1
|
Abstract
A tumor-targeting drug delivery system consists of a tumor recognition moiety and a directly linked cytotoxic agent or an agent attached to a water-soluble synthetic polymer carrier through a suitable linker. Conjugation of a drug with a polymer carrier can change its solubility, toxicity, biodistribution, blood clearance and therapeutic specificity. Increased therapeutic specificity of a polymer drug can be achieved by the attachment of a targeting moiety (e.g. a lectin, protein, antibody, or peptide) that specifically interacts with receptors on the target cells. A large number of tumor-specific peptides were described in recent years. After a short introduction, some important examples of peptide-targeted conjugates will be described and discussed.
Collapse
Affiliation(s)
| | - R. POLA
- Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Palao-Suay R, Gómez-Mascaraque L, Aguilar M, Vázquez-Lasa B, Román JS. Self-assembling polymer systems for advanced treatment of cancer and inflammation. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2015.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Basu A, Kunduru KR, Abtew E, Domb AJ. Polysaccharide-Based Conjugates for Biomedical Applications. Bioconjug Chem 2015; 26:1396-412. [DOI: 10.1021/acs.bioconjchem.5b00242] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Arijit Basu
- Institute
for Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel 91120
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, 835215, India
| | - Konda Reddy Kunduru
- Institute
for Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel 91120
| | - Ester Abtew
- Institute
for Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel 91120
| | - Abraham J. Domb
- Institute
for Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel 91120
| |
Collapse
|
4
|
Polymer–Drug Conjugate in Focal Drug Delivery. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2014. [DOI: 10.1007/978-1-4614-9434-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Goodarzi N, Varshochian R, Kamalinia G, Atyabi F, Dinarvand R. A review of polysaccharide cytotoxic drug conjugates for cancer therapy. Carbohydr Polym 2013; 92:1280-93. [DOI: 10.1016/j.carbpol.2012.10.036] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/27/2012] [Accepted: 10/15/2012] [Indexed: 11/30/2022]
|
6
|
Venditto VJ, Simanek EE. Cancer therapies utilizing the camptothecins: a review of the in vivo literature. Mol Pharm 2010; 7:307-49. [PMID: 20108971 DOI: 10.1021/mp900243b] [Citation(s) in RCA: 303] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review summarizes the in vivo assessment-preliminary, preclinical, and clinical-of chemotherapeutics derived from camptothecin or a derivative. Camptothecin is a naturally occurring, pentacyclic quinoline alkaloid that possesses high cytotoxic activity in a variety of cell lines. Major limitations of the drug, including poor solubility and hydrolysis under physiological conditions, prevent full clinical utilization. Camptothecin remains at equilibrium in an active lactone form and inactive hydrolyzed carboxylate form. The active lactone binds to DNA topoisomerase I cleavage complex, believed to be the single site of activity. Binding inhibits DNA religation, resulting in apoptosis. A series of small molecule camptothecin derivatives have been developed that increase solubility, lactone stability and bioavailability to varying levels of success. A number of macromolecular agents have also been described wherein camptothecin(s) are covalently appended or noncovalently associated with the goal of improving solubility and lactone stability, while taking advantage of the tumor physiology to deliver larger doses of drug to the tumor with lower systemic toxicity. With the increasing interest in drug delivery and polymer therapeutics, additional constructs are anticipated. The goal of this review is to summarize the relevant literature for others interested in the field of camptothecin-based therapeutics, specifically in the context of biodistribution, dosing regimens, and pharmacokinetics with the desire of providing a useful source of comparative data. To this end, only constructs where in vivo data is available are reported. The review includes published reports in English through mid-2009.
Collapse
Affiliation(s)
- Vincent J Venditto
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
7
|
Duncan R. Development of HPMA copolymer-anticancer conjugates: clinical experience and lessons learnt. Adv Drug Deliv Rev 2009; 61:1131-48. [PMID: 19699249 DOI: 10.1016/j.addr.2009.05.007] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 05/11/2009] [Indexed: 11/15/2022]
Abstract
The concept of polymer-drug conjugates was proposed more than 30 years ago, and an N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer conjugate of doxorubicin covalently bound to the polymer backbone by a Gly-Phe-Leu-Gly peptidyl linker (FCE28068) became the first synthetic polymer-based anticancer conjugate to enter clinical trial in 1994. This conjugate arose from rational design attempting to capitalise on passive tumour targeting by the enhanced permeability and retention effect and, at the cellular level, lysosomotropic drug delivery to improve therapeutic index. Early clinical results were promising, confirming activity in chemotherapy refractory patients and the safety of HPMA as a new polymer platform. Subsequent Phase I/II trials have investigated an HPMA copolymer-based conjugate containing a doxorubicin and additionally galactose as a targeting moiety to promote liver targeting (FCE28069), and also HPMA copolymer conjugates of paclitaxel (PNU 166945), camptothecin (PNU 166148) and two platinates (AP5280 and AP5346- ProLindac). The preclinical and clinical observations made in these, and clinical studies with other polymer conjugates, should shape the development of next generation anticancer polymer therapeutics.
Collapse
Affiliation(s)
- Ruth Duncan
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK.
| |
Collapse
|
8
|
Gou M, Zheng L, Peng X, Men K, Zheng X, Zeng S, Guo G, Luo F, Zhao X, Chen L, Wei Y, Qian Z. Poly(ɛ-caprolactone)–poly(ethylene glycol)–poly(ɛ-caprolactone) (PCL–PEG–PCL) nanoparticles for honokiol delivery in vitro. Int J Pharm 2009; 375:170-6. [DOI: 10.1016/j.ijpharm.2009.04.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/02/2009] [Accepted: 04/05/2009] [Indexed: 01/21/2023]
|
9
|
Abstract
Recent developments in nanotechnology offer researchers opportunities to significantly transform cancer therapeutics. This technology has enabled the manipulation of the biological and physicochemical properties of nanomaterials to facilitate more efficient drug targeting and delivery. Clinical investigations suggest that therapeutic nanoparticles can enhance efficacy and reduced side effects compared with conventional cancer therapeutic drugs. Encouraged by rapid and promising progress in cancer nanotechnology, researchers continue to develop novel and efficacious nanoparticles for drug delivery. The use of therapeutic nanoparticles as unique drug delivery systems will be a significant addition to current cancer therapeutics.
Collapse
Affiliation(s)
- Xu Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
10
|
Shiose Y, Ochi Y, Kuga H, Yamashita F, Hashida M. Relationship between Drug Release of DE-310, Macromolecular Prodrug of DX-8951f, and Cathepsins Activity in Several Tumors. Biol Pharm Bull 2007; 30:2365-70. [DOI: 10.1248/bpb.30.2365] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoshinobu Shiose
- Biological Research Laboratories IV, Daiichi Sankyo Co., Ltd., Kasai R&D Center
| | - Yusuke Ochi
- R&D Planning Department, Planning Group, Daiichi Sankyo Co., Ltd
| | - Hiroshi Kuga
- Development Research Department, Daiichi Sankyo Inc
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
11
|
Kasper B, Gil T, D'Hondt V, Gebhart M, Awada A. Novel treatment strategies for soft tissue sarcoma. Crit Rev Oncol Hematol 2006; 62:9-15. [PMID: 17141519 DOI: 10.1016/j.critrevonc.2006.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 11/15/2006] [Indexed: 11/21/2022] Open
Abstract
Soft tissue sarcoma is a heterogeneous group of rare tumours arising predominantly from the embryonic mesoderm. While the prognosis is excellent for patients diagnosed at an early stage and treated by adequate surgery, unresectable or advanced metastatic diseases shrink the overall survival at 5 years dramatically to less than 10%. For metastatic soft tissue sarcoma, the armamentarium of effective chemotherapeutic agents is limited, especially when patients failed anthracycline- and/or ifosfamide-based chemotherapy. Fortunately, progress in the understanding of molecular biology and pathogenesis of soft tissue sarcomas has been made recently and should in the near future translate into molecular tumour characterization and the development of new therapeutic strategies. In this review, we briefly describe the status of current treatment strategies for soft tissue sarcoma. We will focus on the new and emerging compounds including recent developments of targeted therapy and cytotoxics such as antiangiogenic and immunomodulatory drugs, Bcl-2 antisense therapy, raf kinase inhibitors, heat shock protein modulators, anti-cytotoxic T lymphocyte-associated antigen (CTLA)-4 monoclonal antibody, proteasome inhibitors, minor groove binders, topoisomerase I inhibitors, and other agents being extensively developed in these solid tumours.
Collapse
Affiliation(s)
- Bernd Kasper
- Clinic of Medical Oncology, Institut Jules Bordet, Boulevard de Waterloo, 125, Brussels 1000, Belgium.
| | | | | | | | | |
Collapse
|
12
|
|