1
|
Hose D, Ray S, Rößler S, Thormann U, Schnettler R, de Veirman K, El Khassawna T, Heiss C, Hild A, Zahner D, Alagboso F, Henss A, Beck S, Emde-Rajaratnam M, Burhenne J, Bamberger J, Menu E, de Bruyne E, Gelinsky M, Kampschulte M, Rohnke M, Wenisch S, Vanderkerken K, Hanke T, Seckinger A, Alt V. Bortezomib-releasing silica-collagen xerogels for local treatment of osteolytic bone- and minimal residual disease in multiple myeloma. J Hematol Oncol 2024; 17:128. [PMID: 39695697 PMCID: PMC11657678 DOI: 10.1186/s13045-024-01636-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Accumulation of malignant plasma cells in the bone marrow causes lytic bone lesions in 80% of multiple myeloma patients. Frequently fracturing, they are challenging to treat surgically. Myeloma cells surviving treatment in the presumably protective environment of bone lesions impede their healing by continued impact on bone turnover and can explain regular progression of patients without detectable minimal residual disease (MRD). Locally applicable biomaterials could stabilize and foster healing of bone defects, simultaneously delivering anti-cancer compounds at systemically intolerable concentrations, overcoming drug resistance. METHODS We developed silica-collagen xerogels (sicXer) and bortezomib-releasing silica-collagen xerogels (boXer) for local treatment of osteolytic bone disease and MRD. In vitro and in vivo (tissue sections) release of bortezomib was assessed by ultrahigh-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Material impact on bone formation was assessed in vitro regarding osteoclast/osteoblast numbers and activity. In vivo, drilling defects in a rat- and the 5T33-myeloma mouse model were treated by both materials and assessed by immunohistochemistry, UPLC-MS/MS, µCT, and ToF-SIMS. The material's anti-myeloma activity was assessed using ten human myeloma cell lines (HMCLs) and eight primary myeloma cell samples including four patients refractory to systemic bortezomib treatment. RESULTS sicXer and boXer show primary stability comparable to trabecular bone. Granule size and preparation method tailor degradation as indicated by release of the xerogel components (silica and collagen) and bortezomib into culture medium. In vitro, both materials reduce osteoclast activity and do not negatively interfere with osteoblast differentiation and function. The presumed resulting net bone formation with maintained basic remodeling properties was validated in vivo in a rat bone defect model, showing significantly enhanced bone formation for boXer compared to non-treated defects. Both materials induce myeloma cell apoptosis in all HMCLs and primary myeloma cell samples. In the 5T33-myeloma mouse model, both materials stabilized drilling defects and locally controlled malignant plasma cell growth. CONCLUSIONS The combination of stabilization of fracture-prone lesions, stimulation of bone healing, and anti-tumor effect suggest clinical testing of sicXer and boXer as part of a combined systemic/local treatment strategy in multiple myeloma and non-malignant diseases.
Collapse
Affiliation(s)
- Dirk Hose
- Laboratory of Hematology and Immunology & Labor für Myelomforschung, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Jette, Belgium.
| | - Seemun Ray
- Experimentelle Unfallchirurgie (ForMED), Justus-Liebig-Universität Gießen, Aulweg 128, 35392, Gießen, Germany
| | - Sina Rößler
- Institut für Werkstoffwissenschaft, Max-Bergmann-Zentrum für Biomaterialien, Technische Universität Dresden, Budapester Straße 27, 01069, Dresden, Germany
| | - Ulrich Thormann
- Experimentelle Unfallchirurgie (ForMED), Justus-Liebig-Universität Gießen, Aulweg 128, 35392, Gießen, Germany
| | | | - Kim de Veirman
- Laboratory of Hematology and Immunology & Labor für Myelomforschung, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Jette, Belgium
| | - Thaqif El Khassawna
- Experimentelle Unfallchirurgie (ForMED), Justus-Liebig-Universität Gießen, Aulweg 128, 35392, Gießen, Germany
| | - Christian Heiss
- Experimentelle Unfallchirurgie (ForMED), Justus-Liebig-Universität Gießen, Aulweg 128, 35392, Gießen, Germany
| | - Anne Hild
- Klinische Anatomie und Experimentelle Chirurgie C/O Institut für Veterinär-Anatomie, -Histologie und -Embryologie, Justus-Liebig-Universität Gießen, Frankfurter Straße 98, 35392, Gießen, Germany
| | - Daniel Zahner
- Justus-Liebig-Universität Gießen, Ludwigstraße 23, 35392, Gießen, Germany
| | - Francisca Alagboso
- Experimentelle Unfallchirurgie (ForMED), Justus-Liebig-Universität Gießen, Aulweg 128, 35392, Gießen, Germany
| | - Anja Henss
- I. Physikalisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 16, 35392, Gießen, Germany
| | - Susanne Beck
- Laboratory of Hematology and Immunology & Labor für Myelomforschung, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Jette, Belgium
| | - Martina Emde-Rajaratnam
- Laboratory of Hematology and Immunology & Labor für Myelomforschung, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Jette, Belgium
| | - Jürgen Burhenne
- Innere Medizin IX - Abteilung für Klinische Pharmakologie und Pharmakoepidemiologie, Medizinische Fakultät/Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Juliane Bamberger
- Labor Für Experimentelle Radiologie, Justus-Liebig-Universität Gießen, Carl-Maria-von-Weber-Straße 8, 35392, Gießen, Germany
| | - Eline Menu
- Laboratory of Hematology and Immunology & Labor für Myelomforschung, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Jette, Belgium
| | - Elke de Bruyne
- Laboratory of Hematology and Immunology & Labor für Myelomforschung, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Jette, Belgium
| | - Michael Gelinsky
- Zentrum für Translationale Knochen-, Gelenk- und Weichgewebeforschung, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Marian Kampschulte
- Labor Für Experimentelle Radiologie, Justus-Liebig-Universität Gießen, Carl-Maria-von-Weber-Straße 8, 35392, Gießen, Germany
| | - Marcus Rohnke
- Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
| | - Sabine Wenisch
- Klinische Anatomie und Experimentelle Chirurgie C/O Institut für Veterinär-Anatomie, -Histologie und -Embryologie, Justus-Liebig-Universität Gießen, Frankfurter Straße 98, 35392, Gießen, Germany
| | - Karin Vanderkerken
- Laboratory of Hematology and Immunology & Labor für Myelomforschung, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Jette, Belgium
| | - Thomas Hanke
- Institut für Werkstoffwissenschaft, Max-Bergmann-Zentrum für Biomaterialien, Technische Universität Dresden, Budapester Straße 27, 01069, Dresden, Germany
| | - Anja Seckinger
- Laboratory of Hematology and Immunology & Labor für Myelomforschung, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Jette, Belgium
| | - Volker Alt
- Experimentelle Unfallchirurgie (ForMED), Justus-Liebig-Universität Gießen, Aulweg 128, 35392, Gießen, Germany.
- Klinik und Poliklinik für Unfallchirurgie, Universitätsklinikum Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
2
|
Revisiting Proteasome Inhibitors: Molecular Underpinnings of Their Development, Mechanisms of Resistance and Strategies to Overcome Anti-Cancer Drug Resistance. Molecules 2022; 27:molecules27072201. [PMID: 35408601 PMCID: PMC9000344 DOI: 10.3390/molecules27072201] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Proteasome inhibitors have shown relevant clinical activity in several hematological malignancies, namely in multiple myeloma and mantle cell lymphoma, improving patient outcomes such as survival and quality of life, when compared with other therapies. However, initial response to the therapy is a challenge as most patients show an innate resistance to proteasome inhibitors, and those that respond to the therapy usually develop late relapses suggesting the development of acquired resistance. The mechanisms of resistance to proteasome inhibition are still controversial and scarce in the literature. In this review, we discuss the development of proteasome inhibitors and the mechanisms of innate and acquired resistance to their activity—a major challenge in preclinical and clinical therapeutics. An improved understanding of these mechanisms is crucial to guiding the design of new and more effective drugs to tackle these devastating diseases. In addition, we provide a comprehensive overview of proteasome inhibitors used in combination with other chemotherapeutic agents, as this is a key strategy to combat resistance.
Collapse
|
3
|
Alhallak K, Jeske A, de la Puente P, Sun J, Fiala M, Azab F, Muz B, Sahin I, Vij R, DiPersio JF, Azab AK. A pilot study of 3D tissue-engineered bone marrow culture as a tool to predict patient response to therapy in multiple myeloma. Sci Rep 2021; 11:19343. [PMID: 34588522 PMCID: PMC8481555 DOI: 10.1038/s41598-021-98760-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022] Open
Abstract
Cancer patients undergo detrimental toxicities and ineffective treatments especially in the relapsed setting, due to failed treatment attempts. The development of a tool that predicts the clinical response of individual patients to therapy is greatly desired. We have developed a novel patient-derived 3D tissue engineered bone marrow (3DTEBM) technology that closely recapitulate the pathophysiological conditions in the bone marrow and allows ex vivo proliferation of tumor cells of hematologic malignancies. In this study, we used the 3DTEBM to predict the clinical response of individual multiple myeloma (MM) patients to different therapeutic regimens. We found that while no correlation was observed between in vitro efficacy in classic 2D culture systems of drugs used for MM with their clinical efficacious concentration, the efficacious concentration in the 3DTEBM were directly correlated. Furthermore, the 3DTEBM model retrospectively predicted the clinical response to different treatment regimens in 89% of the MM patient cohort. These results demonstrated that the 3DTEBM is a feasible platform which can predict MM clinical responses with high accuracy and within a clinically actionable time frame. Utilization of this technology to predict drug efficacy and the likelihood of treatment failure could significantly improve patient care and treatment in many ways, particularly in the relapsed and refractory setting. Future studies are needed to validate the 3DTEBM model as a tool for predicting clinical efficacy.
Collapse
Affiliation(s)
- Kinan Alhallak
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO, 63108, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Amanda Jeske
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO, 63108, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.,Cellatrix LLC, St. Louis, MO, USA
| | - Pilar de la Puente
- Cellatrix LLC, St. Louis, MO, USA.,Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - Jennifer Sun
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO, 63108, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Mark Fiala
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Barbara Muz
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO, 63108, USA
| | - Ilyas Sahin
- Division of Hematology/Oncology, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Ravi Vij
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - John F DiPersio
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO, 63108, USA. .,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA. .,Cellatrix LLC, St. Louis, MO, USA.
| |
Collapse
|
4
|
Mynott RL, Wallington-Beddoe CT. Drug and Solute Transporters in Mediating Resistance to Novel Therapeutics in Multiple Myeloma. ACS Pharmacol Transl Sci 2021; 4:1050-1065. [PMID: 34151200 DOI: 10.1021/acsptsci.1c00074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 02/06/2023]
Abstract
Multiple myeloma remains an incurable malignancy of plasma cells. Novel therapies, notably proteasome inhibitors and immunomodulatory drugs, have improved the survival of multiple myeloma patients; however, patients either present with, or develop resistance to, these therapies. Resistance to traditional chemotherapeutic agents can be caused by cellular drug efflux via adenosine triphosphate (ATP)-binding cassette (ABC) transporters, but it is still not clear whether these transporters mediate resistance to proteasome inhibitors and immunomodulatory drugs in multiple myeloma. Solute carrier (SLC) transporters also play a role in cancer drug resistance due to changes in cell homeostasis caused by their abnormal expression and changes in the solutes they transport. In this review, we evaluate resistance to novel therapies used to treat multiple myeloma, as mediated by drug and solute transporters.
Collapse
Affiliation(s)
- Rachel L Mynott
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Craig T Wallington-Beddoe
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia.,Flinders Medical Centre, Bedford Park, South Australia 5042, Australia.,Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, South Australia 5000, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000, Australia
| |
Collapse
|
5
|
Mynott RL, Wallington-Beddoe CT. Inhibition of P-Glycoprotein Does Not Increase the Efficacy of Proteasome Inhibitors in Multiple Myeloma Cells. ACS Pharmacol Transl Sci 2021; 4:713-729. [PMID: 33860196 DOI: 10.1021/acsptsci.0c00200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 12/14/2022]
Abstract
P-Glycoprotein is a well-known drug transporter associated with chemotherapy resistance in a number of cancers, but its role in modulating proteasome inhibitor efficacy in multiple myeloma is not well understood. The second-generation proteasome inhibitor carfilzomib is thought to be a substrate of P-glycoprotein whose efficacy may correlate with P-glycoprotein activity; however, research concerning the first-in-class proteasome inhibitor bortezomib is inconsistent. We show that while P-glycoprotein gene expression increases with the disease stages leading to multiple myeloma it does not affect the survival of newly diagnosed patients treated with bortezomib. Moreover, RNA-seq on LP-1 cells demonstrated minimal basal P-glycoprotein expression which did not increase after exposure to bortezomib or carfilzomib. Only one (KMS-18) of nine multiple myeloma cell lines expressed P-glycoprotein, including RPMI-8226 cells that are resistant to bortezomib or carfilzomib. We hypothesized that by inhibiting P-glycoprotein multiple myeloma cell sensitivity to proteasome inhibitors would increase; however, the sensitivity of multiple myeloma cells lines to proteasome inhibition was not enhanced by the specific P-glycoprotein inhibitor tariquidar. In addition, targeting glucosylceramide synthase with eliglustat did not inhibit P-glycoprotein activity nor improve proteasome inhibitor efficacy except at a high concentration. To confirm these negative findings, tariquidar did not substantially increase the cytotoxicity of bortezomib or carfilzomib in P-glycoprotein-expressing K562/ADM cells. We conclude the following: P-glycoprotein expression may not correlate with the survival of newly diagnosed multiple myeloma patients treated with proteasome inhibitors. P-glycoprotein is poorly expressed in many multiple myeloma cell lines, and its inhibition does not appreciably enhance the efficacy of proteasome inhibitors.
Collapse
Affiliation(s)
- Rachel L Mynott
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Craig T Wallington-Beddoe
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia.,Flinders Medical Centre, Bedford Park, South Australia 5042, Australia.,Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, South Australia 5000, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000, Australia
| |
Collapse
|
6
|
Stage TB, Hu S, Sparreboom A, Kroetz DL. Role for Drug Transporters in Chemotherapy-Induced Peripheral Neuropathy. Clin Transl Sci 2020; 14:460-467. [PMID: 33142018 PMCID: PMC7993259 DOI: 10.1111/cts.12915] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/05/2020] [Indexed: 01/03/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common and dose-limiting toxicity to widely used chemotherapeutics. Although the exact molecular mechanism of chemotherapy-induced peripheral neuropathy remains elusive, there is consensus that it is caused by damage to the peripheral nervous system leading to sensory symptoms. Recently developed methodologies have provided evidence of expression of drug transporters in the peripheral nervous system. In this literature review, we explore the role for drug transporters in CIPN. First, we assessed the transport of chemotherapeutics that cause CIPN (taxanes, platins, vincristine, bortezomib, epothilones, and thalidomide). Second, we cross-referenced the transporters implicated in genetic or functional studies with CIPN with their expression in the peripheral nervous system. Several drug transporters are involved in the transport of chemotherapeutics that cause peripheral neuropathy and particularly efflux transporters, such as ABCB1 and ABCC1, are expressed in the peripheral nervous system. Previous literature has linked genetic variants in efflux transporters to higher risk of peripheral neuropathy with the taxanes paclitaxel and docetaxel and the vinca alkaloid vincristine. We propose that this might be due to accumulation of the chemotherapeutics in the peripheral nervous system due to reduced neuronal efflux capacity. Thus, concomitant administration of efflux transporter inhibitors may lead to higher risk of adverse events of drugs that cause CIPN. This might prove valuable in drug development where screening new drugs for neurotoxicity might also require drug transporter consideration. There are ongoing efforts targeting drug transporters in the peripheral nervous system to reduce intraneuronal concentrations of chemotherapeutics that cause CIPN, which might ultimately protect against this dose-limiting adverse event.
Collapse
Affiliation(s)
- Tore B Stage
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmaceutical Sciences, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmaceutical Sciences, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Abstract
![]()
The biological responses to dienone compounds with a 1,5-diaryl-3-oxo-1,4-pentadienyl
pharmacophore have been studied extensively. Despite their expected
general thiol reactivity, these compounds display considerable degrees
of tumor cell selectivity. Here we review in vitro and preclinical studies of dienone compounds including b-AP15, VLX1570,
RA-9, RA-190, EF24, HO-3867, and MCB-613. A common property of these
compounds is their targeting of the ubiquitin–proteasome system
(UPS), known to be essential for the viability of tumor cells. Gene
expression profiling experiments have shown induction of responses
characteristic of UPS inhibition, and experiments using cellular reporter
proteins have shown that proteasome inhibition is associated with
cell death. Other mechanisms of action such as reactivation of mutant
p53, stimulation of steroid receptor coactivators, and induction of
protein cross-linking have also been described. Although unsuitable
as biological probes due to widespread reactivity, dienone compounds
are cytotoxic to apoptosis-resistant tumor cells and show activity
in animal tumor models.
Collapse
Affiliation(s)
- Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stig Linder
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, SE-58183 Linköping, Sweden.,Department of Oncology and Pathology, Karolinska Institute, SE-17176 Stockholm, Sweden
| |
Collapse
|
8
|
Borjan B, Kern J, Steiner N, Gunsilius E, Wolf D, Untergasser G. Spliced XBP1 Levels Determine Sensitivity of Multiple Myeloma Cells to Proteasome Inhibitor Bortezomib Independent of the Unfolded Protein Response Mediator GRP78. Front Oncol 2020; 9:1530. [PMID: 32039016 PMCID: PMC6987373 DOI: 10.3389/fonc.2019.01530] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/18/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Mechanisms mediating resistance against the proteasome inhibition by bortezomib (BTZ) in multiple myeloma (MM) cells are still unclear. We analyzed the activation of the unfolded protein response (UPR), induction of prosurvival, and apoptotic pathways after proteasome inhibition in BTZ-sensitive and -resistant cells. Thereafter, these findings from tissue culture were proofed on MM cells of BTZ-sensitive and BTZ-refractory patients. Methods: Proteasomal and ABC transporter activities were measured in sensitive and resistant cell lines by the use of the respective substrates. TP53 gene loss and mutations were determined by cytogenetics and targeted NGS. UPR pathways, proteasome subunit levels and protein secretion were studied by Western Blot analysis, and apoptosis was determined by flow cytometry. MM cell lines were stably transfected with inducible GRP78 expression to study unfolded protein expression. Transient knock-down of GRP78 was done by RNA interference. Splicing of XBP1 and expression of GRP78 was studied by real-time PCR in CD138-enriched MM primary cells of BTZ-refractory and -sensitive patients. Results: BTZ-sensitive cells displayed lower basal proteasomal activities. Similar activities of all three major ABC transporter proteins were detected in BTZ-sensitive and resistant cells. Sensitive cells showed deficiencies in triggering canonical prosurvival UPR provoked by endoplasmic reticulum (ER) stress induction. BTZ treatment did not increase unfolded protein levels or induced GRP78-mediated UPR. BTZ-resistant cells and BTZ-refractory patients exhibited lower sXBP1 levels. Apoptosis of BTZ-sensitive cells was correlating with induction of p53 and NOXA. Tumor cytogenetics and NGS analysis revealed more frequent TP53 deletions and mutations in BTZ-refractory MM patients. Conclusions: We identified low sXBP1 levels and TP53 abnormalities as factors correlating with bortezomib resistance in MM. Therefore, determination of sXBP1 levels and TP53 status prior to BTZ treatment in MM may be beneficial to predict BTZ resistance.
Collapse
Affiliation(s)
- Bojana Borjan
- Department of Internal Medicine V, Innsbruck Medical University, Innsbruck, Austria.,Experimental Oncogenomics Group, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Johann Kern
- Experimental Oncogenomics Group, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Normann Steiner
- Department of Internal Medicine V, Innsbruck Medical University, Innsbruck, Austria
| | - Eberhard Gunsilius
- Department of Internal Medicine V, Innsbruck Medical University, Innsbruck, Austria
| | - Dominik Wolf
- Department of Internal Medicine V, Innsbruck Medical University, Innsbruck, Austria
| | - Gerold Untergasser
- Department of Internal Medicine V, Innsbruck Medical University, Innsbruck, Austria.,Experimental Oncogenomics Group, Tyrolean Cancer Research Institute, Innsbruck, Austria
| |
Collapse
|
9
|
Targeting Proteotoxic Stress in Cancer: A Review of the Role that Protein Quality Control Pathways Play in Oncogenesis. Cancers (Basel) 2019; 11:cancers11010066. [PMID: 30634515 PMCID: PMC6356294 DOI: 10.3390/cancers11010066] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/24/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
Despite significant advances in cancer diagnostics and therapeutics the majority of cancer unfortunately remains incurable, which has led to continued research to better understand its exceptionally diverse biology. As a result of genomic instability, cancer cells typically have elevated proteotoxic stress. Recent appreciation of this functional link between the two secondary hallmarks of cancer: aneuploidy (oxidative stress) and proteotoxic stress, has therefore led to the development of new anticancer therapies targeting this emerging “Achilles heel” of malignancy. This review highlights the importance of managing proteotoxic stress for cancer cell survival and provides an overview of the integral role proteostasis pathways play in the maintenance of protein homeostasis. We further review the efforts undertaken to exploit proteotoxic stress in multiple myeloma (as an example of a hematologic malignancy) and triple negative breast cancer (as an example of a solid tumor), and give examples of: (1) FDA-approved therapies in routine clinical use; and (2) promising therapies currently in clinical trials. Finally, we provide new insights gleaned from the use of emerging technologies to disrupt the protein secretory pathway and repurpose E3 ligases to achieve targeted protein degradation.
Collapse
|
10
|
Schäfer J, Burhenne J, Weiss J, Theile D. Elucidating the beneficial effects of melphalan, adriamycin, and corticoids in combination with bortezomib against multiple myeloma in vitro. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:461-466. [PMID: 30554340 DOI: 10.1007/s00210-018-01602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/06/2018] [Indexed: 11/29/2022]
Abstract
Combining bortezomib with other anti-cancer drugs or glucocorticoids is more efficient in multiple myeloma than bortezomib alone. However, the molecular mechanism of this beneficial effect is largely unknown. To investigate the effects of these compounds on bortezomib's anti-proliferative potency and its intracellular accumulation and potency to inhibit the chymotrypsin-like proteasomal subunit, seven myeloma cell lines were investigated after exposure to bortezomib alone or either combined with adriamycin plus dexamethasone (PAD regimen) or melphalan plus prednisolone (VMP regimen), respectively. PAD or VMP combinations did not alter cellular bortezomib uptake. However, PAD and VMP regimens increased bortezomib's chymotrypsin-like subunit inhibitory potency. This likely originates from indirect proteasome modulation, because adriamycin, dexamethasone, melphalan, or prednisolone did not inhibit this subunit when used alone. Strikingly, the anti-proliferative potency of bortezomib was not enhanced but slightly lowered in some cell lines when used in combinations. Adriamycin, dexamethasone, melphalan, or prednisolone can enhance bortezomib's chymotrypsin-like subunit inhibitory potency, likely by mechanisms indirectly influencing proteasome functionality.
Collapse
Affiliation(s)
- Julia Schäfer
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Dirk Theile
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
11
|
Clemens J, Welti L, Schäfer J, Seckinger A, Burhenne J, Theile D, Weiss J. Bortezomib, carfilzomib and ixazomib do not mediate relevant transporter-based drug-drug interactions. Oncol Lett 2017; 14:3185-3192. [PMID: 28927064 DOI: 10.3892/ol.2017.6560] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/09/2017] [Indexed: 01/14/2023] Open
Abstract
In order to optimize the clinical application of an increasing number of proteasome inhibitors, investigations into the differences between their respective pharmacodynamic and pharmacokinetic profiles, including their ability to act as a perpetrator in drug-drug interactions, are warranted. Therefore, in the present in vitro study, it was investigated whether bortezomib, carfilzomib and ixazomib are able to alter the expression, and/or the activity, of specific drug transporters generally relevant for pharmacokinetic drug-drug interactions. Through induction experiments, the current study demonstrated that the aforementioned three proteasome inhibitors do not induce mRNA expression of the transporter genes ATP binding cassette (ABC)B1, C1, C2 and G2 in the LS180 cell line, which was used as a model for systemic induction. By contrast, in certain myeloma cell lines, ixazomib provoked minor alterations in individual transporter gene expression. None of the proteasome inhibitors tested relevantly inhibited drug transporters within the range of physiological plasma concentrations. Taken together, transporter-based drug-drug interactions are unlikely to be a primary concern in the clinical application of the tested compounds.
Collapse
Affiliation(s)
- Jannick Clemens
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Lukas Welti
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Julia Schäfer
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Anja Seckinger
- Department of Internal Medicine V, Oncology, Hematology and Rheumatology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Dirk Theile
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
12
|
Schäfer J, Welti L, Seckinger A, Burhenne J, Theile D, Weiss J. Cellular effect and efficacy of carfilzomib depends on cellular net concentration gradient. Cancer Chemother Pharmacol 2017; 80:71-79. [DOI: 10.1007/s00280-017-3335-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/05/2017] [Indexed: 12/16/2022]
|
13
|
Proteasome inhibition correlates with intracellular bortezomib concentrations but not with antiproliferative effects after bolus treatment in myeloma cell lines. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2016; 389:1091-101. [DOI: 10.1007/s00210-016-1276-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/10/2016] [Indexed: 11/26/2022]
|