1
|
An Q, Gu X, Jiang Y. The Role of Interleukin-24 and Downstream Pathways in Inflammatory and Autoimmune Diseases. Cell Biochem Biophys 2025; 83:1333-1345. [PMID: 39373906 DOI: 10.1007/s12013-024-01576-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
Inflammatory and autoimmune diseases are pathological immune disorders and pose significant public health challenges due to their impact on individuals and society. Cytokine dysregulation plays a critical role in the development of these disorders. Interleukin (IL)-24, a member of the IL-10 cytokine family, can be secreted by various cell types, including immune and non-immune cells. The downstream effects of IL-24 upon binding to its receptors can occur in dependence on, or independently of, the Janus kinase (JAK)/signal transducer and the activator of transcription (STAT) signaling pathway. IL-24 and its downstream pathways influence crucial processes such as cell differentiation, proliferation, apoptosis, and inflammation, with its role varying across different diseases. On the one hand, IL-24 can inhibit the activation of pathogenic cells and autoimmune responses in autoimmune ocular diseases; on the other hand, IL-24 has been also implicated in promoting tissue damage by fostering immune cell activation and infiltration in psoriasis and allergic diseases. It suggests that IL-24, as a multifunctional cytokine, has complex regulatory functions in immune cells and related diseases. In this paper, we summarize the current knowledge on IL-24's immunomodulatory actions and its involvement in inflammatory and autoimmune disorders. Such insights may pave the way for novel therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Qiyun An
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Ophthalmology, Changchun Children's Hospital, Changchun, Jilin, China
| | - Xiaoyu Gu
- Department of Ophthalmology, Changchun Children's Hospital, Changchun, Jilin, China
| | - Yuying Jiang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
2
|
Li Y, Li D, Jiang Z, Yuan Z, Sun Z, Sun L. D-M159 Synergistically Induces Apoptosis in HeLa Cells Through Endoplasmic Reticulum Stress and Mitochondrial Dysfunction. Int J Mol Sci 2025; 26:3172. [PMID: 40243937 PMCID: PMC11989975 DOI: 10.3390/ijms26073172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Pore-forming peptides are promising antimicrobial and anticancer agents due to their membrane selectivity and biodegradability. Our prior work identified peptide M159, which permeabilized synthetic phosphatidylcholine liposomes without mammalian cell toxicity. Here, we report that the D-type variant (D-M159) induces apoptosis in HeLa cells under starvation. To explore its anticancer mechanism, we analyzed D-M159 cytotoxicity, intracellular uptake, and apoptotic pathways via flow cytometry, confocal microscopy, and Western blot. Calcium dynamics and mitochondrial function were examined via specific labeling and functional assays. Results revealed that D-M159 exhibited starvation-dependent, dose-responsive cytotoxicity and triggered apoptosis in HeLa cells. Mechanistic studies indicated that D-M159 entered the cells via caveolin-dependent and caveolae-dependent endocytosis pathways and induced endoplasmic reticulum stress in HeLa cells by up-regulating proteins such as ATF6, p-IRE1, PERK, GRP78, and CHOP. Meanwhile, D-M159 promoted the expression of IP3R1, GRP75, and VDAC1, which led to mitochondrial calcium iron overload, decreased mitochondrial membrane potential, and increased reactive oxygen species (ROS) generation, thereby activating the mitochondrial apoptotic pathway and inducing the aberrant expression of Bax, Bcl-2, Caspase-9, and Caspase-3. This study showed that D-M159 synergistically induced apoptosis in starved HeLa cells through endoplasmic reticulum stress and mitochondrial dysfunction, demonstrating its potential as a novel anticancer agent.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmacy, Hunan Normal University, Changsha 410013, China; (Y.L.); (D.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (Z.Y.)
| | - Dingding Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmacy, Hunan Normal University, Changsha 410013, China; (Y.L.); (D.L.)
| | - Zonghan Jiang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (Z.Y.)
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (Z.Y.)
| | - Zhiliang Sun
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (Z.Y.)
| | - Leisheng Sun
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmacy, Hunan Normal University, Changsha 410013, China; (Y.L.); (D.L.)
| |
Collapse
|
3
|
Kim A, Lopez S, Smith S, Sony A, Abreu J, de la Parra C, Sauane M. Interleukin 24 Promotes Mitochondrial Dysfunction, Glucose Regulation, and Apoptosis by Inactivating Glycogen Synthase Kinase 3 Beta in Human Prostate Cancer Cells. Cells 2025; 14:357. [PMID: 40072085 PMCID: PMC11899692 DOI: 10.3390/cells14050357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Interleukin 24 (IL-24) is a tumor-suppressing protein currently in clinical trials. We previously demonstrated that IL-24 leads to apoptosis in cancer cells through protein kinase A (PKA) activation in human breast cancer cells. To better understand the mechanism by which IL-24 induces apoptosis, we analyzed the role of glycogen synthase kinase-3 beta (GSK3β), a highly conserved serine/threonine kinase in cancer cells and a downstream target of PKA. Our studies show for the first time that GSK3β is inhibited following IL-24 treatment in human prostate cancer cells. We showed that the inhibition of GSK3β is mediated through PKA activation triggered by IL-24. IL-24 decreases the phosphorylation of glycogen synthase, substantially activating glycogen synthase and decreasing intracellular glucose levels. Notably, the expression of a constitutively active form of GSK3β abolishes the effect of IL-24. These results demonstrate a previously unrecognized role of IL-24 in apoptosis mediated through GSK3β regulation and its possible implications for metabolic stress, mitochondria dysfunction, and apoptosis. Future studies should precisely delineate the most effective combinations of IL-24 as a GSK3β inhibitor with cytotoxic agents for prostate and other cancers. GSK3β inhibition disrupts average glucose utilization in cancer cells, potentially creating metabolic stress that could be exploited therapeutically.
Collapse
Affiliation(s)
- Anastassiya Kim
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, New York, NY 10468, USA; (A.K.); (S.L.); (S.S.); (A.S.); (J.A.)
- The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA;
| | - Sual Lopez
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, New York, NY 10468, USA; (A.K.); (S.L.); (S.S.); (A.S.); (J.A.)
| | - Simira Smith
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, New York, NY 10468, USA; (A.K.); (S.L.); (S.S.); (A.S.); (J.A.)
| | - Alphons Sony
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, New York, NY 10468, USA; (A.K.); (S.L.); (S.S.); (A.S.); (J.A.)
| | - Jennifer Abreu
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, New York, NY 10468, USA; (A.K.); (S.L.); (S.S.); (A.S.); (J.A.)
| | - Columba de la Parra
- The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA;
- Department of Chemistry, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, New York, NY 10468, USA
| | - Moira Sauane
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, New York, NY 10468, USA; (A.K.); (S.L.); (S.S.); (A.S.); (J.A.)
- The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA;
| |
Collapse
|
4
|
Smith S, Lopez S, Kim A, Kasteri J, Olumuyide E, Punu K, de la Parra C, Sauane M. Interleukin 24: Signal Transduction Pathways. Cancers (Basel) 2023; 15:3365. [PMID: 37444474 PMCID: PMC10340555 DOI: 10.3390/cancers15133365] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Interleukin 24 is a member of the IL-10 family with crucial roles in antitumor, wound healing responses, host defense, immune regulation, and inflammation. Interleukin 24 is produced by both immune and nonimmune cells. Its canonical pathway relies on recognition and interaction with specific Interleukin 20 receptors in the plasma membrane and subsequent cytoplasmic Janus protein tyrosine kinases (JAK)/signal transducer and activator of the transcription (STAT) activation. The identification of noncanonical JAK/STAT-independent signaling pathways downstream of IL-24 relies on the interaction of IL-24 with protein kinase R in the cytosol, respiratory chain proteins in the inner mitochondrial membrane, and chaperones such as Sigma 1 Receptor in the endoplasmic reticulum. Numerous studies have shown that enhancing or inhibiting the expression of Interleukin 24 has a therapeutic effect in animal models and clinical trials in different pathologies. Successful drug targeting will require a deeper understanding of the downstream signaling pathways. In this review, we discuss the signaling pathway triggered by IL-24.
Collapse
Affiliation(s)
- Simira Smith
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; (S.S.); (S.L.); (J.K.); (E.O.); (K.P.)
| | - Sual Lopez
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; (S.S.); (S.L.); (J.K.); (E.O.); (K.P.)
| | - Anastassiya Kim
- Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; (A.K.); (C.d.l.P.)
| | - Justina Kasteri
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; (S.S.); (S.L.); (J.K.); (E.O.); (K.P.)
| | - Ezekiel Olumuyide
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; (S.S.); (S.L.); (J.K.); (E.O.); (K.P.)
| | - Kristian Punu
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; (S.S.); (S.L.); (J.K.); (E.O.); (K.P.)
| | - Columba de la Parra
- Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; (A.K.); (C.d.l.P.)
- Department of Chemistry, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA
| | - Moira Sauane
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; (S.S.); (S.L.); (J.K.); (E.O.); (K.P.)
- Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; (A.K.); (C.d.l.P.)
| |
Collapse
|
5
|
Liu Y, Zhang Y, Ren Z, Zeng F, Yan J. RUNX1 Upregulation Causes Mitochondrial Dysfunction via Regulating the PI3K-Akt Pathway in iPSC from Patients with Down Syndrome. Mol Cells 2023; 46:219-230. [PMID: 36625318 PMCID: PMC10086551 DOI: 10.14348/molcells.2023.2095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 01/11/2023] Open
Abstract
Down syndrome (DS) is the most common autosomal aneuploidy caused by trisomy of chromosome 21. Previous studies demonstrated that DS affected mitochondrial functions, which may be associated with the abnormal development of the nervous system in patients with DS. Runt-related transcription factor 1 (RUNX1) is an encoding gene located on chromosome 21. It has been reported that RUNX1 may affect cell apoptosis via the mitochondrial pathway. The present study investigated whether RUNX1 plays a critical role in mitochondrial dysfunction in DS and explored the mechanism by which RUNX1 affects mitochondrial functions. Expression of RUNX1 was detected in induced pluripotent stem cells of patients with DS (DS-iPSCs) and normal iPSCs (N-iPSCs), and the mitochondrial functions were investigated in the current study. Subsequently, RUNX1 was overexpressed in N-iPSCs and inhibited in DS-iPSCs. The mitochondrial functions were investigated thoroughly, including reactive oxygen species levels, mitochondrial membrane potential, ATP content and lysosomal activity. Finally, RNA-sequencing was used to explore the global expression pattern. It was observed that the expression levels of RUNX1 in DS-iPSCs were significantly higher than those in normal controls. Impaired mitochondrial functions were observed in DS-iPSCs. Of note, overexpression of RUNX1 in N-iPSCs resulted in mitochondrial dysfunction, while inhibition of RUNX1 expression could improve the mitochondrial function in DS-iPSCs. Global gene expression analysis indicated that overexpression of RUNX1 may promote the induction of apoptosis in DS-iPSCs by activating the PI3K/Akt signaling pathway. The present findings indicate that abnormal expression of RUNX1 may play a critical role in mitochondrial dysfunction in DS-iPSCs.
Collapse
Affiliation(s)
- Yanna Liu
- Shanghai Children’s Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China
| | - Yuehua Zhang
- Shanghai Children’s Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China
| | - Zhaorui Ren
- Shanghai Children’s Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Fanyi Zeng
- Shanghai Children’s Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
- Department of Histoembryology, Genetics & Development, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingbin Yan
- Shanghai Children’s Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| |
Collapse
|
6
|
Tang XZ, Zhou XG, Zhang XG, Li GS, Chen G, Dang YW, Huang ZG, Li MX, Liang Y, Yao YX, Chen XY, Rong MH, Huang SN. The clinical significance of interleukin 24 and its potential molecular mechanism in laryngeal squamous cell carcinoma. Cancer Biomark 2021; 29:111-124. [PMID: 32623386 DOI: 10.3233/cbm-201441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interleukin 24 (IL24) has been documented to be highly expressed in several cancers, but its role in laryngeal squamous cell carcinoma (LSCC) remains unclarified. In this study, to reveal the function and its clinical significance of IL24 in LSCC, multiple detecting methods were used comprehensively. IL24 protein expression was remarkably higher in LSCC (n= 49) than non-cancerous laryngeal controls (n= 26) as detected by in-house immunohistochemistry. Meanwhile, the IL24 mRNA expression was also evaluated based on high throughput data from Gene Expression Omnibus, The Cancer Genome Atlas, ArrayExpress and Oncomine databases. Consistently with the protein level, IL24 mRNA expression level was also predominantly upregulated in LSCC (n= 172) compared to non-cancerous laryngeal tissues (n= 81) with the standard mean difference (SMD) being 1.25 and the area under the curve (AUC) of the summary receiver operating characteristic (sROC) being 0.89 (95% CI = 0.86-0.92). Furthermore, the related genes of IL24 and the differentially expressed genes (DEGs) of LSCC were intersected and sent for Gene ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and the protein-protein interaction (PPI) analyses. In the GO annotation, the top terms of biological process (BP), cellular component (CC) and molecular function (MF) were extracellular matrix organization, extracellular matrix, cytokine activity, respectively. The top pathway of KEGG was ECM-receptor interaction. The PPI networks indicated the top hub genes of IL24-related genes in LSCC were SERPINE1, TGFB1, MMP1, MMP3, CSF2, and ITGA5. In conclusion, upregulating expression of IL24 may enhance the occurrence of LSCC, which owns prospect diagnostic ability and therapeutic significance in LSCC.
Collapse
Affiliation(s)
- Xiao-Zhun Tang
- Department of Head and Neck Tumor Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China.,Department of Head and Neck Tumor Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Xian-Guo Zhou
- Department of Research, Guangxi Medical University Cancer Hospital, Guangxi, China.,Department of Head and Neck Tumor Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Xiao-Guohui Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Guo-Sheng Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Ming-Xuan Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Yao Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Yu-Xuan Yao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Xiao-Yi Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Min-Hua Rong
- Department of Research, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Guangxi, China
| |
Collapse
|
7
|
Shalihat A, Hasanah AN, Mutakin, Lesmana R, Budiman A, Gozali D. The role of selenium in cell survival and its correlation with protective effects against cardiovascular disease: A literature review. Biomed Pharmacother 2020; 134:111125. [PMID: 33341057 DOI: 10.1016/j.biopha.2020.111125] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Selenium is a trace element that provides protection against cellular damage and death. Previous research using several types of cells identified anti-oxidant, anti-inflammatory, and anti-apoptotic effects for selenium. One of the diseases related to selenium is cardiovascular disease, as low selenium intake has been linked to cardiomyopathy. However, the mechanism of the cardioprotective effects of selenium is not thoroughly understood. Several studies supported the possible effects of selenium on heart cell survival. In this review, we analyzed recent research (2015-2020) on the roles and mechanism of action of selenium in cell survival and its cardioprotective effects. Furthermore, the prevention of apoptosis through both intrinsic and extrinsic pathways is discussed in this review. Signalling pathways that regulate cell survival such as the p-AMPK, poly (ADP-ribose) polymerase-1, nuclear factor-erythroid 2-related factor-2, AKT/PI3K, and STAT pathways are involved in the protective effects of selenium. In addition, signaling pathways that affect heart cell survival include the AKT and STAT pathways. It also affects autophagy through the PPAR-γ pathway. These findings should facilitate further research on the cardioprotective effects of selenium.
Collapse
Affiliation(s)
- Ayu Shalihat
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia; Departement of Pharmacy, Faculty of Science and Technology, Universitas Muhammadiyah Bandung, Jl. Soekarno - Hatta No. 752, Cipadung Kidul, Panyileukan, Bandung, 40614, Indonesia
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia
| | - Mutakin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia.
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia; Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia
| | - Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia
| | - Dolih Gozali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia
| |
Collapse
|
8
|
Valiyari S, Salimi M, Bouzari S. Novel fusion protein NGR-sIL-24 for targetedly suppressing cancer cell growth via apoptosis. Cell Biol Toxicol 2020; 36:179-193. [PMID: 32239369 DOI: 10.1007/s10565-020-09519-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Pro-apoptotic peptides have attracted much attention as promising anticancer agents due to their high activity. However, poor cellular uptake of the peptides is often associated with limited therapeutic application. Cell-penetrating homing peptides (CPHPs) were found to increase cell internalization as well as anticancer efficacy of the peptide conjugates. In this study, we developed a novel recombinant fusion protein composed of sIL-24 peptide as a pro-apoptotic moiety and asparagine-glycine-arginine (NGR) motif as a CD13-targeting CPHP component. In silico analysis demonstrated that flexible GGGGS linker provided the best structure and stability for our designed fusion protein. Cell adhesion experiments showed a significant binding affinity toward high CD13-expressing cells (U937 and A549) for NGR-sIL-24. Moreover, confocal microscopy revealed that NGR strongly facilitated the binding and cellular uptake of sIL-24 in U937 and A549 cancer cells. NGR-sIL-24 treatment markedly inhibited the growth of U937 and A549 cancer cells in a dose and time-dependent manner, without affecting the normal cell line MRC-5. Flow cytometric analysis and Hoechst 33342 staining exhibited potent apoptosis induction in U937 and A549 cells treated with NGR-sIL-24. Further mechanism elucidation uncovered that apoptotic death promoted by NGR-sIL-24 was attributed to upregulation of BiP/GRP78, Bax/Bcl-2, GADD34, cytochrome c release, and cleavage of caspase-3, suggesting NGR-sIL-24 penetration into cancerous cells and subsequent apoptosis induction, mainly through endoplasmic reticulum (ER) stress-dependent and mitochondria-dependent signaling pathways. Our results indicate that the designed recombinant fusion protein NGR-sIL-24 may serve as a potential targeted therapy agent for cancers with high expression of CD13.
Collapse
Affiliation(s)
- Samira Valiyari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Mona Salimi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
9
|
Gao J, Wang Y, Xu G, Wei J, Chang K, Tian X, Liu M, Yan X, Huo M, Song G. Selenium attenuates apoptosis and p-AMPK expressions in fluoride-induced NRK-52E cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15685-15697. [PMID: 30949948 DOI: 10.1007/s11356-019-04855-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Fluoride is widely distributed in the environment, and excessive fluoride intake can induce cytotoxicity, DNA damage, and cell cycle changes in many tissues and organs, including the kidney. Accumulating evidence demonstrates that selenium (Se) administration ameliorates sodium fluoride (NaF)-induced kidney damage. However, the potentially beneficial effects of Se against NaF-induced cytotoxicity of the kidney and the underlying molecular mechanisms of this protection are not fully understood. At present, in this study, the normal rat kidney cell (NRK-52E) was used to investigate the potentially protective mechanism of Se against NaF-induced apoptosis, by using the methods of pathology, colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, and Western blot. The experiment was designed with a control group, two NaF-treated groups (NaF, 5, 20 mg/L), two sodium selenite-treated groups (Na2SeO3, 17.1, 34.2 μg/L), and four Se + NaF-treated groups (Na2SeO3, 17.1, 34.2 μg/L; NaF, 5, 20 mg/L). The results indicate that selenium can attenuate apoptosis and AMPK phosphorylation in the NRK-52E cell induced with fluoride. These results imply that selenium is capable to modulate fluoride-induced NRK-52E cell apoptosis via regulating the expression levels of the proteins involved in mitochondrial pathway and changes in p-AMPK expressions may also be a key process in preventing fluorosis.
Collapse
Affiliation(s)
- Jiping Gao
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China
| | - Yu Wang
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China
| | - Guoqiang Xu
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China
| | - Jianing Wei
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China
| | - Kai Chang
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China
| | - Xiaolin Tian
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China
| | - Maolin Liu
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Shanxi, 030001, China
| | - Meijun Huo
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Guohua Song
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China.
| |
Collapse
|
10
|
Mohammadi-Farsani A, Habibi-Roudkenar M, Golkar M, Shokrgozar MA, Jahanian-Najafabadi A, KhanAhmad H, Valiyari S, Bouzari S. A-NGR fusion protein induces apoptosis in human cancer cells. EXCLI JOURNAL 2018; 17:590-597. [PMID: 30108463 PMCID: PMC6088213 DOI: 10.17179/excli2018-1120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/04/2018] [Indexed: 12/28/2022]
Abstract
The NGR peptide is one of the well-known peptides for targeting tumor cells. It has the ability to target aminopeptidase N (CD13) on tumor cells or the tumor vascular endothelium. In this study, the NGR peptide was used for targeting A subunit of the Shiga toxin to cancer cells. The cytotoxic effect of the A-NGR fusion protein was assessed on HT1080, U937, HT29 cancer cells and MRC-5 normal cells. For this purpose, cells were treated with different concentrations of A-NGR (0.5-40 µg/ml). The evaluation of cell viability was achieved by MTT assay. Apoptosis was determined by annexin-V/PI double staining flow cytometry. Alterations in the mRNA expression of apoptosis - related genes were assessed by real time RT- PCR. The results showed that A-NGR fusion protein effectively inhibited the growth of HT1080 and U937 cancer cells in comparison to negative control (PBS) but for CD13-negative HT-29 cancer cells, only at high concentrations of fusion protein was inhibited growth recorded. On the other hand, A-NGR had little cytotoxic effect on MRC-5 normal cells. The flow cytometry results showed that A-NGR induces apoptosis. Furthermore, the results of real time RT-PCR revealed that A-NGR significantly increases the mRNA expression of caspase 3 and caspase 9. Conclusively, A-NGR fusion protein has the ability of targeting CD13-positive cancer cells, the cytotoxic effect on CD13-positive cancer cells as well as has low cytotoxic effect on normal cells.
Collapse
Affiliation(s)
| | - Mehryar Habibi-Roudkenar
- Medical Biotechnology Department, Paramedicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| | - Majid Golkar
- Molecular Parasitology Laboratory, Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein KhanAhmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samira Valiyari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|