li, Huihui Fan, Yang Yang, Youzhen Xiong, Fengkui Zhang is also affiliated to Tianjin Institutes of Health Science, Tianjin, China
| | - Huihui Fan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China,Wenrui Yang, Xu Liu, Xin Zhao, Li Zhang, Guangxin Peng, Lei Ye, Kang Zhou, Yuan Li, Jianping Li, Huihui Fan, Yang Yang, Youzhen Xiong, Fengkui Zhang is also affiliated to Tianjin Institutes of Health Science, Tianjin, China
| | - Yang Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China,Wenrui Yang, Xu Liu, Xin Zhao, Li Zhang, Guangxin Peng, Lei Ye, Kang Zhou, Yuan Li, Jianping Li, Huihui Fan, Yang Yang, Youzhen Xiong, Fengkui Zhang is also affiliated to Tianjin Institutes of Health Science, Tianjin, China
| | - Youzhen Xiong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China,Wenrui Yang, Xu Liu, Xin Zhao, Li Zhang, Guangxin Peng, Lei Ye, Kang Zhou, Yuan Li, Jianping Li, Huihui Fan, Yang Yang, Youzhen Xiong, Fengkui Zhang is also affiliated to Tianjin Institutes of Health Science, Tianjin, China
| | | | - Fengkui Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China,Wenrui Yang, Xu Liu, Xin Zhao, Li Zhang, Guangxin Peng, Lei Ye, Kang Zhou, Yuan Li, Jianping Li, Huihui Fan, Yang Yang, Youzhen Xiong, Fengkui Zhang is also affiliated to Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
6
|
Liu X, Yang W, Zhang L, Jing L, Ye L, Zhou K, Li Y, Li J, Fan H, Yang Y, Xiong Y, Zhao X, Zhang F. Development and validation of early death risk score model for emergency status prediction in very severe aplastic anemia. Front Immunol 2023; 14:1175048. [PMID: 37153568 PMCID: PMC10158980 DOI: 10.3389/fimmu.2023.1175048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
This study developed and validated the Early Death Risk Score Model for early identification of emergency patients with very severe aplastic anemia (VSAA). All 377 patients with VSAA receiving first-line immunosuppressive therapy (IST) were categorized into training (n=252) and validation (n=125) cohorts. In the training cohort, age >24 years, absolute neutrophil count ≤0.015×109/L, serum ferritin >900ng/mL and times of fever before IST >1 time were significantly associated with early death. Covariates were assigned scores and categorized as: low (score 0-4), medium (score 5-7) and high (score ≥8) risk. Early death rate was significantly different between risk groups and the validation cohort results were consistent with those of the training cohort. The area under the receiver operating characteristic curve for the model was 0.835 (0.734,0.936) in the training cohort and 0.862 (0.730,0.994) in the validation cohort. The calibration plots showed high agreement, and decision curve analysis showed good benefit in clinical applications. The VSAA Early Death Risk Score Model can help with early identification of emergency VSAA and optimize treatment strategies. Emergency VSAA with high risk is associated with high early death rate, and alternative donor hematopoietic stem cell transplantation could be a better treatment than IST even without HLA-matching.
Collapse
Affiliation(s)
- Xu Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wenrui Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Li Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Liping Jing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lei Ye
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Kang Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jianping Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Huihui Fan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yang Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Youzhen Xiong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xin Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- *Correspondence: Xin Zhao, ; Fengkui Zhang,
| | - Fengkui Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- *Correspondence: Xin Zhao, ; Fengkui Zhang,
| |
Collapse
|