1
|
Nguyen NT, Mitsuhashi A, Ogino H, Kozai H, Yoneda H, Afroj T, Sato S, Nokihara H, Shinohara T, Nishioka Y. S-1 eliminates MDSCs and enhances the efficacy of PD-1 blockade via regulation of tumor-derived Bv8 and S100A8 in thoracic tumor. Cancer Sci 2022; 114:384-398. [PMID: 36285504 PMCID: PMC9899614 DOI: 10.1111/cas.15620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 02/07/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) have been known to play a pivotal role in the induction of immune tolerance, which limits the benefits of immune checkpoint inhibitors (ICIs). Recent studies revealed that several chemotherapeutic agents decreased tumor-infiltrating MDSCs. Therefore, combination therapy with cytotoxic chemotherapeutic agents and ICIs was approved for first-line treatment for lung cancer. However, the impact of chemotherapeutic agents on MDSCs and an optimal partner of ICIs has not been fully investigated in thoracic tumors, including lung cancer and malignant pleural mesothelioma. In the present study, we found that treatment with 5-FU and its oral formulation, S-1, suppressed tumor progression and inhibited the accumulation of MDSCs in thoracic tumor-bearing mice. Tumor-infiltrating T cells and dendritic cells were significantly expanded in S-1-treated mice. 5-FU suppressed the ability of tumor cells to recruit MDSCs, while it did not suppress the survival and differentiation of mouse MDSCs in vitro. We also revealed that 5-FU or S-1 significantly downregulated the expression of tumor-derived Bv8 and S100A8. The knockdown of Bv8 or S100A8 in tumor cells suppressed tumor growth and MDSC recruitment in vivo. Furthermore, in comparison with pemetrexed, administration of S-1 improved the synergistic therapeutic efficacy of anti-PD-1 antibodies with or without carboplatin. Our findings revealed a novel mechanism wherein S-1 primed a favorable tumor microenvironment to provide the rationale for combination therapy with S-1 and ICIs as the optimal therapy for thoracic cancer.
Collapse
Affiliation(s)
- Na T. Nguyen
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Atsushi Mitsuhashi
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Hirokazu Ogino
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Hiroyuki Kozai
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Hiroto Yoneda
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Tania Afroj
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Seidai Sato
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Hiroshi Nokihara
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Tsutomu Shinohara
- Department of Community Medicine for Respirology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan,Department of Community Medicine for Rheumatology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| |
Collapse
|
2
|
Inamasu E, Tsuchiya T, Yamauchi M, Nishi K, Matsuda K, Sugawara F, Sakaguchi K, Mori R, Matsumoto K, Miyazaki T, Hatachi G, Doi R, Watanabe H, Tomoshige K, Matsuda N, Higami Y, Shimokawa I, Nakashima M, Nagayasu T. Anticancer agent α-sulfoquinovosyl-acylpropanediol enhances the radiosensitivity of human malignant mesothelioma in nude mouse models. JOURNAL OF RADIATION RESEARCH 2022; 63:19-29. [PMID: 34738103 PMCID: PMC8776698 DOI: 10.1093/jrr/rrab090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a highly malignant disease that develops after asbestos exposure. Although the number of MPM cases is predicted to increase, no effective standard therapies have been established. The novel radiosensitizer α-sulfoquinovosyl-acylpropanediol (SQAP) enhances the effects of γ-radiation in human lung and prostate cancer cell lines and in animal models. In this study, we explored the radiosensitizing effect of SQAP and its mechanisms in MPM. The human MPM cell lines MSTO-211H and MESO-4 were implanted subcutaneously into the backs and thoracic cavities of immunodeficient KSN/Slc mice, then 2 mg/kg SQAP was intravenously administered with or without irradiation with a total body dose of 8 Gy. In both the orthotopic and ectopic xenograft murine models, the combination of irradiation plus SQAP delayed the implanted human MSTO-211H tumor growth. The analysis of the changes in the relative tumor volume of the MSTO-211H indicated a statistically significant difference after 8 Gy total body combined with 2 mg/kg SQAP, compared to both the untreated control (P = 0.0127) and the radiation treatment alone (P = 0.0171). After the treatment in each case, immunostaining of the harvested tumors revealed decreased cell proliferation, increased apoptosis and normalization of tumor blood vessels in the SQAP- and irradiation-treated group. Furthermore, hypoxia-inducible factor (HIF) 1 mRNA and protein expression were decreased, indicating reoxygenation in this group. In conclusion, SQAP improved hypoxic conditions in tumor tissue and may elicit a radiosensitizing effect in malignant mesothelioma models.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Takeshi Nagayasu
- Corresponding author. Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan. Tel: +81-95-819-7304; Fax: +81-95-819-7306;
| |
Collapse
|
3
|
Abe S, Kaneko MK, Tsuchihashi Y, Izumi T, Ogasawara S, Okada N, Sato C, Tobiume M, Otsuka K, Miyamoto L, Tsuchiya K, Kawazoe K, Kato Y, Nishioka Y. Antitumor effect of novel anti-podoplanin antibody NZ-12 against malignant pleural mesothelioma in an orthotopic xenograft model. Cancer Sci 2016; 107:1198-205. [PMID: 27294401 PMCID: PMC5021042 DOI: 10.1111/cas.12985] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 12/29/2022] Open
Abstract
Podoplanin (aggrus) is highly expressed in several types of cancers, including malignant pleural mesothelioma (MPM). Previously, we developed a rat anti-human podoplanin mAb, NZ-1, and a rat-human chimeric anti-human podoplanin antibody, NZ-8, derived from NZ-1, which induced antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity against podoplanin-positive MPM cell lines. In this study, we showed the antitumor effect of NZ-1, NZ-8, and NZ-12, a novel rat-human chimeric anti-human podoplanin antibody derived from NZ-1, in an MPM orthotopic xenograft SCID mouse model. Treatment with NZ-1 and rat NK (CD161a(+) ) cells inhibited the growth of tumors and the production of pleural effusion in NCI-H290/PDPN or NCI-H226 orthotopic xenograft mouse models. NZ-8 and human natural killer (NK) (CD56(+) ) cells also inhibited tumor growth and pleural effusion in MPM orthotopic xenograft mice. Furthermore, NZ-12 induced potent ADCC mediated by human MNC, compared with either NZ-1 or NZ-8. Antitumor effects were observed following treatment with NZ-12 and human NK (CD56(+) ) cells in MPM orthotopic xenograft mice. In addition, combined immunotherapy using the ADCC activity of NZ-12 mediated by human NK (CD56(+) ) cells with pemetrexed, led to enhanced antitumor effects in MPM orthotopic xenograft mice. These results strongly suggest that combination therapy with podoplanin-targeting immunotherapy using both NZ-12 and pemetrexed might provide an efficacious therapeutic strategy for the treatment of MPM.
Collapse
Affiliation(s)
- Shinji Abe
- Department of Clinical Pharmacy Practice Pedagogy, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Department of Respiratory Medicine and Rheumatology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mika Kato Kaneko
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuki Tsuchihashi
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshihiro Izumi
- Department of Clinical Pharmacy Practice Pedagogy, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Satoshi Ogasawara
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoto Okada
- Department of Clinical Pharmacy Practice Pedagogy, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Chiemi Sato
- Department of Clinical Pharmacy Practice Pedagogy, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Makoto Tobiume
- Department of Respiratory Medicine and Rheumatology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kenji Otsuka
- Department of Respiratory Medicine and Rheumatology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Licht Miyamoto
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuyoshi Kawazoe
- Department of Clinical Pharmacy Practice Pedagogy, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yukinari Kato
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| |
Collapse
|
4
|
Hamamoto Y, Takeoka S, Mouri A, Fukusumi M, Wakuda K, Ibe T, Honma C, Arimoto Y, Yamada K, Wagatsuma M, Tashiro A, Kamoshida S, Kamimura M. Orotate phosphoribosyltransferase is overexpressed in malignant pleural mesothelioma: Dramatically responds one case in high OPRT expression. Rare Dis 2016; 4:e1165909. [PMID: 27274438 PMCID: PMC4878580 DOI: 10.1080/21675511.2016.1165909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/16/2016] [Accepted: 03/07/2016] [Indexed: 12/29/2022] Open
Abstract
Objective: Malignant pleural mesothelioma (MPM) is a rare and aggressive, treatment-resistant cancer. Pemetrexed, an inhibitor of thymidylate synthase (TS), is used worldwide for MPM as a first-line chemotherapy regimen. However, there is little consensus for a second-line chemotherapy. S-1, a highly effective dihydropyrimidine dehydrogenase (DPD)-inhibitory fluoropyrimidine, mainly acts via a TS inhibitory mechanism similar to pemetrexed. Orotate phosphoribosyltransferase (OPRT) is a key enzyme related to the first step activation of 5-fluorouracil (5-FU) for inhibiting RNA synthesis. We investigated 5-FU related-metabolism proteins, especially focusing on OPRT expression, in MPM Methods and Patients: Fifteen MPM patients who were diagnosed between July 2004 and December 2013 were enrolled. We examined the protein levels of 5-FU metabolism-related enzymes (TS, DPD, OPRT, and thymidine phosphorylase [TP]) in 14 cases Results: High TS, DPD, OPRT, and TP expressions were seen in 28.6%, 71.4%, 85.7%, and 35.7% of patients, respectively. We found that OPRT expression was extremely high in MPM tissue. We experienced one remarkable case of highly effective S-1 combined therapy for pemetrexed refractory MPM. This case also showed high OPRT protein expression Conclusion: The present study suggests that OPRT expression is high in MPM tumors. Although pemetrexed is mainly used for MPM chemotherapy as a TS inhibitor, S-1 has potential as an anticancer drug not only as a TS inhibitor but also inhibiting RNA synthesis through the OPRT pathway. This is the first report investigating OPRT protein expressions in MPM.
Collapse
Affiliation(s)
- Yoichiro Hamamoto
- Respiratory Department, National Hospital Organization Disaster Medical Center, Tachikawa , Tokyo, Japan
| | - Shinjiro Takeoka
- Respiratory Department, National Hospital Organization Disaster Medical Center, Tachikawa , Tokyo, Japan
| | - Atsuto Mouri
- Respiratory Department, National Hospital Organization Disaster Medical Center, Tachikawa , Tokyo, Japan
| | - Munehisa Fukusumi
- Respiratory Department, National Hospital Organization Disaster Medical Center, Tachikawa , Tokyo, Japan
| | - Kazushige Wakuda
- Respiratory Department, National Hospital Organization Disaster Medical Center, Tachikawa , Tokyo, Japan
| | - Tatsuya Ibe
- Respiratory Department, National Hospital Organization Disaster Medical Center, Tachikawa , Tokyo, Japan
| | - Chie Honma
- Respiratory Department, National Hospital Organization Disaster Medical Center, Tachikawa , Tokyo, Japan
| | - Yoshihito Arimoto
- Respiratory Department, National Hospital Organization Disaster Medical Center, Tachikawa , Tokyo, Japan
| | - Kazuaki Yamada
- Department of Pathology, National Hospital Organization Disaster Medical Center, Tachikawa , Tokyo, Japan
| | - Miyuki Wagatsuma
- Department of Pathology, National Hospital Organization Disaster Medical Center, Tachikawa , Tokyo, Japan
| | - Akito Tashiro
- Department of Medical Biophysics, Laboratory of Pathology, Kobe University Graduate School of Health Sciences , Kobe, Hyogo, Japan
| | - Shingo Kamoshida
- Department of Medical Biophysics, Laboratory of Pathology, Kobe University Graduate School of Health Sciences , Kobe, Hyogo, Japan
| | - Mitsuhiro Kamimura
- Respiratory Department, National Hospital Organization Disaster Medical Center, Tachikawa , Tokyo, Japan
| |
Collapse
|
5
|
Maehara S, Usuda J, Ishizumi T, Ichinose S, Ohtani K, Inoue T, Imai K, Furumoto H, Kudo Y, Kajiwara N, Ohira T, Ikeda N. Combination effect of photodynamic therapy using NPe6 with pemetrexed for human malignant pleural mesothelioma cells. Int J Oncol 2014; 46:741-9. [PMID: 25385189 DOI: 10.3892/ijo.2014.2746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/17/2014] [Indexed: 11/06/2022] Open
Abstract
To identify a possible new treatment modality for malignant pleural mesothelioma (MPM), we examined whether combination treatment consisting of pemetrexed chemotherapy and photodynamic therapy (PDT) using the photosensitizer NPe6, enhanced the antitumor effect in both in vitro and in vivo models. We also investigated preclinical treatment schedules. Four human malignant mesothelioma cell lines (MSTO‑211H, H2052, H2452 and H28) were assayed using the WST assay after treatment with pemetrexed and NPe6‑PDT. The treatment schedule for the combination treatment was examined using nude mice. Pemetrexed pre‑treatment enhanced the lethal effect of NPe6‑PDT in the four malignant mesothelioma cell lines, but NPe6‑PDT followed by pemetrexed treatment did not enhance cell lethality in the in vitro assay. Pemetrexed pre‑treatment did not enhance the intracellular accumulation of NPe6, which is one of the determinants of the antitumor effect of PDT. In nude mice injected with MSTO‑211H cells and then treated using a combination of pemetrexed and NPe6‑PDT (10 mg/kg NPe6, 10 J/cm(2) laser irradiation), the tumor volume decreased by 50% but subsequently increased, reaching the pre‑treatment value after 14 days. Pemetrexed treatment followed by NPe6‑PDT resulted in an 80% reduction in the tumor size and inhibited re‑growth. NPe6‑PDT followed by pemetrexed treatment resulted in a 60% reduction in tumor size but did not inhibit re‑growth. NPe6‑PDT induced the expression of thymidylate synthase (TS), which confers resistance to pemetrexed, and NPe6‑PDT followed by pemetrexed treatment did not enhance the treatment outcome in vivo. In conclusion, combination treatment, consisting of pemetrexed followed by NPe6‑PDT, should be further investigated as a new treatment modality for MPM. In the future, this combination treatment may contribute to a reduction in local recurrence and a prolonged survival period in patients with MPM.
Collapse
Affiliation(s)
- Sachio Maehara
- Department of Surgery, Tokyo Medical University, Tokyo 160‑0023, Japan
| | - Jitsuo Usuda
- Department of Thoracic Surgery, Nippon Medical School, Tokyo 113‑8603, Japan
| | - Taichiro Ishizumi
- Department of Surgery, Tokyo Medical University, Tokyo 160‑0023, Japan
| | - Shuji Ichinose
- Department of Surgery, Tokyo Medical University, Tokyo 160‑0023, Japan
| | - Keishi Ohtani
- Department of Surgery, Tokyo Medical University, Tokyo 160‑0023, Japan
| | - Tatsuya Inoue
- Department of Surgery, Tokyo Medical University, Tokyo 160‑0023, Japan
| | - Kentaro Imai
- Department of Surgery, Tokyo Medical University, Tokyo 160‑0023, Japan
| | - Hideyuki Furumoto
- Department of Surgery, Tokyo Medical University, Tokyo 160‑0023, Japan
| | - Yujin Kudo
- Department of Surgery, Tokyo Medical University, Tokyo 160‑0023, Japan
| | - Naohiro Kajiwara
- Department of Surgery, Tokyo Medical University, Tokyo 160‑0023, Japan
| | - Tatsuya Ohira
- Department of Surgery, Tokyo Medical University, Tokyo 160‑0023, Japan
| | - Norihiko Ikeda
- Department of Surgery, Tokyo Medical University, Tokyo 160‑0023, Japan
| |
Collapse
|
6
|
Huang J, Tabata S, Kakiuchi S, The Van T, Goto H, Hanibuchi M, Nishioka Y. Identification of pregnancy-associated plasma protein A as a migration-promoting gene in malignant pleural mesothelioma cells: a potential therapeutic target. Oncotarget 2014; 4:1172-84. [PMID: 23896451 PMCID: PMC3787149 DOI: 10.18632/oncotarget.1126] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Despite recent advances in treatment, malignant pleural mesothelioma (MPM) remains a deadly disease. Targeted therapy generated broad interests and is highly expected for the treatment of MPM, yet promising preclinical results have not been translated into substantial clinical benefits for the patients. In this study, we tried to identify the genes which play functional roles in cell migration as well as to test whether they can be used as novel targets for molecular targeted therapy for MPM in preclinical model. In our study, pregnancy-associated plasma protein A (PAPPA) was identified as a gene whose expression level is correlated with MPM cell migration by correlation analysis combining MPM cell migration ability and their gene expression profiles. Highly migratory cells were selected from MPM cell lines, MSTO-211H, NCI-H290 and EHMES-1 in vitro and up-regulation of PAPPA in these cells were confirmed. In vitro, PAPPA was demonstrated to stimulate the MPM cell migration via cleavage of insulin-like growth factor-binding protein-4 and subsequent release of IGF-1. Gene silencing of PAPPA in MPM cells led to reduced migration, invasion and proliferation. Furthermore, PAPPA shRNA transfected NCI-H290 when orthotopically inoculated into pleural cavity of severe combined immunodeficiency recipient mice, failed to develop tumors and produce bloody pleural effusion as control shRNA transfected cells did. Our study suggests that PAPPA plays a functional role in promoting MPM cell migration and it might serve as a potential therapeutic target for the treatment of MPM.
Collapse
Affiliation(s)
- Jun Huang
- Department of Respiratory Medicine and Rheumatology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Jamal S, Cheriyan VT, Muthu M, Munie S, Levi E, Ashour AE, Pass HI, Wali A, Singh M, Rishi AK. CARP-1 functional mimetics are a novel class of small molecule inhibitors of malignant pleural mesothelioma cells. PLoS One 2014; 9:e89146. [PMID: 24598827 PMCID: PMC3943785 DOI: 10.1371/journal.pone.0089146] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/15/2014] [Indexed: 11/19/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an asbestos-related thoracic malignancy that is characterized by late metastases, and resistance to therapeutic modalities. The toxic side-effects of MPM therapies often limit their clinical effectiveness, thus necessitating development of new agents to effectively treat and manage this disease in clinic. CARP-1 functional mimetics (CFMs) are a novel class of compounds that inhibit growth of diverse cancer cell types. Here we investigated MPM cell growth suppression by the CFMs and the molecular mechanisms involved. CFM-1, -4, and -5 inhibited MPM cell growth, in vitro, in part by stimulating apoptosis. Apoptosis by CFM-4 involved activation of pro-apoptotic stress-activated protein kinases (SAPKs) p38 and JNK, elevated CARP-1 expression, cleavage of PARP1, and loss of the oncogene c-myc as well as mitotic cyclin B1. Treatments of MPM cells with CFM-4 resulted in depletion of NF-κB signaling inhibitor ABIN1 and Inhibitory κB (IκB)α and β, while increasing expression of pro-apoptotic death receptor (DR) 4 protein. CFM-4 enhanced expression of serine-phosphorylated podoplanin and cleavage of vimetin. CFMs also attenuated biological properties of the MPM cells by blocking their abilities to migrate, form colonies in suspension, and invade through the matrix-coated membranes. Both podoplanin and vimentin regulate processes of cell motility and invasion, and their expression often correlates with metastatic disease, and poor prognosis. The fact that phosphorylation of serines in the cytoplasmic domain of podoplanin interferes with processes of cellular motility, CFM-4-dependent elevated phosphorylated podoplanin and cleavage of vimentin underscore a metastasis inhibitory property of these compounds, and suggest that CFMs and/or their future analogs have potential as anti-MPM agents.
Collapse
Affiliation(s)
- Shazia Jamal
- John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, United States of America
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
| | - Vino T. Cheriyan
- John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, United States of America
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
| | - Magesh Muthu
- John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, United States of America
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
| | - Sara Munie
- John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, United States of America
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
| | - Edi Levi
- John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, United States of America
- Department of Pathology, Wayne State University, Detroit, Michigan, United States of America
| | - Abdelkader E. Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Harvey I. Pass
- Division of Cardiothoracic Surgery, New York University Cancer Center, New York, United States of America
| | - Anil Wali
- John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, United States of America
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, United States of America
| | - Arun K. Rishi
- John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, United States of America
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
8
|
Van TT, Hanibuchi M, Goto H, Kuramoto T, Yukishige S, Kakiuchi S, Sato S, Sakaguchi S, Dat LT, Nishioka Y, Akiyama SI, Sone S. SU6668, a multiple tyrosine kinase inhibitor, inhibits progression of human malignant pleural mesothelioma in an orthotopic model. Respirology 2013; 17:984-90. [PMID: 22574723 DOI: 10.1111/j.1440-1843.2012.02193.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Malignant pleural mesothelioma (MPM) is an aggressive neoplasm of the mesothelium with high chemotherapeutic resistance. In this study, the preclinical therapeutic activity of the multiple tyrosine kinase inhibitor, SU6668, against MPM was examined. METHODS Two human MPM cell lines with different pro-angiogenic cytokine expression, Y-MESO-14 cells that express high levels of vascular endothelial growth factor (VEGF) and MSTO-211H cells that express high levels of basic fibroblast growth factor (bFGF), were orthotopically inoculated into the thoracic cavities of mice with severe combined immunodeficiency. The mice with MPM were treated or not treated with SU6668 (200 mg/kg/day). RESULTS SU6668 abrogated the proliferation of endothelial cells stimulated by VEGF or bFGF, but did not directly affect the growth of human MPM cells in vitro. In this orthotopic implantation model, treatment with SU6668 effectively reduced tumour weight and pleural effusion volumes, in association with inhibition of the growth of tumour vasculature. More importantly, treatment with SU6668 significantly prolonged survival time in mice with MPM. CONCLUSIONS These findings suggest that SU6668 has a promising therapeutic effect on the progression of MPM in vivo through its anti-angiogenic effects.
Collapse
Affiliation(s)
- Trung The Van
- Department of Respiratory Medicine and Rheumatology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|