Abstract
The synthesis rates of fibrillar collagens can be assessed in blood by measuring propeptides set free from corresponding procollagens before fiber formation. Type I collagen is the major component of the organic matrix of bone, but it is also found in other connective tissues. The serum concentration of the amino-terminal propeptide of type I procollagen, PINP, functions as a measure of type I collagen synthesis during normal bone turnover, but it is also released from bone metastases that involve an osteoblastic component. Type III collagen is a major constituent of soft tissues and the corresponding amino-terminal propeptide, PIIINP, reflects collagen synthesis. Circulating PIIINP tends to be affected by malignomas that grow in the peritoneal cavity or affect bone marrow. Many studies on procollagen markers in cancer have been cross-sectional or demonstrated treatment effects in patient groups. Markers that originate from bone turnover have wide reference intervals, but low biologic variability in individuals. Thus, they appear better suited for monitoring versus diagnostic purposes. There is still definite need for research on the use of procollagen markers in the followup of individual patients undergoing cancer treatment or being monitored after such treatment.
Collapse