1
|
Zaghmi A, Aybay E, Jiang L, Shang M, Steinmetz‐Späh J, Wermeling F, Kogner P, Korotkova M, Östling P, Jakobsson P, Seashore‐Ludlow B, Larsson K. High-content screening of drug combinations of an mPGES-1 inhibitor in multicellular tumor spheroids leads to mechanistic insights into neuroblastoma chemoresistance. Mol Oncol 2024; 18:317-335. [PMID: 37519014 PMCID: PMC10850797 DOI: 10.1002/1878-0261.13502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023] Open
Abstract
High-throughput drug screening enables the discovery of new anticancer drugs. Although monolayer cell cultures are commonly used for screening, their limited complexity and translational efficiency require alternative models. Three-dimensional cell cultures, such as multicellular tumor spheroids (MCTS), mimic tumor architecture and offer promising opportunities for drug discovery. In this study, we developed a neuroblastoma MCTS model for high-content drug screening. We also aimed to decipher the mechanisms underlying synergistic drug combinations in this disease model. Several agents from different therapeutic categories and with different mechanisms of action were tested alone or in combination with selective inhibition of prostaglandin E2 by pharmacological inhibition of microsomal prostaglandin E synthase-1 (mPGES-1). After a systematic investigation of the sensitivity of individual agents and the effects of pairwise combinations, GFP-transfected MCTS were used in a confirmatory screen to validate the hits. Finally, inhibitory effects on multidrug resistance proteins were examined. In summary, we demonstrate how MCTS-based high-throughput drug screening has the potential to uncover effective drug combinations and provide insights into the mechanism of synergy between an mPGES-1 inhibitor and chemotherapeutic agents.
Collapse
Affiliation(s)
- Ahlem Zaghmi
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Erdem Aybay
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Long Jiang
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Mingmei Shang
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Julia Steinmetz‐Späh
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Fredrik Wermeling
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
| | - Marina Korotkova
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Päivi Östling
- Department of Oncology‐Pathology, Science for Life LaboratoryKarolinska InstitutetStockholmSweden
| | - Per‐Johan Jakobsson
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Brinton Seashore‐Ludlow
- Department of Oncology‐Pathology, Science for Life LaboratoryKarolinska InstitutetStockholmSweden
| | - Karin Larsson
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| |
Collapse
|
2
|
Wu K, Ma S, Xu X, Liu Y, Tian C, Zhang C, Shan J, Li Z, Ren K, Ren J, Han X, Zhao Y. Celecoxib and cisplatin dual-loaded microspheres synergistically enhance transarterial chemoembolization effect of hepatocellular carcinoma. Mater Today Bio 2024; 24:100927. [PMID: 38234462 PMCID: PMC10792487 DOI: 10.1016/j.mtbio.2023.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
Transarterial chemoembolization (TACE) is a first-line treatment for intermediate to advanced-stage liver cancer, with drug-eluting microspheres commonly used as embolic agents. However, currently available drug-eluting microspheres suffer from low drug-loading capacity and limited drug options. In this work, we developed polydopamine-modified polyvinyl alcohol dual-drug-loaded microspheres encapsulating celecoxib and cisplatin (referred to as PCDMS). Physicochemical characterization revealed that the surface of the microspheres displayed increased roughness after polydopamine modification, and celecoxib and cisplatin were successfully loaded onto the microsphere surface. In vitro cell experiments demonstrated that the PCDMS significantly inhibited the proliferation and migration of highly metastatic human liver cancer cells (MHCC-97H) and human liver cancer cells (SMMC-7721). Furthermore, the dual-loaded microspheres exhibited remarkable tumor growth inhibition and reshaped the tumor microenvironment in both subcutaneous H22 liver cancer model in Balb/c mice and intrahepatic VX2 tumor model in New Zealand rabbits, demonstrating a synergistic antitumor effect where 1 + 1>2. This work provides a potential therapeutic approach for the treatment of refractory liver cancer and holds significant translational potential.
Collapse
Affiliation(s)
- Kunpeng Wu
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, China
| | - Shengnan Ma
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaohong Xu
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, China
| | - Yiming Liu
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, China
| | - Chuan Tian
- Department of Interventional Medical Center, the Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Shandong, 266000, Qingdao, China
| | - Chengzhi Zhang
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, China
| | - Jiheng Shan
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, China
| | - Zongming Li
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, China
| | - Kewei Ren
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, China
| | - Jianzhuang Ren
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, China
| | - Yanan Zhao
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, China
| |
Collapse
|
3
|
Solomevich SO, Aharodnikau UE, Dmitruk EI, Nikishau PA, Bychkovsky PM, Salamevich DA, Jiang G, Pavlov KI, Sun Y, Yurkshtovich TL. Chitosan - dextran phosphate carbamate hydrogels for locally controlled co-delivery of doxorubicin and indomethacin: From computation study to in vivo pharmacokinetics. Int J Biol Macromol 2023; 228:273-285. [PMID: 36581023 DOI: 10.1016/j.ijbiomac.2022.12.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/10/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
The development of synergistic drug combinations is a promising strategy for effective cancer suppression. Here, we report all-polysaccharide biodegradable polyelectrolyte complex hydrogels (DPCS) based on dextran phosphate carbamate (DP) and chitosan (CS) for controlled co-delivery of the anticancer drug doxorubicin (DOX) and the non-steroidal anti-inflammatory drug indomethacin (IND). IND can induce more apoptosis in tumor cells by reducing the level of multidrug resistance-associated protein 1. Based on calculations using density functional theory and zeta potential analysis data, carriers with high drug loading were obtained. The release profile of both drugs from the hydrogels was tuned by changing the molecular weight and functional groups content of the polysaccharides. The optimized DPCS showed a steady release of DOX both in vitro and in vivo, and a gradual release of IND, which constantly induced the action of DOX. Considering all of these benefits, DOX- and IND-loaded DPCS offer a promising long-acting polysaccharide-based antitumor platform.
Collapse
Affiliation(s)
- Sergey O Solomevich
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220006, Belarus.
| | - Uladzislau E Aharodnikau
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220006, Belarus; Educational-Scientific-Production Republican Unitary Enterprise "UNITEHPROM BSU", Minsk 220045, Belarus
| | - Egor I Dmitruk
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220006, Belarus; Educational-Scientific-Production Republican Unitary Enterprise "UNITEHPROM BSU", Minsk 220045, Belarus
| | - Pavel A Nikishau
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220006, Belarus; Department of Chemistry, Belarusian State University, Minsk 220006, Belarus
| | - Pavel M Bychkovsky
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220006, Belarus; Educational-Scientific-Production Republican Unitary Enterprise "UNITEHPROM BSU", Minsk 220045, Belarus
| | | | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | | | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Tatiana L Yurkshtovich
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220006, Belarus
| |
Collapse
|
4
|
Li H, Yan L, Li B, Wei G, Ju R. Inflammatory factor tumor necrosis factor-α (TNF-α) activates P-glycoprotein (P-gp) by phosphorylating c-Jun and thus promotes transportation in placental cells. Transl Pediatr 2022; 11:1470-1481. [PMID: 36247888 PMCID: PMC9561510 DOI: 10.21037/tp-22-43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 08/07/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND P-glycoprotein (P-gp), encoded by the ABCB1 gene, actively pumps drugs and other xenobiotics from trophoblast cells back into the maternal circulation and thus acts as one of the most critical protectors of the fetus. The effect of tumor necrosis factor-α (TNF-α) on P-gp and molecule-transporting activity remains unknown. The goal of this study was to investigate the role of TNF-α in placental molecule-transporting activity and the underlies mechanisms. METHODS Cultured human placental choriocarcinoma cell lines, Bewo, JEG-3 and JAR, were used in this study. Cultured cells were incubated with 5, 10 and 20 ng/mL of recombinant TNF-α (rTNF-α) for 24 h, respectively, for follow-up experiments. The dimer form and expression of activator protein-1 (AP-1) family members were detected using Western blot (WB) and chromatin immunoprecipitation (ChIP). mRNA and protein expression of ABCB1 were detected using reverse transcriptional quantitative polymerase chain reaction (RT-qPCR) and WB, respectively. Double luciferase labeling was used to verify the concentration of digoxin. Electromobility shift assay (EMSA) and ChIP were used to identify the binding ability of c-Jun to ABCB1 gene promoter. Proliferation and apoptosis of Bewo cells were determined using flow cytometry. Digoxin concentration were determined using dual luciferase labeling method. RESULTS Administration of rTNF-α upregulated the expression of c-Jun but not JunB or JunD in a dose-dependent manner and promoted the binding of c-Jun to the ABCB1 promoter region in Bewo cells. rTNF-α also increased the uptake of two P-gp-specific substrates, Rh123 and DiOC2(3), a function reversed by the addition of SP600125 and SR11302. We also found that rTNF-α increased the efflux ratio of digoxin, an outcome that was reversed, as expected, by inhibiting c-Jun and P-gp binding activities. Furthermore, we identified that rTNF-α tightly regulates the molecule-transporting activity of P-gp by promoting the phosphorylation of c-Jun. CONCLUSIONS TNF-α activates P-gp to promote placental molecule-transporting activity by directly upregulating c-Jun expression and phosphorylation. These findings demonstrate the clinical significance of TNF-α in modulating the placental barrier, which plays an important role in protecting fetus against harmful drugs.
Collapse
Affiliation(s)
- Huaying Li
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Yan
- Department of Respiration Center, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Biao Li
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guoqing Wei
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rong Ju
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
El-Malah AA, Gineinah MM, Deb PK, Khayyat AN, Bansal M, Venugopala KN, Aljahdali AS. Selective COX-2 Inhibitors: Road from Success to Controversy and the Quest for Repurposing. Pharmaceuticals (Basel) 2022; 15:827. [PMID: 35890126 PMCID: PMC9318302 DOI: 10.3390/ph15070827] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
The introduction of selective COX-2 inhibitors (so-called 'coxibs') has demonstrated tremendous commercial success due to their claimed lower potential of serious gastrointestinal adverse effects than traditional NSAIDs. However, following the repeated questioning on safety concerns, the coxibs 'controversial me-too' saga increased substantially, inferring to the risk of cardiovascular complications, subsequently leading to the voluntary withdrawal of coxibs (e.g., rofecoxib and valdecoxib) from the market. For instance, the makers (Pfizer and Merck) had to allegedly settle individual claims of cardiovascular hazards from celecoxib and valdecoxib. Undoubtedly, the lessons drawn from this saga revealed the flaws in drug surveillance and regulation, and taught science to pursue a more integrated translational approach for data acquisition and interpretation, prompting science-based strategies of risk avoidance in order to sustain the value of such drugs, rather than their withdrawal. Looking forward, coxibs are now being studied for repurposing, given their possible implications in the management of a myriad of diseases, including cancer, epilepsy, psychiatric disorders, obesity, Alzheimer's disease, and so on. This article briefly summarizes the development of COX-2 inhibitors to their market impression, followed by the controversy related to their toxicity. In addition, the events recollected in hindsight (the past lessons), the optimistic step towards drug repurposing (the present), and the potential for forthcoming success (the future) are also discussed.
Collapse
Affiliation(s)
- Afaf A. El-Malah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.E.-M.); (M.M.G.); (A.N.K.); (A.S.A.)
| | - Magdy M. Gineinah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.E.-M.); (M.M.G.); (A.N.K.); (A.S.A.)
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan
| | - Ahdab N. Khayyat
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.E.-M.); (M.M.G.); (A.N.K.); (A.S.A.)
| | - Monika Bansal
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Anfal S. Aljahdali
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.E.-M.); (M.M.G.); (A.N.K.); (A.S.A.)
| |
Collapse
|
6
|
Vo NB, Ngo QA. Synthesis, Anti‐inflammatory and Cytotoxic Activity of Novel Pyrazolo[4,3‐
c
][2,1]benzothiazine 4,4‐dioxide Derivatives. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ngoc Binh Vo
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Quoc Anh Ngo
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| |
Collapse
|
7
|
Maitra A, Evangelopoulos D, Chrzastek A, Martin LT, Hanrath A, Chapman E, Hailes HC, Lipman M, McHugh TD, Waddell SJ, Bhakta S. Carprofen elicits pleiotropic mechanisms of bactericidal action with the potential to reverse antimicrobial drug resistance in tuberculosis. J Antimicrob Chemother 2020; 75:3194-3201. [PMID: 32790867 PMCID: PMC7566368 DOI: 10.1093/jac/dkaa307] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The rise of antimicrobial drug resistance in Mycobacterium tuberculosis coupled with the shortage of new antibiotics has elevated TB to a major global health priority. Repurposing drugs developed or used for other conditions has gained special attention in the current scenario of accelerated drug development for several global infectious diseases. In a similar effort, previous studies revealed that carprofen, a non-steroidal anti-inflammatory drug, selectively inhibited the growth of replicating, non-replicating and MDR clinical isolates of M. tuberculosis. OBJECTIVES We aimed to reveal the whole-cell phenotypic and transcriptomic effects of carprofen in mycobacteria. METHODS Integrative molecular and microbiological approaches such as resazurin microtitre plate assay, high-throughput spot-culture growth inhibition assay, whole-cell efflux inhibition, biofilm inhibition and microarray analyses were performed. Analogues of carprofen were also synthesized and assessed for their antimycobacterial activity. RESULTS Carprofen was found to be a bactericidal drug that inhibited mycobacterial drug efflux mechanisms. It also restricted mycobacterial biofilm growth. Transcriptome profiling revealed that carprofen likely acts by targeting respiration through the disruption of membrane potential. The pleiotropic nature of carprofen's anti-TB action may explain why spontaneous drug-resistant mutants could not be isolated in practice. CONCLUSIONS This immunomodulatory drug and its chemical analogues have the potential to reverse TB antimicrobial drug resistance, offering a swift path to clinical trials of novel TB drug combinations.
Collapse
Affiliation(s)
- Arundhati Maitra
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Dimitrios Evangelopoulos
- UCL Centre for Clinical Microbiology, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - Alina Chrzastek
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Liam T Martin
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Aidan Hanrath
- UCL Centre for Clinical Microbiology, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - Ellie Chapman
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Helen C Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Marc Lipman
- Royal Free London NHS Foundation Trust, UCL-TB and UCL Respiratory, University College London, London NW3 2QG, UK
| | - Timothy D McHugh
- UCL Centre for Clinical Microbiology, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - Simon J Waddell
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PX, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
8
|
Indomethacin-grafted and pH-sensitive dextran micelles for overcoming inflammation-mediated multidrug resistance in breast cancer. Carbohydr Polym 2020; 237:116139. [DOI: 10.1016/j.carbpol.2020.116139] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022]
|
9
|
Celecoxib Prevents Doxorubicin-Induced Multidrug Resistance in Canine and Mouse Lymphoma Cell Lines. Cancers (Basel) 2020; 12:cancers12051117. [PMID: 32365663 PMCID: PMC7280963 DOI: 10.3390/cancers12051117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 11/30/2022] Open
Abstract
Background: Treatment of malignancies is still a major challenge in human and canine cancer, mostly due to the emergence of multidrug resistance (MDR). One of the main contributors of MDR is the overexpression P-glycoprotein (Pgp), which recognizes and extrudes various chemotherapeutics from cancer cells. Methods: To study mechanisms underlying the development of drug resistance, we established an in vitro treatment protocol to rapidly induce Pgp-mediated MDR in cancer cells. Based on a clinical observation showing that a 33-day-long, unplanned drug holiday can reverse the MDR phenotype of a canine diffuse large B-cell lymphoma patient, our aim was to use the established assay to prevent the emergence of drug resistance in the early stages of treatment. Results: We showed that an in vitro drug holiday results in the decrease of Pgp expression in MDR cell lines. Surprisingly, celecoxib, a known COX-2 inhibitor, prevented the emergence of drug-induced MDR in murine and canine lymphoma cell lines. Conclusions: Our findings suggest that celecoxib could significantly improve the efficiency of chemotherapy by preventing the development of MDR in B-cell lymphoma.
Collapse
|
10
|
Ceballos MP, Rigalli JP, Ceré LI, Semeniuk M, Catania VA, Ruiz ML. ABC Transporters: Regulation and Association with Multidrug Resistance in Hepatocellular Carcinoma and Colorectal Carcinoma. Curr Med Chem 2019; 26:1224-1250. [PMID: 29303075 DOI: 10.2174/0929867325666180105103637] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/19/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023]
Abstract
For most cancers, the treatment of choice is still chemotherapy despite its severe adverse effects, systemic toxicity and limited efficacy due to the development of multidrug resistance (MDR). MDR leads to chemotherapy failure generally associated with a decrease in drug concentration inside cancer cells, frequently due to the overexpression of ABC transporters such as P-glycoprotein (P-gp/MDR1/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2), which limits the efficacy of chemotherapeutic drugs. The aim of this review is to compile information about transcriptional and post-transcriptional regulation of ABC transporters and discuss their role in mediating MDR in cancer cells. This review also focuses on drug resistance by ABC efflux transporters in cancer cells, particularly hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) cells. Some aspects of the chemotherapy failure and future directions to overcome this problem are also discussed.
Collapse
Affiliation(s)
- María Paula Ceballos
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Juan Pablo Rigalli
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina.,Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Lucila Inés Ceré
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Mariana Semeniuk
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Viviana Alicia Catania
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - María Laura Ruiz
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| |
Collapse
|
11
|
Thi THN, Thi YT, Nguyen LA, Vo NB, Ngo QA. Design, Synthesis and Biological Activities of New Pyrazole Derivatives Possessing Both Coxib and Combretastatins Pharmacophores. Chem Biodivers 2019; 16:e1900108. [PMID: 30977306 DOI: 10.1002/cbdv.201900108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/11/2019] [Indexed: 12/30/2022]
Abstract
In our efforts to discover novel multi-target agents having better antitumor activities than celecoxib, 21 new aryl-substituted pyrazole derivatives possessing cis-diphenylethylene scaffold were mostly synthesized by a one-pot approach to ethyl 1,4,5-triaryl-1H-pyrazole-3-carboxylates via an improved Claisen condensation - Knorr reaction sequence. The cytotoxic effects of these compounds against three human cancer cell lines HT-29, Hep-G2, MCF-7 as well as their inhibition of NO production were studied. Results showed that incorporation of the important pharmacophoric groups of two original molecules celecoxib and combretastatin A-4 in a single molecule plays an important role in determining a better biological activities of the new coxib-hybrided compounds.
Collapse
Affiliation(s)
- Thuy Hang Nguyen Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam.,Graduate University of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam
| | - Yen Tran Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam
| | - Le Anh Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam
| | - Ngoc Binh Vo
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam
| | - Quoc Anh Ngo
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam.,Graduate University of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam
| |
Collapse
|
12
|
Liu J, Chang B, Li Q, Xu L, Liu X, Wang G, Wang Z, Wang L. Redox-Responsive Dual Drug Delivery Nanosystem Suppresses Cancer Repopulation by Abrogating Doxorubicin-Promoted Cancer Stemness, Metastasis, and Drug Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801987. [PMID: 31139556 PMCID: PMC6446919 DOI: 10.1002/advs.201801987] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/09/2019] [Indexed: 05/15/2023]
Abstract
Chemotherapy is a major therapeutic option for cancer patients. However, its effectiveness is challenged by chemodrugs' intrinsic pathological interactions with residual cancer cells. While inducing cancer cell death, chemodrugs enhance cancer stemness, invasiveness, and drug resistance of remaining cancer cells through upregulating cyclooxygenase-2/prostaglandin-E2 (COX-2/PGE2) signaling, therefore facilitating cancer repopulation and relapse. Toward tumor eradication, it is necessary to improve chemotherapy by abrogating these chemotherapy-induced effects. Herein, redox-responsive, celecoxib-modified mesoporous silica nanoparticles with poly(β-cyclodextrin) wrapping (MSCPs) for sealing doxorubicin (DOX) are synthesized. Celecoxib, an FDA-approved COX-2 inhibitor, is employed as a structural and functional element to confer MSCPs with redox-responsiveness and COX-2/PGE2 inhibitory activity. MSCPs efficiently codeliver DOX and celecoxib into the tumor location, minimizing systemic toxicity. Importantly, through blocking chemotherapy-activated COX-2/PGE2 signaling, MSCPs drastically enhance DOX's antitumor activity by suppressing enhancement of cancer stemness and invasiveness as well as drug resistance induced by DOX-based chemotherapy in vitro. This is also remarkably achieved in three preclinical tumor models in vivo. DOX-loaded MSCPs effectively inhibit tumor repopulation by blocking COX-2/PGE2 signaling, which eliminates DOX-induced expansion of cancer stem-like cells, distant metastasis, and acquired drug resistance. Thus, this drug delivery nanosystem is capable of effectively suppressing tumor repopulation and has potential clinical translational value.
Collapse
Affiliation(s)
- Jia Liu
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Bingcheng Chang
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Qilin Li
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Luming Xu
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xingxin Liu
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Guobin Wang
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
13
|
Advanced In Vitro HepaRG Culture Systems for Xenobiotic Metabolism and Toxicity Characterization. Eur J Drug Metab Pharmacokinet 2018; 44:437-458. [DOI: 10.1007/s13318-018-0533-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Naftalin CM, Verma R, Gurumurthy M, Hee KH, Lu Q, Yeo BCM, Tan KH, Lin W, Yu B, Seng KY, Lee LSU, Paton NI. Adjunctive use of celecoxib with anti-tuberculosis drugs: evaluation in a whole-blood bactericidal activity model. Sci Rep 2018; 8:13491. [PMID: 30202030 PMCID: PMC6131161 DOI: 10.1038/s41598-018-31590-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 08/22/2018] [Indexed: 12/31/2022] Open
Abstract
COX-2 inhibition may be of benefit in the treatment of tuberculosis (TB) through a number of pathways including efflux pump inhibition (increasing intracellular TB drug levels) and diverse effects on inflammation and the immune response. We investigated celecoxib (a COX-2 inhibitor) alone and with standard anti-tuberculosis drugs in the whole-blood bactericidal activity (WBA) model. Healthy volunteers took a single dose of celecoxib (400 mg), followed (after 1 week) by a single dose of either rifampicin (10 mg/kg) or pyrazinamide (25 mg/kg), followed (after 2 or 7 days respectively) by the same anti-tuberculosis drug with celecoxib. WBA was measured at intervals until 8 hours post-dose (by inoculating blood samples with Mycobacterium tuberculosis and estimating the change in bacterial colony forming units after 72 hours incubation). Celecoxib had no activity alone in the WBA assay (cumulative WBA over 8 hours post-dose: 0.03 ± 0.01ΔlogCFU, p = 1.00 versus zero). Celecoxib did not increase cumulative WBA of standard TB drugs (mean cumulative WBA −0.10 ± 0.13ΔlogCFU versus −0.10 ± 0.12ΔlogCFU for TB drugs alone versus TB drugs and celecoxib; mean difference −0.01, 95% CI −0.02 to 0.00; p = 0.16). The lack of benefit of celecoxib suggests that efflux pump inhibition or eicosanoid pathway-related responses are of limited importance in mycobacterial killing in the WBA assay.
Collapse
Affiliation(s)
- Claire M Naftalin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Rupangi Verma
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Meera Gurumurthy
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kim Hor Hee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qingshu Lu
- Singapore Clinical Research Institute, Singapore, Singapore
| | - Benjamin Chaik Meng Yeo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kin Hup Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wenwei Lin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Buduo Yu
- Investigational Medicine Unit, National University Health System, Singapore, Singapore
| | - Kok Yong Seng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lawrence Soon-U Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas I Paton
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Chu T, Chan H, Hu T, Wang E, Ma Y, Huang S, Wu J, Chang Y, Weng W, Wen Z, Wu D, Chen YA, Tai M. Celecoxib enhances the therapeutic efficacy of epirubicin for Novikoff hepatoma in rats. Cancer Med 2018; 7:2567-2580. [PMID: 29683262 PMCID: PMC6010827 DOI: 10.1002/cam4.1487] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/09/2018] [Accepted: 02/26/2018] [Indexed: 01/22/2023] Open
Abstract
Epirubicin is a chemotherapy agent for hepatocellular carcinoma (HCC). However, the outcome of HCC patients receiving epirubicin remains unsatisfactory. Moreover, our previous study indicated that celecoxib suppresses HCC progression and liver cancer stemness. This study evaluated the potential of celecoxib to serve as a complementary therapy during epirubicin treatment. Cell proliferation, apoptosis, invasiveness, and anchorage-independent growth were analyzed in hepatoma cells. Therapeutic efficacy was validated in rat orthotopic Novikoff hepatoma. After animal sacrifice, the antitumor mechanism of celecoxib and epirubicin combined therapy was investigated by histological analysis. Celecoxib enhanced the cytotoxic activity of epirubicin in HCC cells by promoting apoptosis. Besides, celecoxib potentiated the antineoplastic function of epirubicin in inhibiting the invasiveness and anchorage-independent growth of HCC cells. Ultrasound monitoring showed that combined therapy was more potent than either therapy alone in perturbing HCC progression. Consistently, the size and weight of dissected HCC tissues from rats receiving combined therapy were smallest among all groups. HCC treated with combined therapy exhibited the highest prevalence of apoptotic cells, which was accompanied by reduced proliferating and angiogenic activities in tumor tissues. Moreover, the expression levels of cancer stemness markers (CD44 and CD133) and drug transporter MDR-1 were significantly diminished in rats receiving combined therapy. Besides, celecoxib treatment increased the infiltration of cytotoxic T lymphocytes (CTLs) and reduced the number of regulatory T cells (Tregs), tumor-associated macrophages (TAMs), and the expression of immune checkpoint PD-L1 in HCC tissues during epirubicin therapy. Celecoxib augmented the therapeutic efficacy while modulated cancer stemness and antitumor immunity. Thus, celecoxib may serve as complementary therapy to improve the outcome of patients with advanced HCC during epirubicin treatment.
Collapse
Affiliation(s)
- Tian‐Huei Chu
- Center for NeuroscienceNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Institute of Biomedical SciencesNational Sun Yat‐Sen UniversityKaohsiungTaiwan
| | - Hoi‐Hung Chan
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKaohsiung Veterans General HospitalKaohsiungTaiwan
- School of MedicineNational Yang‐Ming UniversityTaipeiTaiwan
- College of Pharmacy & Health CareTajen UniversityPingtung CountyTaiwan
- Department of Biological SciencesNational Sun Yat‐sen UniversityKaohsiungTaiwan
| | - Tsung‐Hui Hu
- Division of Hepato‐GastroenterologyDepartment of Internal MedicineChang Gung Memorial Hospital Kaohsiung Medical CenterChang Gung University College of MedicineKaohsiungTaiwan
| | - E‐Ming Wang
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKaohsiung Veterans General HospitalKaohsiungTaiwan
- Department of Biological SciencesNational Sun Yat‐sen UniversityKaohsiungTaiwan
| | - Yi‐Ling Ma
- Division of NephrologyKaohsiung Veterans General HospitalKaohsiungTaiwan
| | - Shih‐Chung Huang
- Institute of Biomedical SciencesNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Department of Internal MedicineKaohsiung Armed Forces General HospitalKaohsiungTaiwan
| | - Jian‐Ching Wu
- Doctoral Degree Program in Marine BiotechnologyNational Sun Yat‐Sen University and Academia SinicaKaohsiungTaiwan
| | - Yi‐Chen Chang
- Doctoral Degree Program in Marine BiotechnologyNational Sun Yat‐Sen University and Academia SinicaKaohsiungTaiwan
| | - Wen‐Tsan Weng
- Department of Medical ResearchKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
- Core Laboratory for Phenomics and DiagonsticsDepartment of PediatricsKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
| | - Zhi‐Hong Wen
- Department of Marine Biotechnology and ResourcesAsia‐Pacific Ocean Research CenterNational Sun Yat‐Sen UniversityKaohsiungTaiwan
| | - Deng‐Chyang Wu
- Institute of Biomedical SciencesNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Center for Stem Cell ResearchKaohsiung Medical UniversityKaohsiungTaiwan
- Division of GastroenterologyDepartment of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
- Department of MedicineFaculty of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Yi‐Ming Arthur Chen
- Institute of Biomedical SciencesNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Center for Infectious Disease and Cancer ResearchKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Microbiology and ImmunologyInstitute of Medical Research and Institute of Clinical MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Ming‐Hong Tai
- Center for NeuroscienceNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Institute of Biomedical SciencesNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Doctoral Degree Program in Marine BiotechnologyNational Sun Yat‐Sen University and Academia SinicaKaohsiungTaiwan
- Center for Stem Cell ResearchKaohsiung Medical UniversityKaohsiungTaiwan
| |
Collapse
|
16
|
Hu W, Fang L, Hua W, Gou S. Biotin-Pt (IV)-indomethacin hybrid: A targeting anticancer prodrug providing enhanced cancer cellular uptake and reversing cisplatin resistance. J Inorg Biochem 2017; 175:47-57. [PMID: 28700961 DOI: 10.1016/j.jinorgbio.2017.07.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 06/06/2017] [Accepted: 07/02/2017] [Indexed: 01/08/2023]
Abstract
A Pt(IV) prodrug (2) composed of cancer-targeting biotin and nonsteroidal anti-inflammatory drug indomethacin in the axial positions of the six-coordinated octahedral geometry derived from cisplatin was developed, which could be highly accumulated in cancer cells more than normal ones and activated by endogenous reducing molecules to release cisplatin and indomethacin moieties simultaneously to inhibit tumor progression synergistically. In vitro assays revealed that 2 exhibited significantly selective inhibition to the tested cancer cell lines and sensitivity to cisplatin resistant cancer cells. Moreover, 2 presented cyclooxygenases inhibition properties to reduce tumor-associated inflammation, reduced the invasiveness of the highly aggressive PC-3 cells, and disrupted capillary-like tube formation in EA.hy926 cells. In all, this study offers a new strategy to enhance sensitivity and reduce toxicity of cisplatin.
Collapse
Affiliation(s)
- Weiwei Hu
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Lei Fang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Wuyang Hua
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| |
Collapse
|
17
|
Xu HB, Fu J, Huang F, Yu J. Guggulsterone sensitized drug-resistant human hepatocarcinoma cells to doxorubicin through a Cox-2/P-gp dependent pathway. Eur J Pharmacol 2017; 803:57-64. [PMID: 28342979 DOI: 10.1016/j.ejphar.2017.03.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 01/24/2023]
Abstract
Previous researches indicated that cyclooxygenase-2 (Cox-2) might be involved in P-glycoprotein (P-gp)-mediated multidrug resistance in hepatocellular carcinoma cells. Doxorubicin-resistant hepatocellular carcinoma PLC/PRF/5 cells (PLC/PRF/5R) and HepG2 (HepG2R) cells were developed in the present study. The modulatory effect of guggulsterone on Cox-2 and P-gp in PLC/PRF/5R and HepG2R cells was investigated. Cells proliferation, Cox-2 and P-gp expression, and prostaglandin E2 release were examined using MTT, flow cytometry, western blot and ELISA assays. Small interfering RNA (siRNA) targeted against Cox-2 and multidrug resistance protein (Mdr-1) was used to regulate the expression of Cox-2 and P-gp. The results showed that co-administration of guggulsterone resulted in a significant increase in chemo-sensitivity of PLC/PRF/5R cells to doxorubicin, as compared with doxorubicin treatment alone. When doxorubicin (10µM) was combined with guggulsterone (50µM), the mean apoptotic population of PLC/PRF/5R cells was 20.16%. It was increased by 1.5 times, as compared with doxorubicin (10µM) treatment alone. Furthermore, guggulsterone had significantly inhibitory effect on the levels of Cox-2, P-gp and prostaglandin E2. However, guggulsterone did not show significantly inhibitory effect on the expression of prostaglandin E receptors. In addition, Cox-2 siRNA simultaneously reduced the expression of Cox-2 and P-gp in PLC/PRF/5R cells. Mdr-1 siRNA had no influence on Cox-2, but inhibited P-gp expression. The present study suggested that guggulsterone might enhance the cytotoxic effect of doxorubicin to PLC/PRF/5R cells through a Cox-2/P-gp dependent pathway.
Collapse
Affiliation(s)
- Hong-Bin Xu
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, China.
| | - Jun Fu
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Fang Huang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Jing Yu
- Department of Scientific Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
18
|
Tomono T, Kajita M, Yano K, Ogihara T. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein. Biochem Biophys Res Commun 2016; 476:183-187. [PMID: 27286705 DOI: 10.1016/j.bbrc.2016.05.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/12/2016] [Indexed: 12/12/2022]
Abstract
P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNA expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment.
Collapse
Affiliation(s)
- Takumi Tomono
- Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| | - Masahiro Kajita
- Laboratory of Molecular Pharmaceutics and Technology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| | - Kentaro Yano
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| | - Takuo Ogihara
- Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan.
| |
Collapse
|
19
|
Wang J, Chen F, Liu L, Qi C, Wang B, Yan X, Huang C, Hou W, Zhang MQ, Chen Y, Du Y. Engineering EMT using 3D micro-scaffold to promote hepatic functions for drug hepatotoxicity evaluation. Biomaterials 2016; 91:11-22. [PMID: 26994875 DOI: 10.1016/j.biomaterials.2016.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 03/01/2016] [Indexed: 12/25/2022]
|
20
|
Cheng JS, Chou CT, Liu YY, Sun WC, Shieh P, Kuo DH, Kuo CC, Jan CR, Liang WZ. The effect of oleuropein from olive leaf (Olea europaea) extract on Ca²⁺ homeostasis, cytotoxicity, cell cycle distribution and ROS signaling in HepG2 human hepatoma cells. Food Chem Toxicol 2016; 91:151-66. [PMID: 27016494 DOI: 10.1016/j.fct.2016.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/23/2016] [Accepted: 03/21/2016] [Indexed: 12/28/2022]
Abstract
Oleuropein, a phenolic compound found in the olive leaf (Olea europaea), has been shown to have biological activities in different models. However, the effects of oleuropein on Ca(2+) homeostasis, cytotoxicity, cell cycle distribution and ROS signaling in liver cells have not been analyzed. Oleuropein induced [Ca(2+)]i rises only in HepG2 cells but not in AML12, HA22T or HA59T cells due to the different status of 3-hydroxy-3-methylglutaryl-CoA reductase expression. In HepG2 cells, this Ca(2+) signaling response was reduced by removing extracellular Ca(2+), and was inhibited by the store-operated Ca(2+) channel blockers 2-APB and SKF96365. In Ca(2+)-free medium, pretreatment with the ER Ca(2+) pump inhibitor thapsigargin abolished oleuropein-induced [Ca(2+)]i rises. Oleuropein induced cell cycle arrest which was associated with the regulation of p53, p21, CDK1 and cyclin B1 levels. Furthermore, oleuropein elevated intracellular ROS levels but reduced GSH levels. Treatment with the intracellular Ca(2+) chelator BAPTA-AM or the antioxidant NAC partially reversed oleuropein-induced cytotoxicity. Together, in HepG2 cells, oleuropein induced [Ca(2+)]i rises by releasing Ca(2+) from the ER and causing Ca(2+) influx through store-operated Ca(2+) channels. Moreover, oleuropein induced Ca(2+)-associated cytotoxicity that involved ROS signaling and cell cycle arrest. This compound may offer a potential therapy for treatment of human hepatoma.
Collapse
Affiliation(s)
- Jin-Shiung Cheng
- Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Chiang-Ting Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi 613, Taiwan; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi 613, Taiwan
| | - Yuan-Yuarn Liu
- Division of Trauma, Department of Emergency, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Wei-Chih Sun
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Pochuen Shieh
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan
| | - Daih-Huang Kuo
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan
| | - Chun-Chi Kuo
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung 907, Taiwan
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| |
Collapse
|
21
|
Tsai YT, Lozanski G, Lehman A, Sass EJ, Hertlein E, Salunke SB, Chen CS, Grever MR, Byrd JC, Lucas DM. BRAF V600E induces ABCB1/P-glycoprotein expression and drug resistance in B-cells via AP-1 activation. Leuk Res 2015; 39:S0145-2126(15)30371-4. [PMID: 26350141 PMCID: PMC4779435 DOI: 10.1016/j.leukres.2015.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 12/15/2022]
Abstract
A subset of patients with chronic lymphocytic leukemia (CLL) and nearly all patients with classic hairy cell leukemia (HCL) harbor somatic BRAF activating mutations. However, the pathological role of activated BRAF in B-cell leukemia development and progression remains unclear. In addition, although HCL patients respond well to the BRAFV600E inhibitor vemurafenib, relapses are being observed, suggesting the development of drug resistance in patients with this mutation. To investigate the biological role of BRAFV600E in B-cell leukemia, we generated a CLL-like B-cell line, OSUCLL, with doxycycline-inducible BRAFV600E expression. Microarray and real-time PCR analysis showed that ABCB1 mRNA is upregulated in these cells, and P-glycoprotein (P-gp) expression as well as function were confirmed by immunoblot and rhodamine exclusion assays. Additionally, pharmacological inhibition of BRAFV600E and MEK alleviated the BRAFV600E-induced ABCB1/P-gp expression. ABCB1 reporter assays and gel shift assays demonstrated that AP-1 activity is crucial in this mechanism. This study, uncovers a pathological role for BRAFV600E in B-cell leukemia, and provides further evidence that combination strategies with inhibitors of BRAFV600E and MEK can be used to delay disease progression and occurrence of resistance.
Collapse
Affiliation(s)
- Yo-Ting Tsai
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Gerard Lozanski
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Amy Lehman
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Ellen J Sass
- Department of Internal Medicine, College of Medicine; The Ohio State University, Columbus, OH, USA
| | - Erin Hertlein
- Department of Internal Medicine, College of Medicine; The Ohio State University, Columbus, OH, USA
| | - Santosh B Salunke
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Ching-Shih Chen
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Michael R Grever
- Department of Internal Medicine, College of Medicine; The Ohio State University, Columbus, OH, USA
| | - John C Byrd
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA; Department of Internal Medicine, College of Medicine; The Ohio State University, Columbus, OH, USA
| | - David M Lucas
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA; Department of Internal Medicine, College of Medicine; The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
22
|
Wang J, Liu L, Cen J, Ji B. BME, a novel compound of anthraquinone, down regulated P-glycoprotein expression in doxorubicin-resistant human myelogenous leukemia (K562/DOX) cells via generation of reactive oxygen species. Chem Biol Interact 2015; 239:139-45. [PMID: 26169035 DOI: 10.1016/j.cbi.2015.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 06/11/2015] [Accepted: 07/06/2015] [Indexed: 12/09/2022]
Abstract
P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) in tumor cells is still a main obstacle for the chemotherapeutic treatment of cancers. Thus, development of effective MDR reversing agents is an important approach in the clinic. The present study revealed that BME, a novel compound of anthraquinone, elevated intracellular accumulation of the P-gp substrates and reduced concentration resulting in 50% inhibition of cell growth (IC50) values for doxorubicin (DOX) in doxorubicin-resistant human myelogenous leukemia (K562/DOX) cells. Further more, BME was also reported to down regulated P-gp expression accompanying with generation of nontoxic low level of intracellular reactive oxygen species (iROS) and activation of extracellular signal-regulated kinase (ERK)1/2 as well as c-JUN N-terminal kinase (JNK). However, treatment with N-acetyl-cysteine (NAC), U0216 and SP600125 almost abolished actions of the BME mentioned above. These results indicated that the effect of the BME on the P-gp may be involved in generation of nontoxic low level of iROS and activation of ERK1/2 or JNK, which suggested valuable clues to screen and develop P-gp reversing agents.
Collapse
Affiliation(s)
- Jianhong Wang
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng 475001, China
| | - Lu Liu
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng 475001, China
| | - Juan Cen
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng 475001, China
| | - Biansheng Ji
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng 475001, China.
| |
Collapse
|
23
|
Coyne CP, Jones T, Bear R. Simultaneous Dual Selective Targeted Delivery of Two Covalent Gemcitabine Immunochemotherapeutics and Complementary Anti-Neoplastic Potency of [Se]-Methylselenocysteine. JOURNAL OF CANCER THERAPY 2015; 6:62-89. [PMID: 25821636 PMCID: PMC4376018 DOI: 10.4236/jct.2015.61009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The anti-metabolite chemotherapeutic, gemcitabine is relatively effective for a spectrum of neoplastic conditions that include various forms of leukemia and adenocarcinoma/carcinoma. Rapid systemic deamination of gemcitabine accounts for a brief plasma half-life but its sustained administration is often curtailed by sequelae and chemotherapeutic-resistance. A molecular strategy that diminishes these limitations is the molecular design and synthetic production of covalent gemcitabine immunochemotherapeutics that possess properties of selective "targeted" delivery. The simultaneous dual selective "targeted" delivery of gemcitabine at two separate sites on the external surface membrane of a single cancer cell types represents a therapeutic approach that can increase cytosol chemotherapeutic deposition; prolong chemotherapeutic plasma half-life (reduces administration frequency); minimize innocent exposure of normal tissues and healthy organ systems; and ultimately enhance more rapid and thorough resolution of neoplastic cell populations. MATERIALS AND METHODS A light-reactive gemcitabine intermediate synthesized utilizing succinimidyl 4,4-azipentanoate was covalently bound to anti-EGFR or anti-HER2/neu IgG by exposure to UV light (354-nm) resulting in the synthesis of covalent immunochemotherapeutics, gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu]. Cytotoxic anti-neoplastic potency of gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] between gemcitabine-equivalent concentrations of 10-12 M and 10-6 M was determined utilizing chemotherapeutic-resistant mammary adenocarcinoma (SKRr-3). The organoselenium compound, [Se]-methylselenocysteine was evaluated to determine if it complemented the anti-neoplastic potency of the covalent gemcitabine immunochemotherapeutics. RESULTS Gemcitabine-(C4-amide)-[anti-EGFR], gemcitabine-(C4-amide)-[anti-HER2/neu] and the dual simultaneous combination of gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-amide)-[anti-HER2/neu] all had anti-neoplastic cytotoxic potency against mammary adenocarcinoma. Gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] produced progressive increases in anti-neoplastic cytotoxicity that were greatest between gemcitabine-equivalent concentrations of 10-9 M and 10-6 M. Dual simultaneous combinations of gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-amide)-[anti-HER2/neu] produced levels of anti-neoplastic cytotoxicity intermediate between each of the individual covalent gemcitabine immunochemotherapeutics. Total anti-neoplastic cytotoxicity of the dual simultaneous combination of gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) was substantially higher when formulated with [Se]-methylsele-nocysteine.
Collapse
Affiliation(s)
- C P Coyne
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Toni Jones
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Ryan Bear
- Wise Center, Mississippi State University, Mississippi State, USA
| |
Collapse
|
24
|
HIĽOVSKÁ LUCIA, JENDŽELOVSKÝ RASTISLAV, FEDOROČKO PETER. Potency of non-steroidal anti-inflammatory drugs in chemotherapy. Mol Clin Oncol 2015; 3:3-12. [PMID: 25469262 PMCID: PMC4251142 DOI: 10.3892/mco.2014.446] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/01/2014] [Indexed: 12/19/2022] Open
Abstract
Cancer cell resistance, particularly multidrug resistance (MDR), is the leading cause of chemotherapy failure. A number of mechanisms involved in the development of MDR have been described, including the overexpression of ATP-dependent membrane-bound transport proteins. The enhanced expression of these proteins, referred to as ATP-binding cassette (ABC) transporters, results in an increased cellular efflux of the cytotoxic drug, thereby reducing its intracellular concentration to an ineffective level. Non-steroidal anti-inflammatory drugs (NSAIDs) are the most frequently consumed drugs worldwide. NSAIDs are mainly used to treat pain, fever and inflammation. Numerous studies suggest that NSAIDs also show promise as anticancer drugs. NSAIDs have been shown to reduce cancer cell proliferation, motility, angiogenesis and invasiveness. In addition to these effects, NSAIDs have been shown to induce apoptosis in a wide variety of cancer types. Moreover, several studies have indicated that NSAIDs may sensitise cancer cells to the antiproliferative effects of cytotoxic drugs by modulating ABC transporter activity. Therefore, combining specific NSAIDs with chemotherapeutic drugs may have clinical applications. Such treatments may allow for the use of a lower dose of cytotoxic drugs and may also enhance the effectiveness of therapy. The objective of this review was to discuss the possible role of NSAIDs in the modulation of antitumour drug cytotoxicity. We particularly emphasised on the use of COX-2 inhibitors in combination with chemotherapy and the molecular and cellular mechanisms underlying the alterations in outcome that occur in response to this combination therapy.
Collapse
Affiliation(s)
- LUCIA HIĽOVSKÁ
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 040 01 Košice, Slovakia
| | - RASTISLAV JENDŽELOVSKÝ
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 040 01 Košice, Slovakia
| | - PETER FEDOROČKO
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 040 01 Košice, Slovakia
| |
Collapse
|
25
|
Mason CW, Lee GT, Dong Y, Zhou H, He L, Weiner CP. Effect of prostaglandin E2 on multidrug resistance transporters in human placental cells. Drug Metab Dispos 2014; 42:2077-86. [PMID: 25261564 PMCID: PMC4244872 DOI: 10.1124/dmd.114.059477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/26/2014] [Indexed: 01/16/2023] Open
Abstract
Prostaglandin (PG) E2, a major product of cyclooxygenase (COX)-2, acts as an immunomodulator at the maternal-fetal interface during pregnancy. It exerts biologic function through interaction with E-prostanoid (EP) receptors localized to the placenta. The activation of the COX-2/PGE2/EP signal pathway can alter the expression of the ATP-binding cassette (ABC) transporters, multidrug resistance protein 1 [P-glycoprotein (Pgp); gene: ABCB1], and breast cancer resistance protein (BCRP; gene: ABCG2), which function to extrude drugs and xenobiotics from cells. In the placenta, PGE2-mediated changes in ABC transporter expression could impact fetal drug exposure. Furthermore, understanding the signaling cascades involved could lead to strategies for the control of Pgp and BCRP expression levels. We sought to determine the impact of PGE2 signaling mechanisms on Pgp and BCRP in human placental cells. The treatment of placental cells with PGE2 up-regulated BCRP expression and resulted in decreased cellular accumulation of the fluorescent substrate Hoechst 33342. Inhibiting the EP1 and EP3 receptors with specific antagonists attenuated the increase in BCRP. EP receptor signaling results in activation of transcription factors, which can affect BCRP expression. Although PGE2 decreased nuclear factor κ-light chain-enhancer of activated B activation and increased activator protein 1, chemical inhibition of these inflammatory transcription factors did not blunt BCRP up-regulation by PGE2. Though PGE2 decreased Pgp mRNA, Pgp expression and function were not significantly altered. Overall, these findings suggest a possible role for PGE2 in the up-regulation of placental BCRP expression via EP1 and EP3 receptor signaling cascades.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Cell Line
- Dinoprostone/genetics
- Dinoprostone/metabolism
- Drug Resistance, Multiple/genetics
- Female
- Humans
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Placenta/metabolism
- Pregnancy
- RNA, Messenger/genetics
- Receptors, Prostaglandin E, EP1 Subtype/genetics
- Receptors, Prostaglandin E, EP1 Subtype/metabolism
- Receptors, Prostaglandin E, EP3 Subtype/genetics
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Signal Transduction/genetics
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Clifford W Mason
- Division of Research, Department of Obstetrics and Gynecology, (C.W.M, G.T.L., Y.D., H.Z., L.H., C.P.W.), and Center for the Developmental Origins of Adult Health and Disease (C.W.M, G.T.L, Y.D., C.P.W), University of Kansas School of Medicine, Kansas City, Kansas
| | - Gene T Lee
- Division of Research, Department of Obstetrics and Gynecology, (C.W.M, G.T.L., Y.D., H.Z., L.H., C.P.W.), and Center for the Developmental Origins of Adult Health and Disease (C.W.M, G.T.L, Y.D., C.P.W), University of Kansas School of Medicine, Kansas City, Kansas
| | - Yafeng Dong
- Division of Research, Department of Obstetrics and Gynecology, (C.W.M, G.T.L., Y.D., H.Z., L.H., C.P.W.), and Center for the Developmental Origins of Adult Health and Disease (C.W.M, G.T.L, Y.D., C.P.W), University of Kansas School of Medicine, Kansas City, Kansas
| | - Helen Zhou
- Division of Research, Department of Obstetrics and Gynecology, (C.W.M, G.T.L., Y.D., H.Z., L.H., C.P.W.), and Center for the Developmental Origins of Adult Health and Disease (C.W.M, G.T.L, Y.D., C.P.W), University of Kansas School of Medicine, Kansas City, Kansas
| | - Lily He
- Division of Research, Department of Obstetrics and Gynecology, (C.W.M, G.T.L., Y.D., H.Z., L.H., C.P.W.), and Center for the Developmental Origins of Adult Health and Disease (C.W.M, G.T.L, Y.D., C.P.W), University of Kansas School of Medicine, Kansas City, Kansas
| | - Carl P Weiner
- Division of Research, Department of Obstetrics and Gynecology, (C.W.M, G.T.L., Y.D., H.Z., L.H., C.P.W.), and Center for the Developmental Origins of Adult Health and Disease (C.W.M, G.T.L, Y.D., C.P.W), University of Kansas School of Medicine, Kansas City, Kansas
| |
Collapse
|
26
|
The inhibitory effect of pseudolaric acid B on gastric cancer and multidrug resistance via Cox-2/PKC-α/P-gp pathway. PLoS One 2014; 9:e107830. [PMID: 25250794 PMCID: PMC4176716 DOI: 10.1371/journal.pone.0107830] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/20/2014] [Indexed: 01/08/2023] Open
Abstract
Aim To investigate the inhibitory effect of pseudolaric acid B on subcutaneous xenografts of human gastric adenocarcinoma and the underlying molecular mechanisms involved in its multidrug resistance. Methods Human gastric adenocarcinoma SGC7901 cells and drug-resistant SGC7901/ADR cells were injected into nude mice to establish a subcutaneous xenograft model. The effects of pseudolaric acid B with or without adriamycin treatment were compared by determining the tumor size and weight. Cyclo-oxygenase-2, protein kinaseC-α and P-glycoprotein expression levels were determined by immunohistochemistry and western blot. Results Pseudolaric acid B significantly suppressed the tumor growth induced by SGC7901 cells and SGC7901/ADR cells. The combination of pseudolaric acid B and the traditional chemotherapy drug adriamycin exhibited more potent inhibitory effects on the growth of gastric cancer in vivo than treatment with either pseudolaric acid B or adriamycin alone. Protein expression levels of cyclo-oxygenase-2, protein kinaseC-α and P-glycoprotein were inhibited by pseudolaric acid B alone or in combination with adriamycin in SGC7901/ADR cell xenografts. Conclusion Pseudolaric acid B has a significant inhibitory effect and an additive inhibitory effect in combination with adriamycin on the growth of gastric cancer in vivo, which reverses the multidrug resistance of gastric neoplasm to chemotherapy drugs by downregulating the Cox-2/PKC-α/P-gp/mdr1 signaling pathway.
Collapse
|
27
|
Subramaniam A, Shanmugam MK, Ong TH, Li F, Perumal E, Chen L, Vali S, Abbasi T, Kapoor S, Ahn KS, Kumar AP, Hui KM, Sethi G. Emodin inhibits growth and induces apoptosis in an orthotopic hepatocellular carcinoma model by blocking activation of STAT3. Br J Pharmacol 2014; 170:807-21. [PMID: 23848338 DOI: 10.1111/bph.12302] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Aberrant activation of STAT3 is frequently encountered and promotes proliferation, survival, metastasis and angiogenesis in hepatocellular carcinoma (HCC). Here, we have investigated whether emodin mediates its effect through interference with the STAT3 activation pathway in HCC. EXPERIMENTAL APPROACH The effect of emodin on STAT3 activation, associated protein kinases and apoptosis was investigated using various HCC cell lines. Additionally, we also used a predictive tumour technology to analyse the effects of emodin . The in vivo effects of emodin were assessed in an orthotopic mouse model of HCC. KEY RESULTS Emodin suppressed STAT3 activation in a dose- and time-dependent manner in HCC cells, mediated by the modulation of activation of upstream kinases c-Src, JAK1 and JAK2. Vanadate treatment reversed emodin-induced down-regulation of STAT3, suggesting the involvement of a tyrosine phosphatase and emodin induced the expression of the tyrosine phosphatase SHP-1 that correlated with the down-regulation of constitutive STAT3 activation. Interestingly, silencing of the SHP-1 gene by siRNA abolished the ability of emodin to inhibit STAT3 activation. Finally, when administered i.p., emodin inhibited the growth of human HCC orthotopic tumours in male athymic nu/nu mice and STAT3 activation in tumour tissues. CONCLUSIONS AND IMPLICATIONS Emodin mediated its effects predominantly through inhibition of the STAT3 signalling cascade and thus has a particular potential for the treatment of cancers expressing constitutively activated STAT3.
Collapse
Affiliation(s)
- Aruljothi Subramaniam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Molecular Toxicology Lab, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu Z, Duan ZJ, Chang JY, Zhang ZF, Chu R, Li YL, Dai KH, Mo GQ, Chang QY. Sinomenine sensitizes multidrug-resistant colon cancer cells (Caco-2) to doxorubicin by downregulation of MDR-1 expression. PLoS One 2014; 9:e98560. [PMID: 24901713 PMCID: PMC4047020 DOI: 10.1371/journal.pone.0098560] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/05/2014] [Indexed: 12/28/2022] Open
Abstract
Chemoresistance in multidrug-resistant (MDR) cells over expressing P-glycoprotein (P-gp) encoded by the MDR1 gene, is a major obstacle to successful chemotherapy for colorectal cancer. Previous studies have indicated that sinomenine can enhance the absorption of various P-gp substrates. In the present study, we investigated the effect of sinomenine on the chemoresistance in colon cancer cells and explored the underlying mechanism. We developed multidrug-resistant Caco-2 (MDR-Caco-2) cells by exposure of Caco-2 cells to increasing concentrations of doxorubicin. We identified overexpression of COX-2 and MDR-1 genes as well as activation of the NF-κB signal pathway in MDR-Caco-2 cells. Importantly, we found that sinomenine enhances the sensitivity of MDR-Caco-2 cells towards doxorubicin by downregulating MDR-1 and COX-2 expression through inhibition of the NF-κB signaling pathway. These findings provide a new potential strategy for the reversal of P-gp-mediated anticancer drug resistance.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhi-Jun Duan
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- * E-mail: (ZJD); (QYC)
| | - Jiu-Yang Chang
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhi-feng Zhang
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Rui Chu
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yu-Ling Li
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ke-Hang Dai
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Guang-quan Mo
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qing-Yong Chang
- Department of Neurosurgery, Zhongshan Affiliated Hospital of Dalian University, Dalian, Liaoning, China
- * E-mail: (ZJD); (QYC)
| |
Collapse
|
29
|
Nishanth RP, Prasad T, Jyotsna RG, Reddy PK, Reddanna P. Hepatoprotective Effects ofTerminalia chebulaFruit Extract against 2-AAF–Induced Hepatic Damage in Albino Mice: Role of MDR1 and COX-2. ACTA ACUST UNITED AC 2014. [DOI: 10.1080/10496475.2014.882283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
30
|
Doudican NA, Mazumder A, Kapoor S, Sultana Z, Kumar A, Talawdekar A, Basu K, Agrawal A, Aggarwal A, Shetty K, Singh NK, Kumar C, Tyagi A, Singh NK, Darlybai JC, Abbasi T, Vali S. Predictive simulation approach for designing cancer therapeutic regimens with novel biological mechanisms. J Cancer 2014; 5:406-16. [PMID: 24847381 PMCID: PMC4026994 DOI: 10.7150/jca.7680] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/01/2014] [Indexed: 01/27/2023] Open
Abstract
Introduction Ursolic acid (UA) is a pentacyclic triterpene acid present in many plants, including apples, basil, cranberries, and rosemary. UA suppresses proliferation and induces apoptosis in a variety of tumor cells via inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB). Given that single agent therapy is a major clinical obstacle to overcome in the treatment of cancer, we sought to enhance the anti-cancer efficacy of UA through rational design of combinatorial therapeutic regimens that target multiple signaling pathways critical to carcinogenesis. Methodology Using a predictive simulation-based approach that models cancer disease physiology by integrating signaling and metabolic networks, we tested the effect of UA alone and in combination with 100 other agents across cell lines from colorectal cancer, non-small cell lung cancer and multiple myeloma. Our predictive results were validated in vitro using standard molecular assays. The MTT assay and flow cytometry were used to assess cellular proliferation. Western blotting was used to monitor the combinatorial effects on apoptotic and cellular signaling pathways. Synergy was analyzed using isobologram plots. Results We predictively identified c-Jun N-terminal kinase (JNK) as a pathway that may synergistically inhibit cancer growth when targeted in combination with NFκB. UA in combination with the pan-JNK inhibitor SP600125 showed maximal reduction in viability across a panel of cancer cell lines, thereby corroborating our predictive simulation assays. In HCT116 colon carcinoma cells, the combination caused a 52% reduction in viability compared with 18% and 27% for UA and SP600125 alone, respectively. In addition, isobologram plot analysis reveals synergy with lowered doses of the drugs in combination. The combination synergistically inhibited proliferation and induced apoptosis as evidenced by an increase in the percentage sub-G1 phase cells and cleavage of caspase 3 and poly ADP ribose polymerase (PARP). Combination treatment resulted in a significant reduction in the expression of cyclin D1 and c-Myc as compared with single agent treatment. Conclusions Our findings underscore the importance of targeting NFκB and JNK signaling in combination in cancer cells. These results also highlight and validate the use of predictive simulation technology to design therapeutics for targeting novel biological mechanisms using existing or novel chemistry.
Collapse
Affiliation(s)
- Nicole A Doudican
- 1. The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | | | - Shweta Kapoor
- 3. Cellworks Research India Limited - R&D Center, Bangalore, India
| | - Zeba Sultana
- 3. Cellworks Research India Limited - R&D Center, Bangalore, India
| | - Ansu Kumar
- 3. Cellworks Research India Limited - R&D Center, Bangalore, India
| | - Anay Talawdekar
- 3. Cellworks Research India Limited - R&D Center, Bangalore, India
| | - Kabya Basu
- 3. Cellworks Research India Limited - R&D Center, Bangalore, India
| | - Ashish Agrawal
- 3. Cellworks Research India Limited - R&D Center, Bangalore, India
| | - Aditi Aggarwal
- 3. Cellworks Research India Limited - R&D Center, Bangalore, India
| | - Krithika Shetty
- 3. Cellworks Research India Limited - R&D Center, Bangalore, India
| | - Neeraj K Singh
- 3. Cellworks Research India Limited - R&D Center, Bangalore, India
| | - Chandan Kumar
- 3. Cellworks Research India Limited - R&D Center, Bangalore, India
| | - Anuj Tyagi
- 3. Cellworks Research India Limited - R&D Center, Bangalore, India
| | | | | | | | - Shireen Vali
- 3. Cellworks Research India Limited - R&D Center, Bangalore, India; ; 4. Cellworks Group Inc., San Jose, CA, USA
| |
Collapse
|
31
|
Brogden KA, Johnson GK, Vincent SD, Abbasi T, Vali S. Oral inflammation, a role for antimicrobial peptide modulation of cytokine and chemokine responses. Expert Rev Anti Infect Ther 2014; 11:1097-113. [DOI: 10.1586/14787210.2013.836059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Azab F, Vali S, Abraham J, Potter N, Muz B, de la Puente P, Fiala M, Paasch J, Sultana Z, Tyagi A, Abbasi T, Vij R, Azab AK. PI3KCA plays a major role in multiple myeloma and its inhibition with BYL719 decreases proliferation, synergizes with other therapies and overcomes stroma-induced resistance. Br J Haematol 2014; 165:89-101. [DOI: 10.1111/bjh.12734] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/25/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Feda Azab
- Department of Radiation Oncology; Cancer Biology Division; Washington University in Saint Louis School of Medicine; St. Louis MO USA
| | | | - Joseph Abraham
- Department of Radiation Oncology; Cancer Biology Division; Washington University in Saint Louis School of Medicine; St. Louis MO USA
- Saint Louis College of Pharmacy; St. Louis MO USA
| | - Nicholas Potter
- Department of Radiation Oncology; Cancer Biology Division; Washington University in Saint Louis School of Medicine; St. Louis MO USA
- Saint Louis College of Pharmacy; St. Louis MO USA
| | - Barbara Muz
- Department of Radiation Oncology; Cancer Biology Division; Washington University in Saint Louis School of Medicine; St. Louis MO USA
| | - Pilar de la Puente
- Department of Radiation Oncology; Cancer Biology Division; Washington University in Saint Louis School of Medicine; St. Louis MO USA
| | - Mark Fiala
- Section of Stem Cell Transplant and Leukemia; Division of Medical Oncology; Washington University School of Medicine; St. Louis MO USA
| | - Jacob Paasch
- Section of Stem Cell Transplant and Leukemia; Division of Medical Oncology; Washington University School of Medicine; St. Louis MO USA
| | - Zeba Sultana
- Cellworks Research India Pvt. Ltd.; Bangalore India
| | - Anuj Tyagi
- Cellworks Research India Pvt. Ltd.; Bangalore India
| | | | - Ravi Vij
- Section of Stem Cell Transplant and Leukemia; Division of Medical Oncology; Washington University School of Medicine; St. Louis MO USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology; Cancer Biology Division; Washington University in Saint Louis School of Medicine; St. Louis MO USA
| |
Collapse
|
33
|
Sheng L, Xiong M, Li C, Meng X. Reversing multidrug-resistant by RNA interference through silencing MDR1 gene in human hepatocellular carcinoma cells subline Bel-7402/ADM. Pathol Oncol Res 2013; 20:541-8. [PMID: 24327315 DOI: 10.1007/s12253-013-9726-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/12/2013] [Indexed: 10/25/2022]
Abstract
Multidrug resistance (MDR) in hepatocellular carcinoma (HC) significantly impedes the effect of chemotherapy and is considered as a primary reason leading to its recurrences and metastasis. The aim of present study was to explore new molecular targets for the reversal of MDR in HC by screening the adriamycin (ADM)-induced, human MDR-resistant HC cell subline Bel-7402/ADM. Small interfering RNAs (siRNAs) of four (MDR1si326, MDR1si1513, MDR1si2631 and MDR1si3071) targeting MDR1 were designed and transfected into Bel-7402/ADM cell strains. The experiments involved the following: mRNA expression of MDR1 gene by RT-PCR, P-glycoprotein (P-gp) expression by Western blot, intracellular ADM accumulation flow cytometry, and IC50 of ADM by a cytotoxic MTT assay. Four siRNAs reversed MDR in HC mediated by MDR1 to varying degrees. The expression level of MDR1 mRNA in cells of MDR1si326 or MDR1si2631 group (0.190 ± 0.038 or 0.171 ± 0.011) was more decreased. The expression level of P-gp in cells of MDR1si326 group was the lowest. The accumulation of ADM in cells of MDR1si326 or MDR1si2631 group (77.0 ± 3.5 or 75.4 ± 2.9) was more increased. The IC50 of cells to ADM was lowest in MDR1si326 group (11.32 ± 0.69 mg/L). Compared with other three siRNAs, MDR1si326 performed the optimal reversal effect of drug resistance in human HC Bel-7402/ADM.
Collapse
Affiliation(s)
- Long Sheng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China,
| | | | | | | |
Collapse
|
34
|
Lee JP, Hahn HS, Hwang SJ, Choi JY, Park JS, Lee IH, Kim TJ. Selective cyclooxygenase inhibitors increase paclitaxel sensitivity in taxane-resistant ovarian cancer by suppressing P-glycoprotein expression. J Gynecol Oncol 2013; 24:273-9. [PMID: 23875078 PMCID: PMC3714466 DOI: 10.3802/jgo.2013.24.3.273] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/11/2013] [Accepted: 05/14/2013] [Indexed: 11/30/2022] Open
Abstract
Objective The purpose of this study was to investigate whether selective cyclooxygenase (COX) inhibitors promote paclitaxel-induced apoptosis in taxane-resistant ovarian cancer cells by suppressing MDR1/P-glycoprotein (P-gp) expression. Methods Taxane-resistant ovarian cancer cells were cultured with paclitaxel alone or combined with a selective COX inhibitors. The expression patterns of MDR1/P-gp and the ability of COX inhibitors to inhibit growth of taxane-resistant ovarian cancer cells were measured. The efficacy of prostaglandin E2 (PGE2) supplementation was measured to evaluate the mechanisms involved in suppressing MDR1 gene expression. Results P-gp was upregulated in taxane-resistant ovarian cancer cells compared to paired paclitaxel-sensitive ovarian cancer cells. An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that selective COX inhibitors significantly enhanced the cytotoxic effects of paclitaxel in taxane-resistant ovarian cancer cells via a prostaglandin-independent mechanism. These increased apoptotic effects were further verified by measuring an increased percentage of cells in sub-G1 stage using flow cytometry. Selective COX inhibitors suppressed MDR1 and P-gp expression. Moreover, combined treatment with paclitaxel and selective COX inhibitors increased poly (ADP-ribose) polymerase (PARP) cleavage in taxane-resistant ovarian cancer cells. Conclusion Selective COX inhibitors significantly promote paclitaxel-induced cell death in taxane-resistant ovarian cancer cells in a prostaglandin-independent manner. COX inhibitors could be potent therapeutic tools to promote paclitaxel sensitization of taxane-resistant ovarian cancers by suppressing MDR1/P-gp, which is responsible for the efflux of chemotherapeutic agents.
Collapse
Affiliation(s)
- Jung-Pil Lee
- Department of Obstetrics and Gynecology, Ellemedi Women's Hospital, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
Kim C, Cho SK, Kapoor S, Kumar A, Vali S, Abbasi T, Kim SH, Sethi G, Ahn KS. β-Caryophyllene oxide inhibits constitutive and inducible STAT3 signaling pathway through induction of the SHP-1 protein tyrosine phosphatase. Mol Carcinog 2013; 53:793-806. [PMID: 23765383 DOI: 10.1002/mc.22035] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/19/2013] [Accepted: 03/13/2013] [Indexed: 12/15/2022]
Abstract
Constitutive activation of STAT3 is frequently observed and closely linked with proliferation, survival, invasion, metastasis and angiogenesis in tumor cells. In the present study, we investigated whether β-caryophyllene oxide (CPO), a sesquiterpene isolated primarily from the essential oils of medicinal plants such as guava (Psidium guajava), and oregano (Origanum vulgare L.), can mediate its effect through interference with the STAT3 activation pathway in cancer cells. The effect of CPO on STAT3 activation, associated protein kinases and phosphatase, STAT3-regulated gene products and apoptosis was investigated using both functional proteomics tumor pathway technology platform and different tumor cell lines. We found that CPO suppressed constitutive STAT3 activation in multiple myeloma (MM), breast and prostate cancer cell lines, with a significant dose- and time-dependent effects observed in MM cells. The suppression was mediated through the inhibition of activation of upstream kinases c-Src and JAK1/2. Also, vanadate treatment reversed CPO-induced down-regulation of STAT3, suggesting the involvement of a tyrosine phosphatase. Indeed, we found that CPO induced the expression of tyrosine phosphatase SHP-1 that correlated with the down-regulation of constitutive STAT3 activation. Interestingly, deletion of SHP-1 gene by siRNA abolished the ability of CPO to inhibit STAT3 activation. The inhibition of STAT3 activation by CPO inhibited proliferation, induced apoptosis and abrogated the invasive potential of tumor cells. Our results suggest for the first time that CPO is a novel blocker of STAT3 signaling cascade and thus has an enormous potential for the treatment of various cancers harboring constitutively activated STAT3.
Collapse
Affiliation(s)
- Chulwon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Harvey LE, Kohlgraf KG, Mehalick LA, Raina M, Recker EN, Radhakrishnan S, Prasad SA, Vidva R, Progulske-Fox A, Cavanaugh JE, Vali S, Brogden KA. Defensin DEFB103 bidirectionally regulates chemokine and cytokine responses to a pro-inflammatory stimulus. Sci Rep 2013; 3:1232. [PMID: 23390582 PMCID: PMC3565171 DOI: 10.1038/srep01232] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 01/14/2013] [Indexed: 01/10/2023] Open
Abstract
Human β defensin DEFB103 acts as both a stimulant and an attenuator of chemokine and cytokine responses: a dichotomy that is not entirely understood. Our predicted results using an in silico simulation model of dendritic cells and our observed results in human myeloid dendritic cells, show that DEFB103 significantly (p < 0.05) enhanced 6 responses, attenuated 7 responses, and both enhanced/attenuated the CXCL1 and TNF responses to Porphyromonas gingivalis hemagglutinin B (HagB). In murine JAWSII dendritic cells, DEFB103 significantly attenuated, yet rarely enhanced, the Cxcl2, Il6, and Csf3 responses to HagB; and in C57/BL6 mice, DEFB103 significantly enhanced, yet rarely attenuated, the Cxcl1, Csf1, and Csf3 responses. Thus, DEFB103 influences pro-inflammatory activities with the concentration of DEFB103 and order of timing of DEFB103 exposure to dendritic cells, with respect to microbial antigen exposure to cells, being paramount in orchestrating the onset, magnitude, and composition of the chemokine and cytokine response.
Collapse
Affiliation(s)
- Lauren E Harvey
- Dows Institute for Dental Research or Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Choi RJ, Ngoc TM, Bae K, Cho HJ, Kim DD, Chun J, Khan S, Kim YS. Anti-inflammatory properties of anthraquinones and their relationship with the regulation of P-glycoprotein function and expression. Eur J Pharm Sci 2012; 48:272-81. [PMID: 23174748 DOI: 10.1016/j.ejps.2012.10.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/11/2012] [Accepted: 10/26/2012] [Indexed: 11/25/2022]
Abstract
There is a growing interest in natural products that potentially have anti-inflammatory properties and inhibit P-glycoprotein (P-gp) function. In this report, we assessed the effects of anthraquinone derivatives from rhubarb on LPS-induced RAW 264.7 macrophages to determine their anti-inflammatory potential. The derivatives were also tested in Caco-2 cell lines to evaluate the inhibition of the drug efflux function of P-gp. The transport abilities were examined and the cellular accumulation of rhodamine-123 (R-123) was also measured. Electorphoretic mobility shift assay (EMSA) was performed to check the activator protein-1 (AP-1) DNA binding affinity. Five anthraquinones were tested to determine their inhibitory activities on NO production and the protein and mRNA expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, the level of prostaglandin E(2) (PGE(2)) was determined in LPS-induced RAW264.7 macrophages. Emodin was found to be the most potent inhibitor, and it also reduced paw swelling in the mouse model of carrageenan-induced paw edema. In Caco-2 cells, emodin elevated the accumulation of R-123 and decreased the efflux ratio of R-123, which indicates the inhibition of P-gp function. The inhibition of COX-2 protein by emodin paralleled the decrease in P-gp expression. In addition, mitogen-activated protein kinase (MAPK) expression was decreased through the prevention of AP-1 DNA binding, which leads to downregulation in the expression of P-gp. Our data indicate that the decrease of P-gp expression is caused by the decreased expression of COX-2 through the MAPK/AP-1 pathway. Based on our results, we suggest that anti-inflammatory drugs with COX-2 inhibitory activity might be used to modulate P-gp function and expression.
Collapse
Affiliation(s)
- Ran Joo Choi
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Rajendran P, Li F, Shanmugam MK, Vali S, Abbasi T, Kapoor S, Ahn KS, Kumar AP, Sethi G. Honokiol inhibits signal transducer and activator of transcription-3 signaling, proliferation, and survival of hepatocellular carcinoma cells via the protein tyrosine phosphatase SHP-1. J Cell Physiol 2012; 227:2184-95. [PMID: 21792937 DOI: 10.1002/jcp.22954] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The activation of signal transducers and activators of transcription 3 (STAT3) has been closely linked with the proliferation, survival, invasion, and angiogenesis of hepatocellular carcinoma (HCC) and represents an attractive target for therapy. In the present report, we investigated whether honokiol mediates its effect through interference with the STAT3 activation pathway. The effect of honokiol on STAT3 activation, associated protein kinases, and phosphatase, STAT3-regulated gene products and apoptosis was investigated using both functional proteomics tumor pathway technology platform and different HCC cell lines. We found that honokiol inhibited both constitutive and inducible STAT3 activation in a dose- and time-dependent manner in HCC cells. The suppression was mediated through the inhibition of activation of upstream kinases c-Src, Janus-activated kinase 1, and Janus-activated kinase 2. Vanadate treatment reversed honokiol-induced down-regulation of STAT3, suggesting the involvement of a tyrosine phosphatase. Indeed, we found that honokiol induced the expression of tyrosine phosphatase SHP-1 that correlated with the down-regulation of constitutive STAT3 activation. Moreover, deletion of SHP-1 gene by siRNA abolished the ability of honokiol to inhibit STAT3 activation. The inhibition of STAT3 activation by honokiol led to the suppression of various gene products involved in proliferation, survival, and angiogenesis. Finally, honokiol inhibited proliferation and significantly potentiated the apoptotic effects of paclitaxel and doxorubicin in HCC cells. Overall, the results suggest that honokiol is a novel blocker of STAT3 activation and may have a great potential for the treatment of HCC and other cancers.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kannaiyan R, Hay HS, Rajendran P, Li F, Shanmugam MK, Vali S, Abbasi T, Kapoor S, Sharma A, Kumar AP, Chng WJ, Sethi G. Celastrol inhibits proliferation and induces chemosensitization through down-regulation of NF-κB and STAT3 regulated gene products in multiple myeloma cells. Br J Pharmacol 2012; 164:1506-21. [PMID: 21506956 DOI: 10.1111/j.1476-5381.2011.01449.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of pro-inflammatory transcription factors NF-κB and signal transducer and activator of transcription 3 (STAT3) is one of the major contributors to both pathogenesis and chemoresistance in multiple myeloma (MM), which results in high mortality rate. Thus, in the present study, we investigated whether celastrol could suppress the proliferation and induce chemosensitization of MM cells by interfering with NF-κB and STAT3 activation pathways. EXPERIMENTAL APPROACH The effects of celastrol were investigated using both a virtual predictive tumour cell system and different MM cell lines resistant to doxorubicin, melphalan and bortezomib. KEY RESULTS Celastrol inhibited the proliferation of MM cell lines regardless of whether they were sensitive or resistant to bortezomib and other conventional chemotherapeutic drugs. It also synergistically enhanced the apoptotic effects of thalidomide and bortezomib. This correlated with the down-regulation of various proliferative and anti-apoptotic gene products including cyclin D1, Bcl-2, Bcl-xL, survivin, XIAP and Mcl-1. These effects of celastrol were mediated through suppression of constitutively active NF-κB induced by inhibition of IκBα kinase activation; and the phosphorylation of IκBα and of p65. Celastrol also inhibited both the constitutive and IL6-induced activation of STAT3, which induced apoptosis as indicated by an increase in the accumulation of cells in the sub-G1 phase, an increase in the expression of pro-apoptotic proteins and activation of caspase-3. CONCLUSIONS AND IMPLICATIONS Thus, based on our experimental findings, we conclude that celastrol may have great potential as a treatment for MM and other haematological malignancies.
Collapse
Affiliation(s)
- Radhamani Kannaiyan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Manu KA, Shanmugam MK, Rajendran P, Li F, Ramachandran L, Hay HS, Kannaiyan R, Swamy SN, Vali S, Kapoor S, Ramesh B, Bist P, Koay ES, Lim LHK, Ahn KS, Kumar AP, Sethi G. Plumbagin inhibits invasion and migration of breast and gastric cancer cells by downregulating the expression of chemokine receptor CXCR4. Mol Cancer 2011; 10:107. [PMID: 21880153 PMCID: PMC3175200 DOI: 10.1186/1476-4598-10-107] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 09/01/2011] [Indexed: 12/27/2022] Open
Abstract
Background Increasing evidence indicates that the interaction between the CXC chemokine receptor-4 (CXCR4) and its ligand CXCL12 is critical in the process of metastasis that accounts for more than 90% of cancer-related deaths. Thus, novel agents that can downregulate the CXCR4/CXCL12 axis have therapeutic potential in inhibiting cancer metastasis. Methods In this report, we investigated the potential of an agent, plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone), for its ability to modulate CXCR4 expression and function in various tumor cells using Western blot analysis, DNA binding assay, transient transfection, real time PCR analysis, chromatin immunoprecipitation, and cellular migration and invasion assays. Results We found that plumbagin downregulated the expression of CXCR4 in breast cancer cells irrespective of their HER2 status. The decrease in CXCR4 expression induced by plumbagin was not cell type-specific as the inhibition also occurred in gastric, lung, renal, oral, and hepatocellular tumor cell lines. Neither proteasome inhibition nor lysosomal stabilization had any effect on plumbagin-induced decrease in CXCR4 expression. Detailed study of the underlying molecular mechanism(s) revealed that the regulation of the downregulation of CXCR4 was at the transcriptional level, as indicated by downregulation of mRNA expression, inhibition of NF-κB activation, and suppression of chromatin immunoprecipitation activity. In addition, using a virtual, predictive, functional proteomics-based tumor pathway platform, we tested the hypothesis that NF-κB inhibition by plumbagin causes the decrease in CXCR4 and other metastatic genes. Suppression of CXCR4 expression by plumbagin was found to correlate with the inhibition of CXCL12-induced migration and invasion of both breast and gastric cancer cells. Conclusions Overall, our results indicate, for the first time, that plumbagin is a novel blocker of CXCR4 expression and thus has the potential to suppress metastasis of cancer.
Collapse
Affiliation(s)
- Kanjoormana Aryan Manu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Arisawa M, Kasaya Y, Obata T, Sasaki T, Ito M, Abe H, Ito Y, Yamano A, Shuto S. Indomethacin Analogues that Enhance Doxorubicin Cytotoxicity in Multidrug Resistant Cells without Cox Inhibitory Activity. ACS Med Chem Lett 2011; 2:353-7. [PMID: 24900317 DOI: 10.1021/ml100292y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 03/03/2011] [Indexed: 11/28/2022] Open
Abstract
Conformationally restricted indomethacin analogues were designed and prepared from the corresponding 2-substituted indoles, which were synthesized by a one-pot isomerization/enamide-ene metathesis as the key reaction. Conformational analysis by calculations, NMR studies, and X-ray crystallography suggested that these analogues were conformationally restricted in the s-cis or the s-trans form due to the 2-substituent as expected. Their biological activities on cyclooxygenase-1 (COX-1) inhibition, cyclooxygenase-2 (COX-2) inhibition, and modulation of MRP-1-mediated multidrug resistance (MDR) are described. Some of these indomethacin analogues enhanced doxorubicin cytotoxicity, although they do not have any COX inhibitory activity, which suggests that the MDR-modulating effect of an NSAID can be unassociated with its COX-inhibitory activity. This may be an entry into the combination chemotherapy of doxorubicin with a MDR modulator.
Collapse
Affiliation(s)
- Mitsuhiro Arisawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Yayoi Kasaya
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Tohru Obata
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Takuma Sasaki
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Mika Ito
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1, Hirosawa, Wako 351-0198, Japan
| | - Hiroshi Abe
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1, Hirosawa, Wako 351-0198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1, Hirosawa, Wako 351-0198, Japan
| | - Akihito Yamano
- Rigaku Corporation, X-ray Research Laboratory, 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
42
|
Cui RH, Chen JQ, Sun M, Sun ZZ. Celecoxib inhibits cell growth and up-regulates KAI1/CD82 protein expression in human hepatocellular carcinoma cell line HepG2. Shijie Huaren Xiaohua Zazhi 2011; 19:1336-1341. [DOI: 10.11569/wcjd.v19.i13.1336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of celecoxib on cell proliferation, apoptosis and KAI1/CD82 expression in human hepatocellular carcinoma cell line HepG2.
METHODS: After HepG2 cells were treated with different concentrations of celecoxib (12.5, 25.0, 50.0, 100.0, 200.0 μmol/L), cell proliferation was measured by CCK-8 assay, cell apoptosis was detected by flow cytometry, and the expression of KAI1/CD82 protein was detected by Western blot.
RESULTS: Treatment with celecoxib significantly inhibited the proliferation of HepG2 cells (P < 0.05) in a dose- and time-dependent manner, and the reduced rate of growth of HepG2 cells treated with 200.0 μmol/L celecoxib for 72 h was 69.23%. Treatment with celecoxib induced apoptosis of HepG2 cells in a dose-dependent manner. The apoptosis rates of cells treated with 12.5, 50.0, or 200.0 μmol/L celecoxib for 48 h were significantly higher than that of control cells (18.79% ± 2.37%, 46.94% ± 0.78%, 69.48% ± 0.63% vs 16.72% ± 1.54%, all P < 0.05). Treatment with celecoxib significantly up-regulated the expression of KAI1/CD82 protein in a dose-dependent manner (48 h: 0.394 ± 0.007, 0.886 ± 0.057, 1.099 ± 0.079 vs 0.321 ± 0.020, all P < 0.05).
CONCLUSION: Celecoxib inhibits cell proliferation and induces apoptosis possibly by up-regulating KAI1/CD82 protein expression in human hepatocellular carcinoma cell line HepG2.
Collapse
|
43
|
Indomethacin and SC236 enhance the cytotoxicity of doxorubicin in human hepatocellular carcinoma cells via inhibiting P-glycoprotein and MRP1 expression. Cancer Lett 2011; 304:90-6. [DOI: 10.1016/j.canlet.2011.01.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 12/25/2010] [Accepted: 01/27/2011] [Indexed: 12/21/2022]
|
44
|
Coyne CP, Jones T, Sygula A, Bailey J, Pinchuk L. Epirubicin-[Anti-HER2/ neu] Synthesized with an Epirubicin-(C 13- imino)-EMCS Analog: Anti-Neoplastic Activity against Chemotherapeutic-Resistant SKBr-3 Mammary Carcinoma in Combination with Organic Selenium. ACTA ACUST UNITED AC 2011; 2:22-39. [PMID: 26229727 DOI: 10.4236/jct.2011.21004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Discover the anti-neoplastic efficacy of epirubicin-(C13-imino)-[anti-HER2/neu] against chemotherapeutic-resistant SKBr-3 mammary carcinoma and delineate the capacity of selenium to enhance it's cytotoxic anti-neoplastic potency. METHODS In molar excess, EMCH was combined with epirubicin to create a covalent epirubicin-(C13-imino)-EMCH-maleimide intermediate with sulfhydryl-reactive properties. Monoclonal immunoglobulin selective for HER2/neu was then thiolated with 2-iminothiolane at the terminal ε-amine group of lysine residues. The sulfhydryl-reactive epirubicin-(C13-imino)-EMCH intermediate was then combined with thiolated anti-HER2/neu monoclonal immunoglobulin. Western-blot analysis was utilized to characterize the molecular weight profiles while binding of epirubicin-(C13-imino)-[anti-HER2/neu] to membrane receptors was determined by cell-ELISA utilizing populations of SKBr-3 mammary carcinoma that highly over-expresses HER2/neu complexes. Anti-neoplastic potency of epirubicin-(C13-imino)-[anti-HER2/neu] between the epirubicin-equivalent concentrations of 10-12 M and 10-7 M was determined by vitality staining analysis with and without the presence of selenium (5 μM). RESULTS Epiribucin-(C13-imino)-[anti-HER2/neu] between epirubicin-equivalent concentrations of 10-8 M to 10-7 M consistently evoked higher anti-neoplastic potency than "free" non-conjugated epirubicin which corresponded with previous investigations utilizing epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-[anti-EGFR]. Selenium at 5 mM consistently enhanced the cytotoxic anti-neoplastic potency of epirubicin-(C13-imino)-[anti-HER2/neu] at epirubicin equivalent concentrations (10-12 to 10-7 M). CONCLUSIONS Epirubicin-(C13-imino)-[anti-HER2/neu] is more potent than epirubicin against chemotherapeutic-resistant SKBr-3 mammary carcinoma and selenium enhances epirubicin-(C13-imino)-[anti-HER2/neu] potency. The methodology applied for synthesizing epirubicin-(C13-imino)-[anti-HER2/neu] is relatively time convenient and has low instrumentation requirements.
Collapse
Affiliation(s)
- Cody P Coyne
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Toni Jones
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Andrzej Sygula
- Department Organic Chemistry, Mississippi State University, Mississippi State, USA
| | - John Bailey
- College of Osteopathic Medicine, William Cary University, Hattiesburg, USA
| | - Lesya Pinchuk
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| |
Collapse
|
45
|
Sui H, Zhou S, Wang Y, Liu X, Zhou L, Yin P, Fan Z, Li Q. COX-2 contributes to P-glycoprotein-mediated multidrug resistance via phosphorylation of c-Jun at Ser63/73 in colorectal cancer. Carcinogenesis 2011; 32:667-75. [DOI: 10.1093/carcin/bgr016] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
|
47
|
Rajendran P, Ong TH, Chen L, Li F, Shanmugam MK, Vali S, Abbasi T, Kapoor S, Sharma A, Kumar AP, Hui KM, Sethi G. Suppression of signal transducer and activator of transcription 3 activation by butein inhibits growth of human hepatocellular carcinoma in vivo. Clin Cancer Res 2010; 17:1425-39. [PMID: 21131551 DOI: 10.1158/1078-0432.ccr-10-1123] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and the third cause of global cancer mortality. Increasing evidence suggest that STAT3 is a critical mediator of oncogenic signaling in HCC and controls the expression of several genes involved in proliferation, survival, metastasis, and angiogenesis. Thus, the novel agents that can suppress STAT3 activation have potential for both prevention and treatment of HCC. EXPERIMENTAL DESIGN The effect of butein on STAT3 activation, associated protein kinases, STAT3-regulated gene products, cellular proliferation, and apoptosis was investigated. The in vivo effect of butein on the growth of human HCC xenograft tumors in male athymic nu/nu mice was also examined. RESULTS We tested an agent, butein, for its ability to suppress STAT3 activation in HCC cells and nude mice model along with prospectively testing the hypothesis of STAT3 inhibition in a virtual predictive functional proteomics tumor pathway technology platform. We found that butein inhibited both constitutive and inducible STAT3 activation in HCC cells. The suppression was mediated through the inhibition of activation of upstream kinases c-Src and Janus-activated kinase 2. Butein inhibited proliferation and significantly potentiated the apoptotic effects of paclitaxel and doxorubicin in HCC cells. When administered intraperitoneally, butein inhibited the growth of human HCC xenograft tumors in male athymic nu/nu mice. CONCLUSIONS Overall, cumulative results from experimental and predictive studies suggest that butein exerts its antiproliferative and proapoptotic effects through suppression of STAT3 signaling in HCC both in vitro and in vivo.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nishanth RP, Ramakrishna B, Jyotsna RG, Roy KR, Reddy GV, Reddy PK, Reddanna P. C-Phycocyanin inhibits MDR1 through reactive oxygen species and cyclooxygenase-2 mediated pathways in human hepatocellular carcinoma cell line. Eur J Pharmacol 2010; 649:74-83. [DOI: 10.1016/j.ejphar.2010.09.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 08/30/2010] [Accepted: 09/07/2010] [Indexed: 01/05/2023]
|
49
|
Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor. Antimicrob Agents Chemother 2010; 55:439-42. [PMID: 20937780 DOI: 10.1128/aac.00735-10] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multidrug resistance (MDR) is a major problem in the treatment of infectious diseases and cancer. Accumulating evidence suggests that the cyclooxygenase-2 (COX-2)-specific inhibitor celecoxib would not only inhibit COX-2 but also help in the reversal of drug resistance in cancers by inhibiting the MDR1 efflux pump. Here, we demonstrate that celecoxib increases the sensitivity of bacteria to the antibiotics ampicillin, kanamycin, chloramphenicol, and ciprofloxacin by accumulating the drugs inside the cell, thus reversing MDR in bacteria.
Collapse
|