1
|
Barbosa MAG, Kruschel RD, Almeida MJ, Pereira RF, Xavier CPR, McCarthy FO, Vasconcelos MH. Isoquinolinequinone N-oxides with diverging mechanisms of action induce collateral sensitivity against multidrug resistant cancer cells. Eur J Pharmacol 2025; 988:177234. [PMID: 39725135 DOI: 10.1016/j.ejphar.2024.177234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Multidrug resistance (MDR) is a major challenge in cancer research. Collateral sensitizers, compounds that exploit the enhanced defense mechanisms of MDR cells as weaknesses, are a proposed strategy to overcome MDR. Our previous work reported the synthesis of two novel Isoquinolinequinone (IQQ) N-oxides that induce collateral sensitivity in MDR ABCB1-overexpressing non-small cell lung cancer (NSCLC) and colorectal cancer cells. Herein, we aimed to investigate underlying mechanisms of antitumor and collateral sensitivity activity of these compounds. We evaluated their effect on cancer cell viability, proliferation, cell cycle profile, and studied their cytotoxicity in non-tumorigenic cells. Their antitumor effect was further studied using NSCLC and colorectal cancer MDR spheroids. To understand underlying collateral sensitivity mechanisms, we assessed the effect on rhodamine-123 accumulation, ROS production, GSH/GSSG balance and expression of key proteins associated with metabolism and redox balance. Both compounds reduced the viability of MDR cells, as 2D cultures or as spheroids, without decreasing the growth of a human nontumorigenic cell line, and increased rhodamine-123 accumulation in MDR NCI-H460/R cells. Moreover, RK2 increased ROS, disrupted GSH balance, and altered expression of proteins associated with oxidative stress protection, particularly in NCI-H460/R cells. The collateral sensitivity effect of RK3 could not be attributed to redox balance disruption, but increased IDH1 expression following treatment suggests a potential metabolic shift in MDR cells. These findings highlight RK2 and RK3 as promising candidates for next stages of drug development. Their distinct mechanisms of action could lead to therapeutic solutions for MDR-related cancers, specifically linked to ABCB1 overexpression.
Collapse
Affiliation(s)
- Mélanie A G Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135, Porto, Portugal; FFUP - Faculty of Pharmacy of the University of Porto, 4050-313, Porto, Portugal
| | - Ryan D Kruschel
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, T12 K8AF, Ireland
| | - Maria João Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135, Porto, Portugal
| | - Rúben F Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Biofabrication Group, INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, 4585-116, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, 4585-116, Portugal
| | - Florence O McCarthy
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, T12 K8AF, Ireland.
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135, Porto, Portugal; FFUP - Faculty of Pharmacy of the University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
2
|
Podolski-Renić A, Chigriai M, Jovanović Stojanov S, Grozdanić M, Lupšić E, Nikolić I, Dragoj M, Dinić J, Pešić M. LB-100 Enhances Drugs Efficacy Through Inhibition of P-Glycoprotein Expression in Multidrug-Resistant Glioblastoma and Non-Small Cell Lung Carcinoma Cellular Models. Pharmaceutics 2025; 17:189. [PMID: 40006556 PMCID: PMC11859366 DOI: 10.3390/pharmaceutics17020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/17/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: This study explores the potential of LB-100 (a protein phosphatase 2A-PP2A inhibitor) combined with adavosertib (a WEE1 kinase inhibitor) and doxorubicin (DOX), to overcome multidrug resistance (MDR) in cancer cells and enhance treatment efficacy. Methods: We evaluated LB-100 combinations with adavosertib and DOX in patient-derived glioblastoma and non-small cell lung carcinoma cells (NSCLCs) using a real-time cell analyzer. Effectiveness was also assessed through immunofluorescence assay, and interactions were analyzed via SynergyFinder+. We also examined P-glycoprotein (P-gp) expression and drug resistance genes' expression in MDR glioblastoma and NSCLCs after LB-100 treatment, as well as LB-100 sensitizing effect on DOX and DOX accumulation. Results: LB-100 significantly boosts the effectiveness of adavosertib and DOX after multiple applications. It also enhances these drugs' cytotoxicity in a single application without acting synergistically. Additionally, LB-100 reduces P-gp expression in MDR glioblastoma and NSCLCs, sensitizing them to DOX and increasing its accumulation. Conclusions: LB-100 enhances the effectiveness of drugs against MDR cancer cells, presenting a promising strategy to overcome drug resistance in glioblastoma and NSCLCs through P-gp modulation.
Collapse
Affiliation(s)
- Ana Podolski-Renić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (A.P.-R.); (S.J.S.); (M.G.); (E.L.); (M.D.); (J.D.)
| | | | - Sofija Jovanović Stojanov
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (A.P.-R.); (S.J.S.); (M.G.); (E.L.); (M.D.); (J.D.)
| | - Marija Grozdanić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (A.P.-R.); (S.J.S.); (M.G.); (E.L.); (M.D.); (J.D.)
| | - Ema Lupšić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (A.P.-R.); (S.J.S.); (M.G.); (E.L.); (M.D.); (J.D.)
| | - Igor Nikolić
- Clinic for Neurosurgery, Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia;
- School of Medicine, University of Belgrade, Doktora Subotića 8, 11000 Belgrade, Serbia
| | - Miodrag Dragoj
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (A.P.-R.); (S.J.S.); (M.G.); (E.L.); (M.D.); (J.D.)
| | - Jelena Dinić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (A.P.-R.); (S.J.S.); (M.G.); (E.L.); (M.D.); (J.D.)
| | - Milica Pešić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (A.P.-R.); (S.J.S.); (M.G.); (E.L.); (M.D.); (J.D.)
| |
Collapse
|
3
|
Fási L, Gonda T, Tóth N, Vass M, Gyovai A, Nagy V, Ocsovszki I, Zupkó I, Kúsz N, Nové M, Spengler G, Berkecz R, Wang HC, Chang FR, Hunyadi A. Preparation of Dearomatized p-Coumaric Acid Derivatives as DNA Damage Response Inhibitors with Potent In Vitro Antitumor Effect. ChemMedChem 2024; 19:e202300675. [PMID: 38923384 DOI: 10.1002/cmdc.202300675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Our research group previously identified graviquinone (1) as a promising antitumor metabolite that is formed in situ when the antioxidant methyl caffeate scavenges free radicals. Furthermore, it exerted a DNA damaging effect on cancer cells and a DNA protective effect on normal keratinocytes. To expand and explore chemical space around qraviquinone, in the current work we synthesized 9 new alkyl-substituted derivatives and tested their in vitro antitumor potential. All new compounds bypassed ABCB1-mediated multidrug resistance and showed highly different cell line specificity compared with 1. All compounds were more potent in MDA-MB-231 than on MCF-7 cells. The n-butyl-substituted derivatives 2 and 8 modulated the cell cycle and inhibited the ATR-mediated phosphorylation of checkpoint kinase-1 in MCF-7 cells. As a significant expansion of our previous findings, our results highlight the potential antitumor value of alkyl-substituted graviquinone derivatives.
Collapse
Affiliation(s)
- Laura Fási
- Institute of Pharmacognosy, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary
- Graduate Institute of Natural Products, Kaohsiung Medical University, Shih-Chuan 1st Rd. 100, Kaohsiung, 807, Taiwan R.O.C
| | - Tímea Gonda
- Institute of Pharmacognosy, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary
| | - Noémi Tóth
- Institute of Pharmacognosy, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary
| | - Máté Vass
- Institute of Pharmacognosy, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary
| | - András Gyovai
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary
| | - Viktória Nagy
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary
| | - Imre Ocsovszki
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm sq. 9, H-6720, Szeged, Hungary
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary
| | - Norbert Kúsz
- Institute of Pharmacognosy, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary
| | - Márta Nové
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis str. 6, H-6725, Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis str. 6, H-6725, Szeged, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, University of Szeged, Somogyi str. 4, H-6720, Szeged, Hungary
| | - Hui-Chun Wang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Shih-Chuan 1st Rd. 100, Kaohsiung, 807, Taiwan R.O.C
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Shih-Chuan 1st Rd. 100, Kaohsiung, 807, Taiwan R.O.C
| | - Attila Hunyadi
- Institute of Pharmacognosy, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary
- HUN-REN-SZTE Biologically Active Natural Products Research Group, Eötvös str. 6, H-6720, Szeged, Hungary
- Interdisciplinary Centre for Natural Products, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary
| |
Collapse
|
4
|
Stojković P, Kostić A, Lupšić E, Jovanović NT, Novaković M, Nedialkov P, Trendafilova A, Pešić M, Opsenica IM. Novel hybrids of sclareol and 1,2,4-triazolo[1,5-a]pyrimidine show collateral sensitivity in multidrug-resistant glioblastoma cells. Bioorg Chem 2023; 138:106605. [PMID: 37201322 DOI: 10.1016/j.bioorg.2023.106605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
The synthesis of 24 hybrid molecules, consisting of naturally occurring sclareol (SCL) and synthetic 1,2,4-triazolo[1,5-a]pyrimidines (TPs), is described. New compounds were designed with the aim of improving the cytotoxic properties, activity, and selectivity of the parent compounds. Six analogs (12a-f) contained 4-benzylpiperazine linkage, while 4-benzyldiamine linkage was present in eighteen derivatives (12g-r and 13a-f). Hybrids 13a-f consist of two TP units. After purification, all hybrids (12a-r and 13a-f), as well as their precursors (9a-e and 11a-c), were tested on human glioblastoma U87 cells. More than half of the tested synthesized molecules, 16 out of 31, caused a significant reduction of U87 cell viability (more than 75% reduction) at 30 µM. The concentration-dependent cytotoxicity of these 16 compounds was also examined on U87 cells, corresponding multidrug-resistant (MDR) U87-TxR cells with increased P-glycoprotein (P-gp) expression and activity, and normal lung fibroblasts MRC-5. Importantly, 12l and 12r were active in the nanomolar range, while seven compounds (11b, 11c, 12i, 12l, 12n, 12q, and 12r) were more selective towards glioblastoma cells than SCL. All compounds except 12r evaded MDR, showing even better cytotoxicity in U87-TxR cells. In particular, 11c, 12a, 12g, 12j, 12k, 12m, 12n, and SCL showed collateral sensitivity. Hybrid compounds 12l, 12q, and 12r decreased P-gp activity to the same extent as a well-known P-gp inhibitor - tariquidar (TQ). Hybrid compound 12l and its precursor 11c affected different cellular processes including the cell cycle, cell death, and mitochondrial membrane potential, and changed the levels of reactive oxygen and nitrogen species (ROS/RNS) in glioblastoma cells. Collateral sensitivity towards MDR glioblastoma cells was caused by the modulation of oxidative stress accompanied by inhibition of mitochondria.
Collapse
Affiliation(s)
- Pavle Stojković
- University of Belgrade - Faculty of Chemistry, PO Box 51, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Ana Kostić
- Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Ema Lupšić
- Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Nataša Terzić Jovanović
- University of Belgrade - Institute of Chemistry, Technology, and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11000 Belgrade, Serbia
| | - Miroslav Novaković
- University of Belgrade - Institute of Chemistry, Technology, and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11000 Belgrade, Serbia.
| | - Paraskev Nedialkov
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2, Dunav St., 1000, Sofia, Bulgaria
| | - Antoaneta Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 9, 1113, Sofia, Bulgaria
| | - Milica Pešić
- Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Igor M Opsenica
- University of Belgrade - Faculty of Chemistry, PO Box 51, Studentski Trg 16, 11158 Belgrade, Serbia.
| |
Collapse
|
5
|
Gao X, Aguanno D, Board M, Callaghan R. Exploiting the metabolic energy demands of drug efflux pumps provides a strategy to overcome multidrug resistance in cancer. Biochim Biophys Acta Gen Subj 2021; 1865:129915. [PMID: 33965440 DOI: 10.1016/j.bbagen.2021.129915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND P-glycoprotein (P-gp) is a prevalent resistance mediator and it requires considerable cellular energy to ensure ATP dependent efflux of anticancer drugs. The glycolytic pathway generates the majority of catabolic energy in cancer cells; however, the high rates of P-gp activity places added strain on its inherently limited capacity to generate ATP. This is particularly relevant for compounds such as verapamil that are believed to trap P-gp in a futile transport process that requires continuing ATP consumption. Ultimately, this leads to cell death and the hypersensitivity of resistant cells to verapamil is termed collateral sensitivity. RESULTS We show that the addition of verapamil to resistant cells produces a prominent reduction in ATP levels that supports the idea of disrupted energy homeostasis. Even in the absence of verapamil, P-gp expressing cells display near maximal rates of glycolysis and oxidative phosphorylation, which prevents an adequate response to the demand for ATP to sustain transport activity. Moreover, the near perpetually maximal rate of oxidative phosphorylation in the presence of verapamil resulted in elevated levels of reactive oxygen species that affect cell survival and underscore collateral sensitivity. CONCLUSIONS Our results demonstrate that the strained metabolic profiles of P-gp expressing resistant cancer cells can be overwhelmed by additional ATP demands. GENERAL SIGNIFICANCE Consequently, collateral sensitising drugs may overcome the resistant phenotype by exploiting, rather than inhibiting, the energy demanding activity of pumps such as P-gp.
Collapse
Affiliation(s)
- Xuexin Gao
- Human Disease and Membrane Transport Laboratory, Division of Biomedical Science & Biochemistry, Research School of Biology and Medical School, The Australian National University, Canberra 2601, Australia
| | - Doriane Aguanno
- Human Disease and Membrane Transport Laboratory, Division of Biomedical Science & Biochemistry, Research School of Biology and Medical School, The Australian National University, Canberra 2601, Australia
| | - Mary Board
- St. Hilda's College, University of Oxford, Oxford OX4 1DY, UK
| | - Richard Callaghan
- Human Disease and Membrane Transport Laboratory, Division of Biomedical Science & Biochemistry, Research School of Biology and Medical School, The Australian National University, Canberra 2601, Australia.
| |
Collapse
|
6
|
Jovanović M, Dragoj M, Zhukovsky D, Dar'in D, Krasavin M, Pešić M, Podolski-Renić A. Novel TrxR1 Inhibitors Show Potential for Glioma Treatment by Suppressing the Invasion and Sensitizing Glioma Cells to Chemotherapy. Front Mol Biosci 2020; 7:586146. [PMID: 33134322 PMCID: PMC7573255 DOI: 10.3389/fmolb.2020.586146] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/10/2020] [Indexed: 01/13/2023] Open
Abstract
Currently, available glioblastoma (GBM) treatment remains ineffective, with relapse after initial response and low survival rate of GBM patients. The reasons behind limited capacities for GBM treatment are high tumor heterogeneity, invasiveness, and occurrence of drug resistance. Therefore, developing novel therapeutic strategies is of utmost importance. Thioredoxin reductase (TrxR) is a novel, promising target due to its overexpression in many cancer types and important role in cancer progression. Previous research on Ugi-type Michael acceptors–inhibitors of TrxR showed desirable anticancer properties, with significant selectivity toward cancer cells. Herein, two TrxR inhibitors, 5 and 6, underwent in-depth study on multidrug-resistant (MDR) glioma cell lines. Besides the antioxidative effects, 5 and 6 induced cell death, decreased cell proliferation, and suppressed invasion and migration of glioma cells. Both compounds showed a synergistic effect in combination with temozolomide (TMZ), a first-line chemotherapeutic for GBM treatment. Moreover, 5 and 6 affected activity of P-glycoprotein extrusion pump that could be found in cancer cells and in the blood–brain barrier (BBB), thus showing potential for suppressing MDR phenotype in cancer cells and evading BBB. In conclusion, investigated TrxR inhibitors are effective anticancer compounds, acting through inhibition of the thioredoxin system and perturbation of antioxidative defense systems of glioma cells. They are suitable for combining with other chemotherapeutics, able to surpass the BBB and overcome MDR. Thus, our findings suggest further exploration of Ugi-type Michael acceptors–TrxR inhibitors’ potential as an adjuvant therapy for GBM treatment.
Collapse
Affiliation(s)
- Mirna Jovanović
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miodrag Dragoj
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Daniil Zhukovsky
- Institute of Chemistry, Saint Petersburg State University, Russian Federation, Saint Petersburg, Russia
| | - Dmitry Dar'in
- Institute of Chemistry, Saint Petersburg State University, Russian Federation, Saint Petersburg, Russia
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, Russian Federation, Saint Petersburg, Russia
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Influence of the Phenological State of in the Antioxidant Potential and Chemical Composition of Ageratina havanensis. Effects on the P-Glycoprotein Function. Molecules 2020; 25:molecules25092134. [PMID: 32370149 PMCID: PMC7248889 DOI: 10.3390/molecules25092134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/19/2020] [Accepted: 04/30/2020] [Indexed: 11/20/2022] Open
Abstract
Ageratina havanensis (Kunth) R. M. King & H. Robinson is a species of flowering shrub in the family Asteraceae, native to the Caribbean and Texas. The aim of this work was to compare the quantitative chemical composition of extracts obtained from Ageratina havanensis in its flowering and vegetative stages with the antioxidant potential and to determine the effects on P-glycoprotein (P-gp) function. The quantitative chemical composition of the extracts was determined quantifying their major flavonoids by UPLC-ESI-MS/MS and by PCA analysis. The effects of the extracts on P-gp activity was evaluated by Rhodamine 123 assay; antioxidant properties were determined by DPPH, FRAP and inhibition of lipid peroxidation methods. The obtained results show that major flavonoids were present in higher concentrations in vegetative stage than flowering stage. In particular, the extracts obtained in the flowering season showed a significantly higher ability to sequester free radicals compared to those of the vegetative season, meanwhile, the extracts obtained during the vegetative stage showed a significant inhibitory effect against brain lipid peroxidation and a strong reductive capacity. This study also showed the inhibitory effects of all ethanolic extracts on P-gp function in 4T1 cell line; these effects were unrelated to the phenological stage. This work shows, therefore, the first evidence on: the inhibition of P-gp function, the antioxidant effects and the content of major flavonoids of Ageratina havanensis. According to the obtained results, the species Ageratina havanensis (Kunth) R. M. King & H. Robinson could be a source of new potential inhibitors of drug efflux mediated by P-gp. A special focus on all these aspects must be taking into account for future studies.
Collapse
|
8
|
Jovanović M, Zhukovsky D, Podolski-Renić A, Žalubovskis R, Dar'in D, Sharoyko V, Tennikova T, Pešić M, Krasavin M. Further exploration of DVD-445 as a lead thioredoxin reductase (TrxR) inhibitor for cancer therapy: Optimization of potency and evaluation of anticancer potential. Eur J Med Chem 2020; 191:112119. [PMID: 32087464 DOI: 10.1016/j.ejmech.2020.112119] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
A series of analogs of the earlier reported lead compound DVD-445 (thioredoxin reductase inhibitor with anticancer activity) has been synthesized via a modified Ugi reaction and investigated. Seven most potent compounds (with IC50 below 5.00 μM against recombinant rTrxR1 enzyme) were examined for their effect on cell growth and viability, oxidative stress induction and P-glycoprotein (P-gp) inhibition in human glioblastoma cells cell line U87 and its corresponding multidrug resistant (MDR) cell line U87-TxR. Several of these frontrunner compounds were shown to be superior over DVD-445. Besides providing promising candidates for anticancer therapy, our study further validates the small electrophilic Ugi Michael acceptor (UMA) chemotype as efficacious inhibitor of thioredoxin reductase.
Collapse
Affiliation(s)
- Mirna Jovanović
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Daniil Zhukovsky
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Ana Podolski-Renić
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, LV-1006, Latvia; Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, LV-1048, Latvia
| | - Dmitry Dar'in
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Vladimir Sharoyko
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Tatiana Tennikova
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Milica Pešić
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia.
| | - Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation.
| |
Collapse
|
9
|
Efferth T, Saeed ME, Kadioglu O, Seo EJ, Shirooie S, Mbaveng AT, Nabavi SM, Kuete V. Collateral sensitivity of natural products in drug-resistant cancer cells. Biotechnol Adv 2020; 38:107342. [DOI: 10.1016/j.biotechadv.2019.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 01/17/2019] [Accepted: 01/26/2019] [Indexed: 01/25/2023]
|
10
|
Vágvölgyi M, Girst G, Kúsz N, Ötvös SB, Fülöp F, Hohmann J, Servais JY, Seguin-Devaux C, Chang FR, Chen MS, Chang LK, Hunyadi A. Less Cytotoxic Protoflavones as Antiviral Agents: Protoapigenone 1'- O-isopropyl ether Shows Improved Selectivity Against the Epstein-Barr Virus Lytic Cycle. Int J Mol Sci 2019; 20:E6269. [PMID: 31842358 PMCID: PMC6940897 DOI: 10.3390/ijms20246269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 11/25/2022] Open
Abstract
Protoflavones, a rare group of natural flavonoids with a non-aromatic B-ring, are best known for their antitumor properties. The protoflavone B-ring is a versatile moiety that might be explored for various pharmacological purposes, but the common cytotoxicity of these compounds is a limitation to such efforts. Protoapigenone was previously found to be active against the lytic cycle of Epstein-Barr virus (EBV). Further, the 5-hydroxyflavone moiety is a known pharmacophore against HIV-integrase. The aim of this work was to prepare a series of less cytotoxic protoflavone analogs and study their antiviral activity against HIV and EBV. Twenty-seven compounds, including 18 new derivatives, were prepared from apigenin through oxidative de-aromatization and subsequent continuous-flow hydrogenation, deuteration, and/or 4'-oxime formation. One compound was active against HIV at the micromolar range, and three compounds showed significant activity against the EBV lytic cycle at the medium-low nanomolar range. Among these derivatives, protoapigenone 1'-O-isopropyl ether (6) was identified as a promising lead that had a 73-times selectivity of antiviral over cytotoxic activity, which exceeds the selectivity of protoapigenone by 2.4-times. Our results open new opportunities for designing novel potent and safe anti-EBV agents that are based on the natural protoflavone moiety.
Collapse
Affiliation(s)
- Máté Vágvölgyi
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary; (M.V.); (G.G.); (J.H.)
| | - Gábor Girst
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary; (M.V.); (G.G.); (J.H.)
- Institute of Pharmaceutical Chemistry, University of Szeged, 6720 Szeged, Hungary; (S.B.Ö.); (F.F.)
| | - Norbert Kúsz
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary; (M.V.); (G.G.); (J.H.)
| | - Sándor B. Ötvös
- Institute of Pharmaceutical Chemistry, University of Szeged, 6720 Szeged, Hungary; (S.B.Ö.); (F.F.)
- MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, 6720 Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, 6720 Szeged, Hungary; (S.B.Ö.); (F.F.)
- MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, 6720 Szeged, Hungary
| | - Judit Hohmann
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary; (M.V.); (G.G.); (J.H.)
- Interdisciplinary Centre for Natural Products, University of Szeged, 6720 Szeged, Hungary
| | - Jean-Yves Servais
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxemburg; (J.-Y.S.); (C.S.-D.)
| | - Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxemburg; (J.-Y.S.); (C.S.-D.)
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Michael S. Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei City 10617, Taiwan; (M.S.C.); (L.-K.C.)
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei City 10617, Taiwan; (M.S.C.); (L.-K.C.)
| | - Attila Hunyadi
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary; (M.V.); (G.G.); (J.H.)
- Interdisciplinary Centre for Natural Products, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
11
|
Fási L, Di Meo F, Kuo CY, Stojkovic Buric S, Martins A, Kúsz N, Béni Z, Dékány M, Balogh GT, Pesic M, Wang HC, Trouillas P, Hunyadi A. Antioxidant-Inspired Drug Discovery: Antitumor Metabolite Is Formed in Situ from a Hydroxycinnamic Acid Derivative upon Free-Radical Scavenging. J Med Chem 2019; 62:1657-1668. [DOI: 10.1021/acs.jmedchem.8b01994] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Florent Di Meo
- INSERM UMR 1248 IPPRITT, Université Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87000 Limoges, France
| | - Ching-Ying Kuo
- Graduate Institute of Natural Products, Kaohsiung Medical University, Shih-Chuan 1st Rd. 100, Kaohsiung 807, Taiwan, ROC
| | - Sonja Stojkovic Buric
- Department of Neurobiology, Institute for Biological Research, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Ana Martins
- Institute of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary
| | | | | | | | | | - Milica Pesic
- Department of Neurobiology, Institute for Biological Research, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Hui-Chun Wang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Shih-Chuan 1st Rd. 100, Kaohsiung 807, Taiwan, ROC
| | - Patrick Trouillas
- INSERM UMR 1248 IPPRITT, Université Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87000 Limoges, France
- RCPTM, Faculty of Sciences, Palacký University, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | | |
Collapse
|
12
|
Wang L, Liu Y, Qi C, Shen L, Wang J, Liu X, Zhang N, Bing T, Shangguan D. Oxidative degradation of polyamines by serum supplement causes cytotoxicity on cultured cells. Sci Rep 2018; 8:10384. [PMID: 29991686 PMCID: PMC6039494 DOI: 10.1038/s41598-018-28648-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/10/2018] [Indexed: 12/26/2022] Open
Abstract
Serum is a common supplement for cell culture due to it containing the essential active components for the growth and maintenance of cells. However, the knowledges of the active components in serum are incomplete. Apart from the direct influence of serum components on cultured cells, the reaction of serum components with tested drugs cannot be ignored, which usually results in the false conclusion on the activity of the tested drugs. Here we report the toxicity effect of polyamines (spermidine and spermine) on cultured cells, especially on drug-resistant cancer cell lines, which resulted from the oxidative degradation of polyamines by amine oxidases in serum supplement. Upon adding spermidine or spermine, high concentration of H2O2, an enzyme oxidation product of polyamines, was generated in culture media containing ruminant serum, such as fetal bovine serum (FBS), calf serum, bovine serum, goat serum or horse serum, but not in the media containing human serum. Drug-resistant cancer cell lines showed much higher sensitivity to the oxidation products of polyamines (H2O2 and acrolein) than their wild cell lines, which was due to their low antioxidative capacity.
Collapse
Affiliation(s)
- Linlin Wang
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Liu
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui Qi
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Luyao Shen
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyan Wang
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangjun Liu
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Zhang
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tao Bing
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Dihua Shangguan
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Dankó B, Tóth S, Martins A, Vágvölgyi M, Kúsz N, Molnár J, Chang FR, Wu YC, Szakács G, Hunyadi A. Synthesis and SAR Study of Anticancer Protoflavone Derivatives: Investigation of Cytotoxicity and Interaction with ABCB1 and ABCG2 Multidrug Efflux Transporters. ChemMedChem 2017; 12:850-859. [DOI: 10.1002/cmdc.201700225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Balázs Dankó
- Institute of Pharmacognosy; University of Szeged; Szeged Hungary
| | - Szilárd Tóth
- Institute of Enzymology; Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
| | - Ana Martins
- Department of Medical Microbiology and Immunobiology; Faculty of Medicine; University of Szeged; Szeged Hungary
- Current address: Synthetic Systems Biology Unit; Institute of Biochemistry; Biological Research Centre; Temesvári krt. 62 6726 Szeged Hungary
| | - Máté Vágvölgyi
- Institute of Pharmacognosy; University of Szeged; Szeged Hungary
| | - Norbert Kúsz
- Institute of Pharmacognosy; University of Szeged; Szeged Hungary
| | - Joseph Molnár
- Department of Medical Microbiology and Immunobiology; Faculty of Medicine; University of Szeged; Szeged Hungary
| | - Fang-Rong Chang
- Graduate Institute of Natural Products; Kaohsiung Medical University; Kaohsiung Taiwan, R.O.C
- Cancer Center; Kaohsiung Medical University Hospital; Kaohsiung Taiwan, R.O.C
- R&D Center of Chinese Herbal Medicines & New Drugs, College of Pharmacy; Kaohsiung Medical University; Kaohsiung Taiwan, R.O.C
| | - Yang-Chang Wu
- Graduate Institute of Natural Products; Kaohsiung Medical University; Kaohsiung Taiwan, R.O.C
- Research Center for Natural Products and Drug Development; Kaohsiung Medical University; Kaohsiung Taiwan, R.O.C
- Department of Medical Research; Kaohsiung Medical University Hospital; Kaohsiung Taiwan, R.O.C
| | - Gergely Szakács
- Institute of Enzymology; Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
- Institute of Cancer Research; Medical University Vienna; Vienna Austria
| | - Attila Hunyadi
- Institute of Pharmacognosy; University of Szeged; Szeged Hungary
- Interdisciplinary Centre for Natural Products; University of Szeged; Szeged Hungary
| |
Collapse
|
14
|
Podolski-Renić A, Bősze S, Dinić J, Kocsis L, Hudecz F, Csámpai A, Pešić M. Ferrocene–cinchona hybrids with triazolyl-chalcone linkers act as pro-oxidants and sensitize human cancer cell lines to paclitaxel. Metallomics 2017; 9:1132-1141. [DOI: 10.1039/c7mt00183e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epimeric ferrocene–quinidine hybrids with triazolyl-chalcone linkers act as pro-oxidative agents and autophagy modulators in paclitaxel resistant cancer cells.
Collapse
Affiliation(s)
- Ana Podolski-Renić
- Department of Neurobiology
- Institute for Biological Research “Siniša Stanković” (IBISS)
- University of Belgrade
- Belgrade
- Serbia
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry
- Eötvös Loránd University
- Budapest
- Hungary
| | - Jelena Dinić
- Department of Neurobiology
- Institute for Biological Research “Siniša Stanković” (IBISS)
- University of Belgrade
- Belgrade
- Serbia
| | - László Kocsis
- Department of Organic Chemistry
- Eötvös Loránd University (ELTE)
- Budapest
- Hungary
| | - Ferenc Hudecz
- MTA-ELTE Research Group of Peptide Chemistry
- Eötvös Loránd University
- Budapest
- Hungary
- Department of Organic Chemistry
| | - Antal Csámpai
- Department of Inorganic Chemistry
- Eötvös Loránd University (ELTE)
- Budapest
- Hungary
| | - Milica Pešić
- Department of Neurobiology
- Institute for Biological Research “Siniša Stanković” (IBISS)
- University of Belgrade
- Belgrade
- Serbia
| |
Collapse
|
15
|
Simple avarone mimetics as selective agents against multidrug resistant cancer cells. Eur J Med Chem 2016; 118:107-20. [DOI: 10.1016/j.ejmech.2016.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/23/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
|
16
|
Zhao J, Bai Z, Feng F, Song E, Du F, Zhao J, Shen G, Ji F, Li G, Ma X, Hang X, Xu B. Cross-talk between EPAS-1/HIF-2α and PXR signaling pathway regulates multi-drug resistance of stomach cancer cell. Int J Biochem Cell Biol 2016; 72:73-88. [DOI: 10.1016/j.biocel.2016.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 12/27/2015] [Accepted: 01/15/2016] [Indexed: 01/14/2023]
|