1
|
Teuscher N. The history and future of population pharmacokinetic analysis in drug development. Xenobiotica 2024; 54:394-400. [PMID: 38051030 DOI: 10.1080/00498254.2023.2291792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/03/2023] [Indexed: 12/07/2023]
Abstract
The analysis of pharmacokinetic data has been in a constant state of evolution since the introduction of the term pharmacokinetics. Early work focused on mechanistic understanding of the absorption, distribution, metabolism and excretion of drug products.The introduction of non-linear mixed effects models to perform population pharmacokinetic analysis initiated a paradigm shift. The application of these models represented a major shift in evaluating variability in pharmacokinetic parameters across a population of subjects.While technological advancements in computing power have fueled the growth of population pharmacokinetics in drug development efforts, there remain many challenges in reducing the time required to incorporate these learnings into a model-informed development process. These challenges exist because of expanding datasets, increased number of diagnostics, and more complex mathematical models.New machine learning tools may be potential solutions for these challenges. These new methodologies include genetic algorithms for model selection, machine learning algorithms for covariate selection, and deep learning models for pharmacokinetic and pharmacodynamic data. These new methods promise the potential for less bias, faster analysis times, and the ability to integrate more data.While questions remain regarding the ability of these models to extrapolate accurately, continued research in this area is expected to address these questions.
Collapse
|
2
|
Blood-Brain Barrier Permeability Following Conventional Photon Radiotherapy - A Systematic Review and Meta-Analysis of Clinical and Preclinical Studies. Clin Transl Radiat Oncol 2022; 35:44-55. [PMID: 35601799 PMCID: PMC9117815 DOI: 10.1016/j.ctro.2022.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/30/2022] [Indexed: 01/16/2023] Open
Abstract
Radiotherapy (RT) is a cornerstone treatment strategy for brain tumours. Besides cytotoxicity, RT can cause disruption of the blood–brain barrier (BBB), resulting in an increased permeability into the surrounding brain parenchyma. Although this effect is generally acknowledged, it remains unclear how and to what extent different radiation schemes affect BBB integrity. The aim of this systematic review and meta-analysis is to investigate the effect of photon RT regimens on BBB permeability, including its reversibility, in clinical and preclinical studies. We systematically reviewed relevant clinical and preclinical literature in PubMed, Embase, and Cochrane search engines. A total of 69 included studies (20 clinical, 49 preclinical) were qualitatively and quantitatively analysed by meta-analysis and evaluated on key determinants of RT-induced BBB permeability in different disease types and RT protocols. Qualitative data synthesis showed that 35% of the included clinical studies reported BBB disruption following RT, whereas 30% were inconclusive. Interestingly, no compelling differences were observed between studies with different calculated biological effective doses based on the fractionation schemes and cumulative doses; however, increased BBB disruption was noted during patient follow-up after treatment. Qualitative analysis of preclinical studies showed RT BBB disruption in 78% of the included studies, which was significantly confirmed by meta-analysis (p < 0.01). Of note, a high risk of bias, publication bias and a high heterogeneity across the studies was observed. This systematic review and meta-analysis sheds light on the impact of RT protocols on BBB integrity and opens the discussion for integrating this factor in the decision-making process of future RT, with better study of its occurrence and influence on concomitant or adjuvant therapies.
Collapse
|
3
|
Ung C, Tsoli M, Liu J, Cassano D, Pocoví-Martínez S, Upton DH, Ehteda A, Mansfeld FM, Failes TW, Farfalla A, Katsinas C, Kavallaris M, Arndt GM, Vittorio O, Cirillo G, Voliani V, Ziegler DS. Doxorubicin-Loaded Gold Nanoarchitectures as a Therapeutic Strategy against Diffuse Intrinsic Pontine Glioma. Cancers (Basel) 2021; 13:1278. [PMID: 33805713 PMCID: PMC7999568 DOI: 10.3390/cancers13061278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 01/11/2023] Open
Abstract
Diffuse Intrinsic Pontine Gliomas (DIPGs) are highly aggressive paediatric brain tumours. Currently, irradiation is the only standard treatment, but is palliative in nature and most patients die within 12 months of diagnosis. Novel therapeutic approaches are urgently needed for the treatment of this devastating disease. We have developed non-persistent gold nano-architectures (NAs) functionalised with human serum albumin (HSA) for the delivery of doxorubicin. Doxorubicin has been previously reported to be cytotoxic in DIPG cells. In this study, we have preclinically evaluated the cytotoxic efficacy of doxorubicin delivered through gold nanoarchitectures (NAs-HSA-Dox). We found that DIPG neurospheres were equally sensitive to doxorubicin and doxorubicin-loaded NAs. Colony formation assays demonstrated greater potency of NAs-HSA-Dox on colony formation compared to doxorubicin. Western blot analysis indicated increased apoptotic markers cleaved Parp, cleaved caspase 3 and phosphorylated H2AX in NAs-HSA-Dox treated DIPG neurospheres. Live cell content and confocal imaging demonstrated significantly higher uptake of NAs-HSA-Dox into DIPG neurospheres compared to doxorubicin alone. Despite the potency of the NAs in vitro, treatment of an orthotopic model of DIPG showed no antitumour effect. This disparate outcome may be due to the integrity of the blood-brain barrier and highlights the need to develop therapies to enhance penetration of drugs into DIPG.
Collapse
Affiliation(s)
- Caitlin Ung
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (C.U.); (J.L.); (D.H.U.); (A.E.); (F.M.M.); (C.K.); (M.K.); (O.V.)
| | - Maria Tsoli
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (C.U.); (J.L.); (D.H.U.); (A.E.); (F.M.M.); (C.K.); (M.K.); (O.V.)
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
| | - Jie Liu
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (C.U.); (J.L.); (D.H.U.); (A.E.); (F.M.M.); (C.K.); (M.K.); (O.V.)
| | - Domenico Cassano
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy; (D.C.); (S.P.-M.); (V.V.)
| | - Salvador Pocoví-Martínez
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy; (D.C.); (S.P.-M.); (V.V.)
| | - Dannielle H. Upton
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (C.U.); (J.L.); (D.H.U.); (A.E.); (F.M.M.); (C.K.); (M.K.); (O.V.)
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
| | - Anahid Ehteda
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (C.U.); (J.L.); (D.H.U.); (A.E.); (F.M.M.); (C.K.); (M.K.); (O.V.)
| | - Friederike M. Mansfeld
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (C.U.); (J.L.); (D.H.U.); (A.E.); (F.M.M.); (C.K.); (M.K.); (O.V.)
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Royal Parade, Parkville, VIC 3052, Australia
| | - Timothy W. Failes
- ACRF Drug Discovery Centre, Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (T.W.F.); (G.M.A.)
| | - Annafranca Farfalla
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy; (A.F.); (G.C.)
| | - Christopher Katsinas
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (C.U.); (J.L.); (D.H.U.); (A.E.); (F.M.M.); (C.K.); (M.K.); (O.V.)
| | - Maria Kavallaris
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (C.U.); (J.L.); (D.H.U.); (A.E.); (F.M.M.); (C.K.); (M.K.); (O.V.)
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Greg M. Arndt
- ACRF Drug Discovery Centre, Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (T.W.F.); (G.M.A.)
| | - Orazio Vittorio
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (C.U.); (J.L.); (D.H.U.); (A.E.); (F.M.M.); (C.K.); (M.K.); (O.V.)
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy; (A.F.); (G.C.)
| | - Valerio Voliani
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy; (D.C.); (S.P.-M.); (V.V.)
| | - David S. Ziegler
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (C.U.); (J.L.); (D.H.U.); (A.E.); (F.M.M.); (C.K.); (M.K.); (O.V.)
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW 2052, Australia
| |
Collapse
|
4
|
Sprowls SA, Arsiwala TA, Bumgarner JR, Shah N, Lateef SS, Kielkowski BN, Lockman PR. Improving CNS Delivery to Brain Metastases by Blood-Tumor Barrier Disruption. Trends Cancer 2019; 5:495-505. [PMID: 31421906 PMCID: PMC6703178 DOI: 10.1016/j.trecan.2019.06.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/07/2019] [Accepted: 06/21/2019] [Indexed: 01/13/2023]
Abstract
Brain metastases encompass nearly 80% of all intracranial tumors. A late stage diagnosis confers a poor prognosis, with patients typically surviving less than 2 years. Poor survival can be equated to limited effective treatment modalities. One reason for the failure rates is the presence of the blood-brain barrier (BBB) and blood-tumor barrier (BTB) that limit the access of potentially effective chemotherapeutics to metastatic lesions. Strategies to overcome these barriers include new small molecule entities capable of crossing into the brain parenchyma, novel formulations of existing chemotherapies, and disruptive techniques. Here, we review BBB physiology and BTB pathophysiology. Additionally, we review the limitations of routinely practiced therapies and three current methods being explored for BBB/BTB disruption for improved delivery of chemotherapy to brain tumors.
Collapse
Affiliation(s)
- Samuel A. Sprowls
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University HSC, Morgantown, West Virginia 26506
| | - Tasneem A. Arsiwala
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University HSC, Morgantown, West Virginia 26506
| | - Jacob R. Bumgarner
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University HSC, Morgantown, West Virginia 26506
| | - Neal Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University HSC, Morgantown, West Virginia 26506
| | - Sundus S. Lateef
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University HSC, Morgantown, West Virginia 26506
| | - Brooke N. Kielkowski
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University HSC, Morgantown, West Virginia 26506
| | - Paul R. Lockman
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University HSC, Morgantown, West Virginia 26506
| |
Collapse
|
5
|
Curcumin protects heart tissue against irinotecan-induced damage in terms of cytokine level alterations, oxidative stress, and histological damage in rats. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:783-791. [DOI: 10.1007/s00210-018-1495-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/05/2018] [Indexed: 01/02/2023]
|
6
|
Kong LL, Wang LL, Xing LG, Yu JM. Current progress and outcomes of clinical trials on using epidermal growth factor receptor-tyrosine kinase inhibitor therapy in non-small cell lung cancer patients with brain metastases. Chronic Dis Transl Med 2017; 3:221-229. [PMID: 29354805 PMCID: PMC5747498 DOI: 10.1016/j.cdtm.2017.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Indexed: 01/13/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) continues to be one of the major causes of cancer-related deaths worldwide, and brain metastases are the major cause of death in NSCLC patients. With recent advances in understanding the underlying molecular mechanism of NSCLC development and progression, mutations in epidermal growth factor receptor (EGFR) have been recognized as a key predictor of therapeutic sensitivity to EGFR tyrosine kinase inhibitors (TKIs). Using EGFR-TKI alone or in combination with standard treatments such as whole-brain radiotherapy and surgery has been an effective strategy for the management of brain metastasis. Particularly, a newer generation of EGFR-TKIs, including osimertinib and AZD3759, has been developed. These new EGFR-TKIs can cross the blood-brain barrier and potentially treat EGFR-TKI resistance and improve prognosis. In this article, current progress and outcomes of clinical trials on the use of EGFR-TKIs for treating NSCLC patients with brain metastasis will be reviewed.
Collapse
Affiliation(s)
- Ling-Ling Kong
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, China
- Key Laboratory of Radiation Oncology of Shandong Province, Shandong Academy of Medical Sciences, Jinan, Shandong 250001, China
| | - Lin-Lin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, China
- Key Laboratory of Radiation Oncology of Shandong Province, Shandong Academy of Medical Sciences, Jinan, Shandong 250001, China
| | - Li-Gang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, China
- Key Laboratory of Radiation Oncology of Shandong Province, Shandong Academy of Medical Sciences, Jinan, Shandong 250001, China
| | - Jin-Ming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, China
- Key Laboratory of Radiation Oncology of Shandong Province, Shandong Academy of Medical Sciences, Jinan, Shandong 250001, China
| |
Collapse
|
7
|
Liu MC, Cortés J, O'Shaughnessy J. Challenges in the treatment of hormone receptor-positive, HER2-negative metastatic breast cancer with brain metastases. Cancer Metastasis Rev 2017; 35:323-32. [PMID: 27023712 DOI: 10.1007/s10555-016-9619-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Brain metastases are a major cause of morbidity and mortality for women with hormone receptor (HR)-positive breast cancer, yet little is known about the optimal treatment of brain disease in this group of patients. Although these patients are at lower risk for brain metastases relative to those with HER2-positive and triple-negative disease, they comprise the majority of women diagnosed with breast cancer. Surgery and radiation continue to have a role in the treatment of brain metastases, but there is a dearth of effective systemic therapies due to the poor penetrability of many systemic drugs across the blood-brain barrier (BBB). Additionally, patients with brain metastases have long been excluded from clinical trials, and few studies have been conducted to evaluate the safety and effectiveness of systemic therapies specifically for the treatment of HER2-negative breast cancer brain metastases. New approaches are on the horizon, such as nanoparticle-based cytotoxic drugs that have the potential to cross the BBB and provide clinically meaningful benefits to patients with this life-threatening consequence of HR-positive breast cancer.
Collapse
Affiliation(s)
- Minetta C Liu
- Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| | - Javier Cortés
- Ramon y Cajal University Hospital, Madrid, Spain
- Vall D'Hebron Institute of Oncology, Barcelona, Spain
| | - Joyce O'Shaughnessy
- Baylor-Sammons Cancer Center, Texas Oncology, U.S. Oncology, Dallas, TX, USA
| |
Collapse
|
8
|
Khalifa J, Amini A, Popat S, Gaspar LE, Faivre-Finn C. Brain Metastases from NSCLC: Radiation Therapy in the Era of Targeted Therapies. J Thorac Oncol 2016; 11:1627-43. [PMID: 27343440 DOI: 10.1016/j.jtho.2016.06.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/02/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023]
Abstract
Brain metastases (BMs) will develop in a large proportion of patients with NSCLC throughout the course of their disease. Among patients with NSCLC with oncogenic drivers, mainly EGFR activating mutations and anaplastic lymphoma receptor tyrosine kinase gene (ALK) rearrangements, the presence of BM is a common secondary localization of disease both at the time of diagnosis and at relapse. Because of the limited penetration of a wide range of drugs across the blood-brain barrier, radiotherapy is considered the cornerstone of treatment of BMs. However, evidence of dramatic intracranial response rates has been reported in recent years with targeted therapies such as tyrosine kinase inhibitors and has been supported by new insights into pharmacokinetics to increase rates of tyrosine kinase inhibitors' penetration of the cerebrospinal fluid (CSF). In this context, the combination of brain radiotherapy and targeted therapies seems relevant, and there is a strong radiobiological rationale to harness the radiosentizing effect of the drugs. Nevertheless, to date, there is a paucity of high-level clinical evidence supporting the combination of brain radiotherapy and targeted therapies in patients with NSCLC and BMs, and there are often methodological biases in reported studies, such as the lack of stratification by mutation status. Moreover, among asymptomatic patients not suitable for ablative treatment, this strategy is challenged by the promising results associated with the administration of targeted therapies alone. Herein, we review the biological rationale to combine targeted therapies and brain radiotherapy for patients with NSCLC and BMs, report the clinical data available to date, and discuss future directions to improve outcome in this group of patients.
Collapse
Affiliation(s)
- Jonathan Khalifa
- Radiotherapy Related Research, The Christie National Health Service Foundation Trust, Manchester, United Kingdom.
| | - Arya Amini
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Sanjay Popat
- Lung Cancer Unit, Royal Marsden Hospital, London, United Kingdom
| | - Laurie E Gaspar
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Corinne Faivre-Finn
- Radiotherapy Related Research, The Christie National Health Service Foundation Trust, Manchester, United Kingdom; Manchester Academic Health Science Centre, Institute of Cancer Sciences, Manchester Cancer Research Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
9
|
Zeng YD, Liao H, Qin T, Zhang L, Wei WD, Liang JZ, Xu F, Dinglin XX, Ma SX, Chen LK. Blood-brain barrier permeability of gefitinib in patients with brain metastases from non-small-cell lung cancer before and during whole brain radiation therapy. Oncotarget 2016; 6:8366-76. [PMID: 25788260 PMCID: PMC4480758 DOI: 10.18632/oncotarget.3187] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/23/2015] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION To explore the ability of gefitinib to penetrate blood brain barrier (BBB) during whole brain radiation therapy (WBRT). PATIENTS AND METHODS Enrolled in this study were eligible patients who were diagnosed with BM from NSCLC. Gefitinib was given at 250 mg/day for 30 days, then concurrently with WBRT (40 Gy/20 F/4 w), followed by maintenance. Serial CSF and blood samples were collected on 30 day after gefitinib administration, and at the time of 10, 20, 30 and 40 Gy following WBRT. CSF and plasma samples of 13 patients without BM who were treated with gefitinib were collected as control. CSF and plasma gefitinib levels were measured by LC-MS/MS. RESULTS Fifteen BM patients completed gefitinib plus WBRT. The CSF-to-plasma ratio of gefitinib in patients with BM was higher than that in patients without BM (1.34% vs. 0.36%, P < 0.001). The CSF-to-plasma ratio of gefitinib increased with the increased dose of WBRT and reached the peak (1.87 ± 0.72%) at 30 Gy, which was significantly higher than that 1.34 ± 0.49% at 0 Gy (P = 0.01). The median time to progression of brain lesions and the median overall survival were 7.07 and 15.4 months, respectively. CONCLUSION The BBB permeability of gefitinib increased in accordance with escalated dose of WBRT.
Collapse
Affiliation(s)
- Yin-Duo Zeng
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Hai Liao
- Lab of Phase I Clinical Study, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Tao Qin
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Li Zhang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Wei-Dong Wei
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jian-Zhong Liang
- Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Fei Xu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Xiao-Xiao Dinglin
- Department of Medical Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shu-Xiang Ma
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Li-Kun Chen
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
10
|
Fang L, Sun X, Song Y, Zhang Y, Li F, Xu Y, Ma S, Lin N. Whole-brain radiation fails to boost intracerebral gefitinib concentration in patients with brain metastatic non-small cell lung cancer: a self-controlled, pilot study. Cancer Chemother Pharmacol 2015; 76:873-7. [DOI: 10.1007/s00280-015-2847-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/12/2015] [Indexed: 11/24/2022]
|
11
|
Application of population pharmacokinetics for preclinical safety and efficacy studies. Bioanalysis 2013; 5:2053-69. [DOI: 10.4155/bio.13.147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
From the beginning of the 1980s, population PK has been primarily used in clinical development and only in the last decade has it been convincingly applied in a preclinical setting. Sparse sampling and covariate analyses are key features of preclinical popPK, useful for toxicology and efficacy studies in animals to assemble data obtained from different studies; for describing individual PK and PD; for building mechanistic models; and for performing interspecies scaling-up of disposition and efficacy. Application in disease models, mainly in behavioral and neurological models, allows the quantitative description of PK and PD without frequent blood sampling and recurrent physiological measurements, which are the critical and compromising perturbations of experimental systems. A preclinical population approach to PK and PD, by its versatility and possibility of simulating ‘what if’ scenarios, offers a unique and potent tool in the development of new drugs, in particular biologics.
Collapse
|
12
|
Huh Y, Hynes SM, Smith DE, Feng MR. Importance of Peptide transporter 2 on the cerebrospinal fluid efflux kinetics of glycylsarcosine characterized by nonlinear mixed effects modeling. Pharm Res 2013; 30:1423-34. [PMID: 23371515 DOI: 10.1007/s11095-013-0980-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/07/2013] [Indexed: 11/28/2022]
Abstract
PURPOSE To develop a population pharmacokinetic model to quantitate the distribution kinetics of glycylsarcosine (GlySar), a substrate of peptide transporter 2 (PEPT2), in blood, CSF and kidney in wild-type and PEPT2 knockout mice. METHODS A stepwise compartment modeling approach was performed to describe the concentration profiles of GlySar in blood, CSF, and kidney simultaneously using nonlinear mixed effects modeling (NONMEM). The final model was selected based on the likelihood ratio test and graphical goodness-of-fit. RESULTS The profiles of GlySar in blood, CSF, and kidney were best described by a four-compartment model. The estimated systemic elimination clearance, volume of distribution in the central and peripheral compartments were 0.236 vs 0.449 ml/min, 3.79 vs 4.75 ml, and 5.75 vs 9.18 ml for wild-type versus knockout mice. Total CSF efflux clearance was 4.3 fold higher for wild-type compared to knockout mice. NONMEM parameter estimates indicated that 77% of CSF efflux clearance was mediated by PEPT2 and the remaining 23% was mediated by the diffusional and bulk clearances. CONCLUSIONS Due to the availability of PEPT2 knockout mice, we were able to quantitatively determine the significance of PEPT2 in the efflux kinetics of GlySar at the blood-cerebrospinal fluid barrier.
Collapse
Affiliation(s)
- Yeamin Huh
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|