1
|
Shi W, Huang Q, Xie J, Wang H, Yu X, Zhou Y. CKS1B as Drug Resistance-Inducing Gene-A Potential Target to Improve Cancer Therapy. Front Oncol 2020; 10:582451. [PMID: 33102238 PMCID: PMC7545642 DOI: 10.3389/fonc.2020.582451] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer is a threat to human health and life. Although previously centered on chemical drug treatments, cancer treatment has entered an era of precision targeted therapy. Targeted therapy entails precise guidance, allowing the selective killing of cancer cells and thereby reducing damage to healthy tissues. Therefore, the need to explore potential targets for tumor treatment is vital. Cyclin-dependent kinase regulatory subunit 1B (CKS1B), a member of the conserved cyclin kinase subunit 1 (CKS1) protein family, plays an essential role in cell cycling. A large number of studies have shown that CKS1B is associated with the pathogenesis of many human cancers and closely related to drug resistance. Here, we describe the current understanding of the cellular functions of CKS1B and its underlying mechanisms, summarize a recent study of CKS1B as a target for cancer treatment and discuss the potential of CKS1B as a therapeutic target.
Collapse
Affiliation(s)
- Wenwen Shi
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiudi Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiacui Xie
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - He Wang
- Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiyong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yi Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Chai Z, Wang L, Zheng Y, Liang N, Wang X, Zheng Y, Zhang Z, Zhao C, Zhu T, Liu C. PADI3 plays an antitumor role via the Hsp90/CKS1 pathway in colon cancer. Cancer Cell Int 2019; 19:277. [PMID: 31708688 PMCID: PMC6833139 DOI: 10.1186/s12935-019-0999-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND CKS1 is highly expressed in colon cancer tissues, and is essential for cancer cell proliferation. The downstream molecular mechanism of CKS1 has been fully studied, but the upstream regulatory mechanism of it is still unclear. Earlier research found that PADI3 plays its anti-tumor roles via suppress cell proliferation, in this study, we found that the expression pattern of PADI3 and CKS1 are negatively correlated in colon cancer tissues, and overexpression of PADI3 can partly reverse CKS1 induced cancer cell proliferation. However, the regulatory mechanism of PADI3 and CKS1 in the tumorigenesis of colon cancer is still unclear and need to do further research. METHODS Western blot and real-time PCR were used to detect the expression levels of genes. CCK-8 and colony formation assays were used to examine cell proliferation and colony formation ability. Overexpression and rescue experiments were used to study the molecular mechanism of CKS1 in colon cancer cells, BALB/c nude mice were used to study the function of CKS1 in vivo. RESULTS CKS1 is highly expressed in colon cancer tissues, and the overexpression of CKS1 promotes cell proliferation and colony formation in both HCT116 (originating from primary colon cancer) and SW620 (originating from metastatic tumor nodules of colon cancer) cells. CKS1-expressing HCT116 cells produced larger tumors than the control cells. The expression pattern of PADI3 and CKS1 are negatively correlation in clinical samples of colon cancer, further study indicates that PADI3 can significantly decrease Hsp90 and CKS1 expression, and Hsp90 is essential for PADI3 to downregulate CKS1expression in colon cancer cells. CONCLUSIONS PADI3 exerts its antitumor activity by inhibiting Hsp90 and CKS1 expression, and Hsp90 is essential for PADI3 to suppress CKS1 expression.
Collapse
Affiliation(s)
- Zhengbin Chai
- Department of Laboratory Medicine, Jinan Infectious Disease Hospital, Jingshi Road 22029, Jinan, 250021 Shandong People’s Republic of China
| | - Li Wang
- Department of Obstetrics, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 China
| | - Yabing Zheng
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 China
| | - Na Liang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 China
| | - Xiwei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 China
| | - Yingying Zheng
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 China
| | - Zhiwei Zhang
- Department of Obstetrics, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 China
| | - Chuanxi Zhao
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250014 China
| | - Tingting Zhu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250014 China
| | - Chunyan Liu
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 China
| |
Collapse
|
3
|
Khattar V, Lee JH, Wang H, Bastola S, Ponnazhagan S. Structural determinants and genetic modifications enhance BMP2 stability and extracellular secretion. FASEB Bioadv 2019. [PMID: 31225515 DOI: 10.1096/fba.2018‐00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The short half-life and use of recombinant bone morphogenetic protein (BMP)-2 in large doses poses major limitations in the clinic. Events regulating post-translational processing and degradation of BMP2 in situ, linked to its secretion, have not been understood. Towards identifying mechanisms regulating intracellular BMP2 stability, we first discovered that inhibiting proteasomal degradation enhances both intracellular BMP2 level and its extracellular secretion. Next, we identified BMP2 degradation occurs through an ubiquitin-mediated mechanism. Since ubiquitination precedes proteasomal turnover and mainly occurs on lysine residues of nascent proteins, we systematically mutated individual lysine residues within BMP2 and tested them for enhanced stability. Results revealed that substitutions on four lysine residues within the pro-BMP2 region and three in the mature region increased both BMP2 turnover and extracellular secretion. Structural modeling revealed key lysine residues involved in proteasomal degradation occupy a lysine cluster near proprotein convertase cleavage site. Interestingly, mutations within these residues did not affect biological activity of BMP2. These data suggest preventing intracellular proteasomal loss of BMP2 through genetic modifications can overcome limitations related to its short half-life.
Collapse
Affiliation(s)
- Vinayak Khattar
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Joo Hyoung Lee
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Hong Wang
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Soniya Bastola
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, AL 35294
| | | |
Collapse
|
4
|
Khattar V, Lee JH, Wang H, Bastola S, Ponnazhagan S. Structural determinants and genetic modifications enhance BMP2 stability and extracellular secretion. FASEB Bioadv 2019; 1:180-190. [PMID: 31225515 PMCID: PMC6586023 DOI: 10.1096/fba.2018-00023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/06/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
The short half-life and use of recombinant bone morphogenetic protein (BMP)-2 in large doses poses major limitations in the clinic. Events regulating post-translational processing and degradation of BMP2 in situ, linked to its secretion, have not been understood. Towards identifying mechanisms regulating intracellular BMP2 stability, we first discovered that inhibiting proteasomal degradation enhances both intracellular BMP2 level and its extracellular secretion. Next, we identified BMP2 degradation occurs through an ubiquitin-mediated mechanism. Since ubiquitination precedes proteasomal turnover and mainly occurs on lysine residues of nascent proteins, we systematically mutated individual lysine residues within BMP2 and tested them for enhanced stability. Results revealed that substitutions on four lysine residues within the pro-BMP2 region and three in the mature region increased both BMP2 turnover and extracellular secretion. Structural modeling revealed key lysine residues involved in proteasomal degradation occupy a lysine cluster near proprotein convertase cleavage site. Interestingly, mutations within these residues did not affect biological activity of BMP2. These data suggest preventing intracellular proteasomal loss of BMP2 through genetic modifications can overcome limitations related to its short half-life.
Collapse
Affiliation(s)
- Vinayak Khattar
- Department of PathologyThe University of Alabama at BirminghamBirminghamAL
| | - Joo Hyoung Lee
- Department of PathologyThe University of Alabama at BirminghamBirminghamAL
| | - Hong Wang
- Department of PathologyThe University of Alabama at BirminghamBirminghamAL
| | - Soniya Bastola
- Department of NeurosurgeryThe University of Alabama at BirminghamBirminghamAL
| | | |
Collapse
|
5
|
Sisinni L, Maddalena F, Condelli V, Pannone G, Simeon V, Li Bergolis V, Lopes E, Piscazzi A, Matassa DS, Mazzoccoli C, Nozza F, Lettini G, Amoroso MR, Bufo P, Esposito F, Landriscina M. TRAP1 controls cell cycle G2-M transition through the regulation of CDK1 and MAD2 expression/ubiquitination. J Pathol 2017; 243:123-134. [PMID: 28678347 DOI: 10.1002/path.4936] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/23/2017] [Accepted: 06/21/2017] [Indexed: 12/16/2022]
Abstract
Regulation of tumour cell proliferation by molecular chaperones is still a complex issue. Here, the role of the HSP90 molecular chaperone TRAP1 in cell cycle regulation was investigated in a wide range of human breast, colorectal, and lung carcinoma cell lines, and tumour specimens. TRAP1 modulates the expression and/or the ubiquitination of key cell cycle regulators through a dual mechanism: (i) transcriptional regulation of CDK1, CYCLIN B1, and MAD2, as suggested by gene expression profiling of TRAP1-silenced breast carcinoma cells; and (ii) post-transcriptional quality control of CDK1 and MAD2, being the ubiquitination of these two proteins enhanced upon TRAP1 down-regulation. Mechanistically, TRAP1 quality control on CDK1 is crucial for its regulation of mitotic entry, since TRAP1 interacts with CDK1 and prevents CDK1 ubiquitination in cooperation with the proteasome regulatory particle TBP7, this representing the limiting factor in TRAP1 regulation of the G2-M transition. Indeed, TRAP1 silencing results in enhanced CDK1 ubiquitination, lack of nuclear translocation of CDK1/cyclin B1 complex, and increased MAD2 degradation, whereas CDK1 forced up-regulation partially rescues low cyclin B1 and MAD2 levels and G2-M transit in a TRAP1-poor background. Consistently, the CDK1 inhibitor RO-3306 is less active in a TRAP1-high background. Finally, a significant correlation was observed between TRAP1 and Ki67, CDK1 and/or MAD2 expression in breast, colorectal, and lung human tumour specimens. This study represents the first evidence that TRAP1 is relevant in the control of the complex machinery that governs cell cycle progression and mitotic entry and provides a strong rationale to regard TRAP1 as a biomarker to select tumours with deregulated cell cycle progression and thus likely poorly responsive to novel cell cycle inhibitors. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lorenza Sisinni
- Laboratory of Pre-clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Francesca Maddalena
- Laboratory of Pre-clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Valentina Condelli
- Laboratory of Pre-clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Giuseppe Pannone
- Anatomic Pathology Unit, Department of Clinic and Experimental Medicine, University of Foggia, Italy
| | - Vittorio Simeon
- Laboratory of Pre-clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Valeria Li Bergolis
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Elvira Lopes
- Laboratory of Pre-clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Annamaria Piscazzi
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Italy
| | - Carmela Mazzoccoli
- Laboratory of Pre-clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Filomena Nozza
- Laboratory of Pre-clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Giacomo Lettini
- Laboratory of Pre-clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Maria Rosaria Amoroso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Italy
| | - Pantaleo Bufo
- Anatomic Pathology Unit, Department of Clinic and Experimental Medicine, University of Foggia, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Italy
| | - Matteo Landriscina
- Laboratory of Pre-clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy.,Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Italy
| |
Collapse
|
6
|
Wang H, Sun M, Guo J, Ma L, Jiang H, Gu L, Wen H, Liao S, Chen J, Zeng B, Li Y, Li Y, Yu X, Feng Y, Zhou Y. 3-O-(Z)-coumaroyloleanolic acid overcomes Cks1b-induced chemoresistance in lung cancer by inhibiting Hsp90 and MEK pathways. Biochem Pharmacol 2017; 135:35-49. [DOI: 10.1016/j.bcp.2017.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/06/2017] [Indexed: 02/09/2023]
|
7
|
Dobashi Y, Tsubochi H, Minegishi K, Kitagawa M, Otani S, Ooi A. Regulation of p27 by ubiquitin ligases and its pathological significance in human lung carcinomas. Hum Pathol 2017; 66:67-78. [PMID: 28601655 DOI: 10.1016/j.humpath.2017.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 12/13/2022]
Abstract
Down-regulation of cyclin-dependent kinase inhibitor protein p27, due to enhanced degradation, is frequently observed in various cancers. The ubiquitin ligases that mediate this degradation have been identified as S-phase kinase-associated protein-2 (Skp2), Kip1 ubiquitylation-promoting complex (KPC), and p53-inducible protein with RING-H2 domain (Pirh2) as well. We investigated the correlation among expression of these 3 ligases and p27 status in surgical specimens of human lung carcinomas by immunohistochemical analysis. Among 93 cases, expressions of p27, Skp2, KPC, and Pirh2 were found in 89.2%, 59.1%, 59.1%, and 67.7%, respectively. Down-regulation of p27 in cancer cells was frequently observed in adenocarcinoma (AC) and squamous cell carcinoma (SCC), but not in small cell carcinoma (SmCC). Overexpression of ubiquitin ligases was variously observed among histological types: Skp2 was more frequently observed in SCC and SmCC, KPC in SCC and Pirh2 in AC, followed by SCC. Several novel findings were obtained: (i) cytoplasmic p27 was observed in 8.6%, most frequently in SCC (13.3%), and correlated with nodal metastasis (P=.0044), (ii) significant inverse correlation between nuclear p27 and Pirh2 expression was observed by statistical analysis and at the cellular level, and (iii) cytoplasmic Pirh2 and total (cytoplasmic and/or nuclear) Pirh2 were significantly correlated with the nodal status (P=.0225, 0.0314), the pathological stage (P=.0213, 0.0475) and recurrence-free survival (P=.0194, 0.0482, respectively) in AC. Altogether, our data suggests that p27 and its cognate ubiquitin ligases are specifically involved in the clinical profiles, and thus, molecular targeting of these ubiquitin ligases, in particular, Pirh2, may have therapeutic value for human lung carcinomas.
Collapse
Affiliation(s)
- Yoh Dobashi
- Department of Pathology, Saitama Medical Center, Jichi Medical University, Omiya, Saitama, 330-8503, Japan.
| | - Hiroyoshi Tsubochi
- Department of Thoracic Surgery, Saitama Medical Center, Jichi Medical University, Omiya, Saitama, 330-8503, Japan
| | - Kentaro Minegishi
- Department of Thoracic Surgery, Saitama Medical Center, Jichi Medical University, Omiya, Saitama, 330-8503, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Shinichi Otani
- Department of Thoracic Surgery, Saitama Medical Center, Jichi Medical University, Omiya, Saitama, 330-8503, Japan
| | - Akishi Ooi
- Department of Molecular and Cellular Pathology, Kanazawa University Graduate School of Medical Science, Kanazawa, 920-8640, Ishikawa, Japan
| |
Collapse
|
8
|
Preclinical Study of AUY922, a Novel Hsp90 Inhibitor, in the Treatment of Esophageal Adenocarcinoma. Ann Surg 2017; 264:297-304. [PMID: 26445473 DOI: 10.1097/sla.0000000000001467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To assess the efficacy of heat-shock protein 90 (Hsp90) inhibitor, NVP-AUY922-AG (AUY922), in the treatment of esophageal adenocarcinoma (EAC) in vitro and in vivo. BACKGROUND EAC is a leading cause of cancer death, and current treatment options are limited. Hsp90, a chaperone protein that regulates several oncoproteins, is upregulated in EAC, and may be a novel target for therapy. METHODS In vitro, EAC cell lines were utilized to evaluate AUY922, alone and in combination with 5-fluorouracil (5-FU) and cisplatin. BrdU ELISA and flow cytometry were used to assess proliferation and measure apoptosis, respectively. Western blot and RT-PCR were performed to quantitate Hsp90 pathway expression. In vivo, esophagojejunostomy was performed on rats and treatment animals received AUY922 32 to 40 weeks postoperatively. Drug efficacy was evaluated with magnetic resonance imaging (MRI), endoscopic biopsy, gross histological evaluation, and Hsp90 pathway expression. RESULTS In vitro, AUY922 demonstrated antiproliferative activity in both cell lines and showed enhanced efficacy with cisplatin and 5-FU. Western Blot and RT-PCR demonstrated downregulation of CDK1 and CDK4 and upregulation of Hsp72. In vivo, AUY922 showed decrease in tumor volume in 36.4% of rats (control = 9.4%), increase in 9.1% (control = 37.5%), and stable disease in 54.5% (control = 43.7%). Necropsy confirmed the presence of EAC in 50% of treatment animals and 75% of control animals. mRNA expression, pre- and posttreatment, demonstrated significant downregulation of MIF, Hsp70, Hsp90β, and CDK4, and upregulation of Hsp72. CONCLUSIONS AUY922 exhibits antitumor efficacy in vitro and in vivo for EAC, suggesting the need for human clinical trials.
Collapse
|
9
|
HSP90 activity is required for MLKL oligomerisation and membrane translocation and the induction of necroptotic cell death. Cell Death Dis 2016; 7:e2051. [PMID: 26775703 PMCID: PMC4816171 DOI: 10.1038/cddis.2015.386] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 01/02/2023]
Abstract
Necroptosis is a caspase-independent form of regulated cell death that has been implicated in the development of a range of inflammatory, autoimmune and neurodegenerative diseases. The pseudokinase, Mixed Lineage Kinase Domain-Like (MLKL), is the most terminal known obligatory effector in the necroptosis pathway, and is activated following phosphorylation by Receptor Interacting Protein Kinase-3 (RIPK3). Activated MLKL translocates to membranes, leading to membrane destabilisation and subsequent cell death. However, the molecular interactions governing the processes downstream of RIPK3 activation remain poorly defined. Using a phenotypic screen, we identified seven heat-shock protein 90 (HSP90) inhibitors that inhibited necroptosis in both wild-type fibroblasts and fibroblasts expressing an activated mutant of MLKL. We observed a modest reduction in MLKL protein levels in human and murine cells following HSP90 inhibition, which was only apparent after 15 h of treatment. The delayed reduction in MLKL protein abundance was unlikely to completely account for defective necroptosis, and, consistent with this, we also found inhibition of HSP90 blocked membrane translocation of activated MLKL. Together, these findings implicate HSP90 as a modulator of necroptosis at the level of MLKL, a function that complements HSP90's previously demonstrated modulation of the upstream necroptosis effector kinases, RIPK1 and RIPK3.
Collapse
|
10
|
NBM-T-BBX-OS01, Semisynthesized from Osthole, Induced G1 Growth Arrest through HDAC6 Inhibition in Lung Cancer Cells. Molecules 2015; 20:8000-19. [PMID: 25946558 PMCID: PMC6272357 DOI: 10.3390/molecules20058000] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 01/15/2023] Open
Abstract
Disrupting lung tumor growth via histone deacetylases (HDACs) inhibition is a strategy for cancer therapy or prevention. Targeting HDAC6 may disturb the maturation of heat shock protein 90 (Hsp90) mediated cell cycle regulation. In this study, we demonstrated the effects of semisynthesized NBM-T-BBX-OS01 (TBBX) from osthole on HDAC6-mediated growth arrest in lung cancer cells. The results exhibited that the anti-proliferative activity of TBBX in numerous lung cancer cells was more potent than suberoylanilide hydroxamic acid (SAHA), a clinically approved pan-HDAC inhibitor, and the growth inhibitory effect has been mediated through G1 growth arrest. Furthermore, the protein levels of cyclin D1, CDK2 and CDK4 were reduced while cyclin E and CDK inhibitor, p21Waf1/Cip1, were up-regulated in TBBX-treated H1299 cells. The results also displayed that TBBX inhibited HDAC6 activity via down-regulation HDAC6 protein expression. TBBX induced Hsp90 hyper-acetylation and led to the disruption of cyclin D1/Hsp90 and CDK4/Hsp90 association following the degradation of cyclin D1 and CDK4 proteins through proteasome. Ectopic expression of HDAC6 rescued TBBX-induced G1 arrest in H1299 cells. Conclusively, the data suggested that TBBX induced G1 growth arrest may mediate HDAC6-caused Hsp90 hyper-acetylation and consequently increased the degradation of cyclin D1 and CDK4.
Collapse
|