1
|
Wu D, Liu J, Paragas EM, Yadav J, Aliwarga T, Heimbach T, Escotet-Espinoza MS. Assessing and mitigating pH-mediated DDI risks in drug development - formulation approaches and clinical considerations. Drug Metab Rev 2024:1-20. [PMID: 38700278 DOI: 10.1080/03602532.2024.2345632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
pH-mediated drug-drug interactions (DDI) is a prevalent DDI in drug development, especially for weak base compounds with highly pH-dependent solubility. FDA has released a guidance on the evaluation of pH-mediated DDI assessments using in vitro testing and clinical studies. Currently, there is no common practice of ways of testing across the academia and industry. The development of biopredictive method and physiologically-based biopharmaceutics modeling (PBBM) approaches to assess acid-reducing agent (ARA)-DDI have been proven with accurate prediction and could decrease drug development burden, inform clinical design and potentially waive clinical studies. Formulation strategies and careful clinical design could help mitigate the pH-mediated DDI to avoid more clinical studies and label restrictions, ultimately benefiting the patient. In this review paper, a detailed introduction on biorelevant dissolution testing, preclinical and clinical study requirement and PBPK modeling approaches to assess ARA-DDI are described. An improved decision tree for pH-mediated DDI is proposed. Potential mitigations including clinical or formulation strategies are discussed.
Collapse
Affiliation(s)
- Di Wu
- Pharmaceutical Sciences & Clinical Supply, Merck & Co., Inc, Rahway, NJ, USA
| | - Jiaying Liu
- Pharmaceutical Sciences & Clinical Supply, Merck & Co., Inc, Rahway, NJ, USA
| | - Erickson M Paragas
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| | - Jaydeep Yadav
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc, Boston, MA, USA
| | - Theresa Aliwarga
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| | - Tycho Heimbach
- Pharmaceutical Sciences & Clinical Supply, Merck & Co., Inc, Rahway, NJ, USA
| | | |
Collapse
|
2
|
Moens F, Larsson A, De Blaiser A, Vandevijver G, Spreafico F, Nicolas JM, Lacombe L, Segregur D, Flanagan T, Berben P. Contribution of the Dynamic Intestinal Absorption Model (Diamod) to the Development of a Patient-Centric Drug Formulation. Mol Pharm 2023; 20:6197-6212. [PMID: 37955627 DOI: 10.1021/acs.molpharmaceut.3c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Compound X is a weak basic drug targeting the early stages of Parkinson's disease, for which a theoretical risk assessment has indicated that elevated gastric pH conditions could potentially result in reduced plasma concentrations. Different in vitro dissolution methodologies varying in level of complexity and a physiologically based pharmacokinetic (PBPK) absorption model demonstrated that the dissolution, solubility, and intestinal absorption of compound X was indeed reduced under elevated gastric pH conditions. These observations were confirmed in a crossover pharmacokinetic study in Beagle dogs. As a result, the development of a formulation resulting in robust performance that is not sensitive to the exposed gastric pH levels is of crucial importance. The dynamic intestinal absorption MODel (Diamod), an advanced in vitro gastrointestinal transfer tool that allows to study the gastrointestinal dissolution and interconnected permeation of drugs, was selected as an in vitro tool for the formulation optimization activities given its promising predictive capacity and its capability to generate insights into the mechanisms driving formulation performance. Different pH-modifiers were screened for their potential to mitigate the pH-effect by decreasing the microenvironmental pH at the dissolution surface. Finally, an optimized formulation containing a clinically relevant dose of the drug and a functional amount of the selected pH-modifier was evaluated for its performance in the Diamod. This monolayer tablet formulation resulted in rapid gastric dissolution and supersaturation, inducing adequate intestinal supersaturation and permeation of compound X, irrespective of the gastric acidity level in the stomach. In conclusion, this study describes the holistic biopharmaceutics approach driving the development of a patient-centric formulation of compound X.
Collapse
Affiliation(s)
| | - Adam Larsson
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium
| | | | | | | | - Jean-Marie Nicolas
- UCB Pharma SA, Early Solutions, Chemin du Foriest 1, 1420 Braine l'Alleud, Belgium
| | - Lucie Lacombe
- UCB Pharma SA, Product Design & Performance, Chemin du Foriest 1, 1420 Braine l'Alleud, Belgium
| | - Domagoj Segregur
- UCB Pharma SA, Product Design & Performance, Chemin du Foriest 1, 1420 Braine l'Alleud, Belgium
| | - Talia Flanagan
- UCB Pharma SA, Product Design & Performance, Chemin du Foriest 1, 1420 Braine l'Alleud, Belgium
| | - Philippe Berben
- UCB Pharma SA, Product Design & Performance, Chemin du Foriest 1, 1420 Braine l'Alleud, Belgium
| |
Collapse
|
3
|
Chen F, Yao W, Wu F, Xie R, Wang J, Shi Z. The status of TKI/acid-suppressant concomitant use in 44 hospitals in China: A cross-sectional descriptive study. Medicine (Baltimore) 2022; 101:e31770. [PMID: 36401366 PMCID: PMC9678504 DOI: 10.1097/md.0000000000031770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
The irrational use of tyrosine kinase inhibitors (TKIs) has attracted increasing attention, especially because of drug-drug interactions. The objective of this study was to analyze TKI prescriptions and evaluate the rationality of concomitant use of TKIs and acid-suppressants. TKI prescriptions from 2016 to 2018 were collected from hospitals in Beijing, Guangzhou, Hangzhou, and Zhengzhou for 40 d/yr. Focusing on the data in 2018, we analyzed the pharmacoeconomic indicators of TKIs and the number and proportion of different coprescriptions. The evaluation criteria for coprescriptions were based on clinical literature and package inserts. A total of 41,738 TKI prescriptions were assessed. The total dose and sales of imatinib were the highest, the medication days and defined daily doses of gefitinib were the highest, and the highest defined daily cost was sunitinib. Meanwhile, there were 17 TKIs with drug utilization indices of ≤ 1.0. The irrational combination rate of prescriptions of non-cancer-related departments was high in 3 cities, but not Hangzhou. The irrational combination rate of prescription of inpatient prescriptions was > 23% in the 4 cities. The combined use of TKIs and acid-suppressants is common in China and may have a clear or potential impact on the pharmacokinetics, pharmacodynamics, and adverse drug reactions of TKIs. Therefore, it is urgent to implement necessary interventions to stop such irrational use or if the combined use is necessary, to correct adverse consequences. The aims should be to achieve safe and effective use of TKIs and reduce unnecessary costs.
Collapse
Affiliation(s)
- Fangting Chen
- Yongkang Orthopaedic Hospital (Yongkang Sixth People’s Hospital), Yongkang, China
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Wendong Yao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Fan Wu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Rui Xie
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jianping Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Zheng Shi
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
4
|
Applications, Challenges, and Outlook for PBPK Modeling and Simulation: A Regulatory, Industrial and Academic Perspective. Pharm Res 2022; 39:1701-1731. [PMID: 35552967 DOI: 10.1007/s11095-022-03274-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/25/2022] [Indexed: 12/20/2022]
Abstract
Several regulatory guidances on the use of physiologically based pharmacokinetic (PBPK) analyses and physiologically based biopharmaceutics model(s) (PBBM(s)) have been issued. Workshops are routinely held, demonstrating substantial interest in applying these modeling approaches to address scientific questions in drug development. PBPK models and PBBMs have remarkably contributed to model-informed drug development (MIDD) such as anticipating clinical PK outcomes affected by extrinsic and intrinsic factors in general and specific populations. In this review, we proposed practical considerations for a "base" PBPK model construction and development, summarized current status, challenges including model validation and gaps in system models, and future perspectives in PBPK evaluation to assess a) drug metabolizing enzyme(s)- or drug transporter(s)- mediated drug-drug interactions b) dosing regimen prediction, sampling timepoint selection and dose validation in pediatric patients from newborns to adolescents, c) drug exposure in patients with renal and/or and hepatic organ impairment, d) maternal-fetal drug disposition during pregnancy, and e) pH-mediated drug-drug interactions in patients treated with proton pump inhibitors/acid-reducing agents (PPIs/ARAs) intended for gastric protection. Since PBPK can simulate outcomes in clinical studies with enrollment challenges or ethical issues, the impact of PBPK models on waivers and how to strengthen study waiver is discussed.
Collapse
|
5
|
Bridoux M, Simon N, Turpin A. Proton Pump Inhibitors and Cancer: Current State of Play. Front Pharmacol 2022; 13:798272. [PMID: 35359844 PMCID: PMC8963837 DOI: 10.3389/fphar.2022.798272] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/04/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Proton pump inhibitors (PPIs) are one of the most widely used drugs worldwide and are overprescribed in patients with cancer; there is increasing evidence of their effects on cancer development and survival. The objective of this narrative review is to comprehensively identify cancer medications that have clinically meaningful drug–drug interactions (DDIs) with PPIs, including loss of efficacy or adverse effects, and to explore the association between PPIs and cancer.Methods: A PubMed search of English language studies published from 1 January 2016, to 1 June 2021 was conducted. The search terms included “proton pump inhibitors,” “cancer,” “chemotherapy,” “immunotherapy,” “hormonotherapies,” “targeted therapies,” “tyrosine kinase inhibitors,” and “gut microbiome”. Recent and relevant clinical trials, meta-analyses, and reviews were included.Results: PPIs may have pro-tumor activity by increasing plasma gastrin levels or anti-tumor activity by inhibiting V-ATPases. However, their impact on cancer survival remains unclear. PPIs may decrease the efficacy of some antineoplastic agents through direct DDIs (e.g., some tyrosine kinase inhibitors, capecitabine, irinotecan, methotrexate). More complex DDIs seem to exist for immunotherapies with indirect interactions through the microbiome. PPIs worsen hypomagnesemia, bone loss, iron, and vitamin B12 deficiencies but may have a protective effect on the renal system.Discussion/Conclusions: PPIs may interact with the cancer microbiome and the efficacy of various antineoplastic agents, although only a few DDIs involving PPIs are clinically significant. Further pharmaco-epidemiological studies are warranted, but physicians should be aware of the potential consequences of PPI use, which should be dose appropriate and prescribed according to guidelines.
Collapse
Affiliation(s)
- Marie Bridoux
- University of Lille, Lille, France
- Medical Oncology Department, Lille University Hospital, Lille, France
| | - Nicolas Simon
- CHU Lille, ULR 7365—GRITA—Groupe de Recherche sur les Formes Injectables et les Technologies Associées, University of Lille, Lille, France
| | - Anthony Turpin
- Medical Oncology Department, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020—UMR-S 1277—CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, CHU Lille, University of Lille, Lille, France
- *Correspondence: Anthony Turpin, , orcid.org/0000-0002-2282-0101
| |
Collapse
|
6
|
Salehi N, Kuminek G, Al-Gousous J, Sperry DC, Greenwood DE, Waltz NM, Amidon GL, Ziff RM, Amidon GE. Improving Dissolution Behavior and Oral Absorption of Drugs with pH-Dependent Solubility Using pH Modifiers: A Physiologically Realistic Mass Transport Analysis. Mol Pharm 2021; 18:3326-3341. [PMID: 34428047 DOI: 10.1021/acs.molpharmaceut.1c00262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Orally dosed drugs must dissolve in the gastrointestinal (GI) tract before being absorbed through the epithelial cell membrane. In vivo drug dissolution depends on the GI tract's physiological conditions such as pH, residence time, luminal buffers, intestinal motility, and transit and drug properties under fed and fasting conditions (Paixão, P. et al. Mol. Pharm. 2018 and Bermejo, et al. M. Mol. Pharm. 2018). The dissolution of an ionizable drug may benefit from manipulating in vivo variables such as the environmental pH using pH-modifying agents incorporated into the dosage form. A successful example is the use of such agents for dissolution enhancement of BCS class IIb (high-permeability, low-solubility, and weak base) drugs under high gastric pH due to the disease conditions or by co-administration of acid-reducing agents (i.e., proton pump inhibitors, H2-antagonists, and antacids). This study provides a rational approach for selecting pH modifiers to improve monobasic and dibasic drug compounds' dissolution rate and extent under high-gastric pH dissolution conditions, since the oral absorption of BCS class II drugs can be limited by either the solubility or the dissolution rate depending on the initial dose number. Betaine chloride, fumaric acid, and tartaric acid are examples of promising pH modifiers that can be included in oral dosage forms to enhance the rate and extent of monobasic and dibasic drug formulations. However, selection of a suitable pH modifier is dependent on the drug properties (e.g., solubility and pKa) and its interplay with the pH modifier pKa or pKas. As an example of this complex interaction, for basic drugs with high pKa and intrinsic solubility values and large doses, a polyprotic pH modifier can be expected to outperform a monoacid pH modifier. We have developed a hierarchical mass transport model to predict drug dissolution of formulations under varying pH conditions including high gastric pH. This model considers the effect of physical and chemical properties of the drug and pH modifiers such as pKa, solubility, and particle size distribution. This model also considers the impact of physiological conditions such as stomach emptying rate, stomach acid and buffer secretion, residence time in the GI tract, and aqueous luminal volume on drug dissolution. The predictions from this model are directly applicable to in vitro multi-compartment dissolution vessels and are validated by in vitro experiments in the gastrointestinal simulator. This model's predictions can serve as a potential data source to predict plasma concentrations for formulations containing pH modifiers administered under the high-gastric pH conditions. This analysis provides an improved formulation design procedure using pH modifiers by minimizing the experimental iterations under both in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Niloufar Salehi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gislaine Kuminek
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States.,Synthetic Molecule Design & Development, Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Jozef Al-Gousous
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States.,Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - David C Sperry
- Synthetic Molecule Design & Development, Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Dale E Greenwood
- Synthetic Molecule Design & Development, Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Nicholas M Waltz
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States.,College of Pharmacy, Ohio State University, Columbus, Ohio 43210, United States
| | - Gordon L Amidon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert M Ziff
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gregory E Amidon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Development and validation of UPLC-MS/MS method for the simultaneous quantification of anaplastic lymphoma kinase inhibitors, alectinib, ceritinib, and crizotinib in Wistar rat plasma with application to bromelain-induced pharmacokinetic interaction. J Pharm Biomed Anal 2021; 204:114276. [PMID: 34325247 DOI: 10.1016/j.jpba.2021.114276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 07/11/2021] [Accepted: 07/20/2021] [Indexed: 12/29/2022]
Abstract
Bromelain, the aqueous extract of pineapple, has been used as a food supplement with reported nutritional and therapeutic benefits. Bromelain has anti-cancer, anti-inflammatory, antithrombotic, and fibrinolytic effects. Anaplastic lymphoma kinase (ALK) inhibitors, including alectinib (ALC), ceritinib (CER), and crizotinib (CRZ), have been efficiently used in the management of non-small cell lung cancer (NSCLC). The solubility of ALC, CER, and CRZ is much higher at low acidic pH (pH 1) and it decreases as the pH increases affecting their absorption with a subsequent decrease in their bioavailability. It was thought that the intake of bromelain could result in a decrease in the bioavailability of ALC, CER, and CRZ due to bromelain-induced alkalizing effect following digestion. On the contrary, bromelain could possibly increase plasma exposure of the cited drugs due to its known muco-permeation enhancing effect. The therapeutic-anticancer effect of bromelain can be possibly increased/enhanced with concomitant intake of other anticancer medications or it can add to the value of food supplements for its known nutritional benefits. Thus, this work aims at studying the possibility of any PK interaction when bromelain was taken while on ALC/CER/CRZ therapy. In this work, a new UPLC-MS/MS method was developed and validated for the simultaneous determination of ALC, CER, and CRZ in rat plasma. Further application of the proposed method was performed to test the possibility of the PK interaction between bromelain and the selected ALK inhibitors in Wistar rats. Simple protein precipitation with acetonitrile was used for sample preparation. Chromatographic analysis was performed on Waters BEH™ C18 column with a mixture of acetonitrile/water containing 0.1 % formic acid (70: 30, v/v) as the mobile phase. The method permitted the analysis of ALC, CER, and CRZ in concentration ranges of 2-200, 0.4-200, and 4.0-200 ng/mL, respectively. Bromelain administration caused a significant decrease in plasma levels of CER and CRZ with lowered Cmax, AUC0-t and AUC0-∞, along with an increase in the apparent clearance. However, no significant effect was noticed with ALC. Thus, attention should be paid to avoid the intake of bromelain with CER or CRZ.
Collapse
|
8
|
Zhao D, Chen J, Chu M, Long X, Wang J. Pharmacokinetic-Based Drug-Drug Interactions with Anaplastic Lymphoma Kinase Inhibitors: A Review. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1663-1681. [PMID: 32431491 PMCID: PMC7198400 DOI: 10.2147/dddt.s249098] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022]
Abstract
Anaplastic lymphoma kinase (ALK) inhibitors are important treatment options for non-small-cell lung cancer (NSCLC), associated with ALK gene rearrangement. Patients with ALK gene rearrangement show sensitivity to and benefit clinically from treatment with ALK tyrosine kinase inhibitors (ALK-TKIs). To date, crizotinib, ceritinib, alectinib, brigatinib, lorlatinib, and entrectinib have received approval from the US Food and Drug Administration and/or the European Medicines Agency for use during the treatment of ALK-gene-rearrangement forms of NSCLC. Although the oral route of administration is convenient and results in good compliance among patients, oral administration can be affected by many factors, such as food, intragastric pH, cytochrome P450 enzymes, transporters, and p-glycoprotein. These factors can result in increased risks for serious adverse events or can lead to reduced therapeutic effects of ALK-TKIs. This review characterizes and summarizes the pharmacokinetic parameters and drug–-drug interactions associated with ALK-TKIs to provide specific recommendations for oncologists and clinical pharmacists when prescribing ALK-TKIs.
Collapse
Affiliation(s)
- Dehua Zhao
- Department of Clinical Pharmacy, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang 621000, People's Republic of China
| | - Jing Chen
- Department of Clinical Pharmacy, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang 621000, People's Republic of China
| | - Mingming Chu
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, People's Republic of China
| | - Xiaoqing Long
- Department of Clinical Pharmacy, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang 621000, People's Republic of China
| | - Jisheng Wang
- Department of Clinical Pharmacy, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang 621000, People's Republic of China
| |
Collapse
|
9
|
Otoukesh S, Sanchez T, Mirshahidi S, Wallace D, Mirshahidi H. ASCEND-8 pharmacokinetic, safety, and efficacy data for ceritinib 450 mg with food in patients with anaplastic lymphoma kinase-positive non-small cell lung Cancer: A clinical perspective. Cancer Treat Res Commun 2019; 20:100149. [PMID: 31075537 DOI: 10.1016/j.ctarc.2019.100149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
Abstract
Anaplastic lymphoma kinase-positive (ALK+) non-small cell lung cancer (NSCLC) is diagnosed in up to 126,000 patients worldwide annually. Ceritinib is a next-generation ALK-targeted tyrosine kinase inhibitor that is approved for the treatment of patients with metastatic ALK+ NSCLC. In December 2017, the US Food and Drug Administration-approved dose of ceritinib was changed from 750 mg/day under fasting conditions to 450 mg/day taken with food for the treatment of patients with ALK+ NSCLC. This change was implemented on the basis of data from studies designed to investigate ways to reduce the frequency of gastrointestinal adverse events noted in patients enrolled in several ASCEND clinical trials that evaluated a ceritinib 750-mg fasted dose as either first- or second/third-line treatment. This review highlights and discusses published findings from the ASCEND-8 food-effect trial and includes commentary from physicians regarding their own clinical cases of patients who were enrolled in the trial and treated with either the 750-mg fasted or 450-mg fed dose of ceritinib. The review also discusses the implications of using the recently approved ceritinib 450-mg dose in the clinical setting.
Collapse
Affiliation(s)
- Salman Otoukesh
- Department of Internal Medicine, Division of Hematology/Oncology, Loma Linda University, Loma Linda, CA, United States.
| | - Tiffany Sanchez
- Department of Cancer Center Clinical Trials, Loma Linda University, Loma Linda, CA, United States
| | - Saied Mirshahidi
- Biospecimen Laboratory, Loma Linda University Cancer Center, Loma Linda University, Loma Linda, CA, United States
| | - Desiree Wallace
- Investigational Drug service, Department of Pharmacy, Loma Linda Medical Center, Loma Linda University, Loma Linda, CA, United States
| | - Hamid Mirshahidi
- Department of Internal Medicine, Division of Hematology/Oncology, Loma Linda University, Loma Linda, CA, United States.
| |
Collapse
|
10
|
Zhao S, Gao G, Li W, Li X, Zhao C, Jiang T, Jia Y, He Y, Li A, Su C, Ren S, Chen X, Zhou C. Antibiotics are associated with attenuated efficacy of anti-PD-1/PD-L1 therapies in Chinese patients with advanced non-small cell lung cancer. Lung Cancer 2019; 130:10-17. [DOI: 10.1016/j.lungcan.2019.01.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/14/2019] [Accepted: 01/30/2019] [Indexed: 01/13/2023]
|
11
|
Hussaarts KGAM, Veerman GDM, Jansman FGA, van Gelder T, Mathijssen RHJ, van Leeuwen RWF. Clinically relevant drug interactions with multikinase inhibitors: a review. Ther Adv Med Oncol 2019; 11:1758835918818347. [PMID: 30643582 PMCID: PMC6322107 DOI: 10.1177/1758835918818347] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
Multikinase inhibitors (MKIs), including the tyrosine kinase inhibitors (TKIs), have rapidly become an established factor in daily (hemato)-oncology practice. Although the oral route of administration offers improved flexibility and convenience for the patient, challenges arise in the use of MKIs. As MKIs are prescribed extensively, patients are at increased risk for (severe) drug–drug interactions (DDIs). As a result of these DDIs, plasma pharmacokinetics of MKIs may vary significantly, thereby leading to high interpatient variability and subsequent risk for increased toxicity or a diminished therapeutic outcome. Most clinically relevant DDIs with MKIs concern altered absorption and metabolism. The absorption of MKIs may be decreased by concomitant use of gastric acid-suppressive agents (e.g. proton pump inhibitors) as many kinase inhibitors show pH-dependent solubility. In addition, DDIs concerning drug (uptake and efflux) transporters may be of significant clinical relevance during MKI therapy. Furthermore, since many MKIs are substrates for cytochrome P450 isoenzymes (CYPs), induction or inhibition with strong CYP inhibitors or inducers may lead to significant alterations in MKI exposure. In conclusion, DDIs are of major concern during MKI therapy and need to be monitored closely in clinical practice. Based on the current knowledge and available literature, practical recommendations for management of these DDIs in clinical practice are presented in this review.
Collapse
Affiliation(s)
- Koen G A M Hussaarts
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - G D Marijn Veerman
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Frank G A Jansman
- Department of Clinical Pharmacy, Deventer Hospital, Deventer, The Netherlands
| | - Teun van Gelder
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | |
Collapse
|
12
|
Dodd S, Kollipara S, Sanchez-Felix M, Kim H, Meng Q, Beato S, Heimbach T. Prediction of ARA/PPI Drug-Drug Interactions at the Drug Discovery and Development Interface. J Pharm Sci 2019; 108:87-101. [DOI: 10.1016/j.xphs.2018.10.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/11/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
|
13
|
Kashihara Y, Terao Y, Yoda K, Hirota T, Kubota T, Kimura M, Matsuki S, Hirakawa M, Irie S, Ieiri I. Effects of magnesium oxide on pharmacokinetics of L-dopa/carbidopa and assessment of pharmacodynamic changes by a model-based simulation. Eur J Clin Pharmacol 2018; 75:351-361. [DOI: 10.1007/s00228-018-2568-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
|
14
|
Clinical Pharmacokinetics of Anaplastic Lymphoma Kinase Inhibitors in Non-Small-Cell Lung Cancer. Clin Pharmacokinet 2018; 58:403-420. [DOI: 10.1007/s40262-018-0689-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Samant TS, Dhuria S, Lu Y, Laisney M, Yang S, Grandeury A, Mueller‐Zsigmondy M, Umehara K, Huth F, Miller M, Germa C, Elmeliegy M. Ribociclib Bioavailability Is Not Affected by Gastric pH Changes or Food Intake: In Silico and Clinical Evaluations. Clin Pharmacol Ther 2017; 104:374-383. [PMID: 29134635 PMCID: PMC6099197 DOI: 10.1002/cpt.940] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/30/2017] [Accepted: 11/05/2017] [Indexed: 02/06/2023]
Abstract
Ribociclib (KISQALI), a cyclin‐dependent kinase 4/6 inhibitor approved for the first‐line treatment of HR+/HER2– advanced breast cancer with an aromatase inhibitor, is administered with no restrictions on concomitant gastric pH‐elevating agents or food intake. The influence of proton pump inhibitors (PPIs) on ribociclib bioavailability was assessed using 1) biorelevant media solubility, 2) physiologically based pharmacokinetic (PBPK) modeling, 3) noncompartmental analysis (NCA) of clinical trial data, and 4) population PK (PopPK) analysis. This multipronged approach indicated no effect of gastric pH changes on ribociclib PK and served as a platform for supporting ribociclib labeling language, stating no impact of gastric pH‐altering agents on the absorption of ribociclib, without a dedicated drug–drug interaction trial. The bioequivalence of ribociclib exposure with or without a high‐fat meal was demonstrated in a clinical trial. Lack of restrictions on ribociclib dosing may facilitate better patient compliance and therefore clinical benefit.
Collapse
Affiliation(s)
| | | | - Yasong Lu
- Novartis PharmaceuticalsEast HanoverNew JerseyUSA
| | | | - Shu Yang
- Novartis PharmaceuticalsEast HanoverNew JerseyUSA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Cho BC, Kim DW, Bearz A, Laurie SA, McKeage M, Borra G, Park K, Kim SW, Ghosn M, Ardizzoni A, Maiello E, Greystoke A, Yu R, Osborne K, Gu W, Scott JW, Passos VQ, Lau YY, Wrona A. ASCEND-8: A Randomized Phase 1 Study of Ceritinib, 450 mg or 600 mg, Taken with a Low-Fat Meal versus 750 mg in Fasted State in Patients with Anaplastic Lymphoma Kinase (ALK)-Rearranged Metastatic Non–Small Cell Lung Cancer (NSCLC). J Thorac Oncol 2017; 12:1357-1367. [DOI: 10.1016/j.jtho.2017.07.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 12/22/2022]
|