1
|
Varisli L, Zoumpourlis P, Spandidos DA, Zoumpourlis V, Vlahopoulos S. ALDH1A1 in breast cancer: A prospective target to overcome therapy resistance (Review). Oncol Lett 2025; 29:213. [PMID: 40093866 PMCID: PMC11905208 DOI: 10.3892/ol.2025.14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
The expression of cytosolic aldehyde dehydrogenases (ALDHs), which mediate the last step in the pathway of the synthesis of all-trans retinoic acid, is dysregulated in various types of human cancer, and has been associated with the development of cancer stem cells (CSCs) in solid tumors and hematological malignancies. CSCs are considered a minor fraction of cancer cells with the capacity to initiate neoplastic tumors. ALDH1A1 serves a crucial role in the emergence of the CSC phenotype, induces the malignant behavior of cancer cells and promotes treatment resistance. Notably, ALDH1A1-induced therapy resistance is not exclusive to just one group of drugs, but affects diverse types of drugs that use different mechanisms to kill cells. This diversity of drug resistance-inducing effects is associated with the stemness-supporting functions of ALDH1A1. The inhibition of ALDH1A1 activity using chemicals or the depletion of ALDH1A1 via genetic approaches, such as the use of small interfering RNA, can overcome diverse pathways of therapy resistance. In the context of breast cancer, it is critical that only a fraction of malignant cells are expected to manifest stem-like features, which include increased expression of ALDH1A1. From the angle of disease prognosis, the extent of the association of ALDH1A1 with increased malignant behavior and drug resistance remains to be determined through the application of cutting-edge methods that detect the expression of tracked biomarkers within tumors.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Panagiotis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
2
|
Zhao CM, Long XZ, Wang KY, Tian SX, Li YR, Zhang WY. High-throughput untargeted metabolomic profiling of urinary biomarkers in acute myocarditis patients: a cross-sectional study. Sci Rep 2025; 15:9254. [PMID: 40102476 PMCID: PMC11920081 DOI: 10.1038/s41598-025-93655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
Acute myocarditis, characterized by inflammatory myocardial injury, significantly risks heart failure and sudden death. Despite its severity, specific biomarkers are lacking. This study applied metabolomic analysis to urine samples from 21 acute myocarditis patients and 21 controls using UPLC-MS/MS, revealing 728 increased and 820 decreased metabolites in patients. The affected pathways were predominantly related to the amino acid metabolism, lipid metabolism, carbohydrate metabolism, nucleotide metabolism, and others. We have validated 19 metabolites with an area under the receiver operating characteristic curve (AUC-ROC) greater than 0.7 and a high level of identification confidence. Potential biomarkers upregulated in acute myocarditis patients included phytosphingosine, N-acetylneuraminic acid, indolelactic acid, L-glutamic acid, 4-pyridoxic acid, N1-methyl-2-pyridone-5-carboxamide, palmitic acid, hydroxyphenyllactic acid, riboflavin, nicotinic acid, choline, N-formylkynurenine, guanine, and hypoxanthine. Conversely, sebacic acid, 4-vinylphenol sulfate, capryloylglycine, 4-ethylphenylsulfate, and azelaic acid were found to be decreased. Collectively, the metabolomic profiling has uncovered distinct metabolic signatures in patients with acute myocarditis. The amino acid metabolism appears to play a pivotal role in the pathogenesis of acute myocarditis, offering potential avenues for diagnostic and therapeutic development.
Collapse
Affiliation(s)
- Cui-Mei Zhao
- Department of Pharmacy, Zhongshan City People's Hospital, Zhongshan, 528400, China
- School of Pharmaceutical Sciences, Zunyi Medical University, Zunyi, 563000, China
| | - Xiu-Zhen Long
- Department of Pharmacy, Zhongshan City People's Hospital, Zhongshan, 528400, China
- School of Pharmaceutical Sciences, Zunyi Medical University, Zunyi, 563000, China
| | - Ke-Yi Wang
- Imaging Center, Zhongshan City People's Hospital, Zhongshan, 528400, China
| | - Shao-Xin Tian
- Department of Cardiology, Zhongshan City People's Hospital, Zhongshan, 528400, China
| | - Ying-Ran Li
- Department of Pharmacy, Zhongshan City People's Hospital, Zhongshan, 528400, China.
| | - Wen-Yuan Zhang
- Department of Pharmacy, Zhongshan City People's Hospital, Zhongshan, 528400, China.
- School of Pharmaceutical Sciences, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
3
|
Wang S, Han J, Wang Z, Liu X, Wang C, Nisar MF, Pan L, Xu K. Targeted Therapy of Tumors and Cancer Stem Cells based on Oxidant-regulated Redox Pathway and its Mechanism. Curr Comput Aided Drug Des 2025; 21:425-440. [PMID: 38818918 DOI: 10.2174/0115734099299174240522115944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 06/01/2024]
Abstract
A malignant tumor is a frequent and common disease that severely threatens human health. Many mechanisms, such as cell signaling pathway, anti-apoptosis mechanism, cell stemness, metabolism, and cell phenotype, have been studied to explain the reasons for chemotherapy, radioresistance, and tumor recurrences in antitumor treatment. Cancer stem cells (CSCs) are important tumor cell subclasses that can potentially organize and regulate stem cell properties. Growing evidence suggests that CSCs can initiate tumors and constitute a significant factor in metastasis, recurrence, and treatment resistance. The inability to completely target and remove CSCs is a considerable obstacle in tumor treatment. Therefore, drugs and therapeutic strategies that can effectively intervene with CSCs are essential for the treatment of different tumor types. However, the current strategies and efficacy of targeted elimination of CSCs are very limited. Oxidative stress has been recognized to play a crucial role in cancer pathophysiology. Moreover, reactive oxygen species (ROS) production and imbalance of the built-in cellular antioxidant defense system are hallmarks of tumor and cancer etiology. The current paper will focus on the regulation and mechanism behind oxidative stress in tumors and cancer stem cells and its tumor therapy applications. Additionally, the article discusses the role of CSCs in causing tumor treatment resistance and recurrence based on a redox perspective. The study also emphasizes that targeted modulation of oxidative stress in CSCs has great potential in tumor therapy, providing novel prospects for tumor therapy.
Collapse
Affiliation(s)
- Shunshun Wang
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Juanjuan Han
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zijun Wang
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xianqiong Liu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chunli Wang
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Muhammad Farrukh Nisar
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, 63100, Pakistan
| | - Lianhong Pan
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, 400030, China
| | - Kang Xu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| |
Collapse
|
4
|
Wang L, Chen L, Schlenk D, Li F, Liu J. Parabens promotes invasive properties of multiple human cells: A potential cancer-associated adverse outcome pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172015. [PMID: 38547973 DOI: 10.1016/j.scitotenv.2024.172015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Parabens are esters of p-hydroxybenzoic acid, which have been used as preservatives and considered safe for nearly a century, until the last two decades when concerns began to be raised about their association with cancers. Knowledge of the mode of action of parabens on the metastatic properties of different cancer cells is still very limited. In the present study, we investigated the effects of methylparaben (MP) and propylparaben (PP) on cell invasion and/or migration in multiple human cancerous and noncancerous cells, including hepatocellular carcinoma cells (HepG2), cervical carcinoma cells (HeLa), breast carcinoma cells (MCF-7), and human placental trophoblasts (HTR-8/SVneo). MP and PP at concentrations in a range of 5-500 μg/L significantly promoted the invasion of four cell lines, with a minimum effective concentration of 5 μg/L. MP and PP up-regulated the expression levels and enzymatic activities of matrix metalloproteinase 2 and 9 (MMP2 and MMP9), as well as altered the expression of the tissue inhibitors of metalloproteinase 1 and 2 (TIMP1 and TIMP2) in four cell lines, suggesting MMPs/TIMPs as potential key events (KEs) for paraben-induced cell invasion. Activation of the p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal protein kinases 1/2 (JNK1/2) signaling pathways was required for MP- and PP-promoted invasion of four cell lines, suggesting MAPK signaling pathways as candidates for KEs in cancer or noncancerous cells response to paraben exposure. This study showed for the first time that the two widely used parabens, MP and PP, promoted invasive capacity of multiple human cells through a common mode of action. This study provides evidence for the establishment of a potential cancer-associated AOP for parabens based on pathway-specific mechanism(s), which contributes towards assessing the health risks of these environmental chemicals.
Collapse
Affiliation(s)
- Linping Wang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, Research Center for Air Pollution and Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Luyi Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Feixue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jing Liu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, Research Center for Air Pollution and Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Gou L, Yue GGL, Lee JKM, Puno PT, Lau CBS. Natural product Eriocalyxin B suppressed triple negative breast cancer metastasis both in vitro and in vivo. Biochem Pharmacol 2023; 210:115491. [PMID: 36898414 DOI: 10.1016/j.bcp.2023.115491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer among women, and its metastasis to distant organs accounts for the majority of death. Eriocalyxin B (Eri B), an ent-kaurane diterpenoid isolating from Isodon eriocalyx var. laxiflora, has previously been reported to have anti-tumor and anti-angiogenic effects in breast cancer. Here, we investigated the effect of Eri B on cell migration and adhesion in triple negative breast cancer (TNBC) cells, as well as aldehyde dehydrogenases 1 family member A1 (ALDH1A1) expression, colony- and sphere-formation in cancer stem cell (CSC) enriched MDA-MB-231 cells. The in vivo anti-metastatic activities of Eri B were determined in 3 different breast tumor-bearing mouse models. Our results indicated that Eri B inhibited TNBC cell migration and adhesion to extracellular matrix proteins, and also reduced ALDH1A1 expression and colony formation in CSC-enriched MDA-MB-231 cells. The metastasis-related pathways, such as epidermal growth factor receptor/ mitogen-activated protein kinase kinases 1/2/ extracellular regulated protein kinase signaling altered by Eri B was firstly shown in MDA-MB-231 cells. The potent anti-metastatic efficacies of Eri B were demonstrated in breast xenograft-bearing mice and syngeneic breast tumor-bearing mice. Gut microbiome analysis results revealed the change in the diversity and composition of microbiome after Eri B treatment, and the potential pathways that are involved in the anti-cancer efficacy of Eri B. In conclusion, Eri B was shown to inhibit breast cancer metastasis in both in vitro and in vivo models. Our findings further support the development of Eri B as an anti-metastatic agent for breast cancer.
Collapse
Affiliation(s)
- Leilei Gou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Julia Kin-Ming Lee
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Pema Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
6
|
Okuyama NCM, Ribeiro DL, da Rocha CQ, Pereira ÉR, Cólus IMDS, Serpeloni JM. Three-dimensional cell cultures as preclinical models to assess the biological activity of phytochemicals in breast cancer. Toxicol Appl Pharmacol 2023; 460:116376. [PMID: 36638973 DOI: 10.1016/j.taap.2023.116376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
The demand for the development of three-dimensional (3D) cell culture models in both/either drug screening and/or toxicology is gradually magnified. Natural Products derived from plants are known as phytochemicals and serve as resources for novel drugs and cancer therapy. Typical examples include taxol analogs (i.e., paclitaxel and docetaxel), vinca alkaloids (i.e., vincristine, vinblastine), and camptothecin analogs (topotecan, irinotecan). Breast cancer is the most frequent malignancy in women, with a 70% chance of patients being cured; however, metastatic disease is not considered curable using currently available chemotherapeutic options. In addition, phytochemicals present promising options for overcoming chemotherapy-related problems, such as drug resistance and toxic effects on non-target tissues. In the toxicological evaluation of these natural compounds, 3D cell culture models are a powerful tool for studying their effects on different tissues and organs in similar environments and behave as if they are in vivo conditions. Considering that 3D cell cultures represent a valuable platform for identifying the biological features of tumor cells as well as for screening natural products with antitumoral activity, the present review aims to summarize the most common 3D cell culture methods, focusing on multicellular tumor spheroids (MCTS) of breast cancer cell lines used in the discovery of phytochemicals with anticancer properties in the last ten years.
Collapse
Affiliation(s)
- Nádia Calvo Martins Okuyama
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil
| | - Diego Luís Ribeiro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508-000, Brazil.
| | - Claudia Quintino da Rocha
- Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão, São Luís 65080-805, Brazil.
| | - Érica Romão Pereira
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil
| | - Ilce Mara de Syllos Cólus
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil
| | - Juliana Mara Serpeloni
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| |
Collapse
|
7
|
Zhang X, Liu L, Luo J, Peng X. Anti-aging potency correlates with metabolites from in vitro fermentation of edible fungal polysaccharides using human fecal intestinal microflora. Food Funct 2022; 13:11592-11603. [DOI: 10.1039/d2fo01951e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aging is a natural process in which the structural integrity of an organism declines over time.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Liu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, China
| |
Collapse
|
8
|
Wang Z, Chen S, Zhu Q, Wu Y, Xu G, Guo G, Lai W, Chen J, Zhong S. Using a Two-Sample Mendelian Randomization Method in Assessing the Causal Relationships Between Human Blood Metabolites and Heart Failure. Front Cardiovasc Med 2021; 8:695480. [PMID: 34595216 PMCID: PMC8476837 DOI: 10.3389/fcvm.2021.695480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/10/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Heart failure (HF) is the main cause of morbidity and mortality worldwide, and metabolic dysfunction is an important factor related to HF pathogenesis and development. However, the causal effect of blood metabolites on HF remains unclear. Objectives: Our chief aim is to investigate the causal relationships between human blood metabolites and HF risk. Methods: We used an unbiased two-sample Mendelian randomization (MR) approach to assess the causal relationships between 486 human blood metabolites and HF risk. Exposure information was obtained from Sample 1, which is the largest metabolome-based genome-wide association study (mGWAS) data containing 7,824 Europeans. Outcome information was obtained from Sample 2, which is based on the results of a large-scale GWAS meta-analysis of HF and contains 47,309 cases and 930,014 controls of Europeans. The inverse variance weighted (IVW) model was used as the primary two-sample MR analysis method and followed the sensitivity analyses, including heterogeneity test, horizontal pleiotropy test, and leave-one-out analysis. Results: We observed that 11 known metabolites were potentially related to the risk of HF after using the IVW method (P < 0.05). After adding another four MR models and performing sensitivity analyses, we found a 1-SD increase in the xenobiotics 4-vinylphenol sulfate was associated with ~22% higher risk of HF (OR [95%CI], 1.22 [1.07–1.38]). Conclusions: We revealed that the 4-vinylphenol sulfate may nominally increase the risk of HF by 22% after using a two-sample MR approach. Our findings may provide novel insights into the pathogenesis underlying HF and novel strategies for HF prevention.
Collapse
Affiliation(s)
- Zixian Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shiyu Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qian Zhu
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yonglin Wu
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Guifeng Xu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Gongjie Guo
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Weihua Lai
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiyan Chen
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shilong Zhong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Alves C, Serrano E, Silva J, Rodrigues C, Pinteus S, Gaspar H, Botana LM, Alpoim MC, Pedrosa R. Sphaerococcus coronopifolius bromoterpenes as potential cancer stem cell-targeting agents. Biomed Pharmacother 2020; 128:110275. [PMID: 32480221 DOI: 10.1016/j.biopha.2020.110275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023] Open
Abstract
Cancer is one of the major threats to human health and, due to distinct factors, it is expected that its incidence will increase in the next decades leading to an urgent need of new anticancer drugs development. Ongoing experimental and clinical observations propose that cancer cells with stem-like properties (CSCs) are involved on the development of lung cancer chemoresistance. As tumour growth and metastasis can be controlled by tumour-associated stromal cells, the main goal of this study was to access the antitumor potential of five bromoterpenes isolated from Sphaerococcus coronopifolius red alga to target CSCs originated in a co-culture system of fibroblast and lung malignant cells. Cytotoxicity of compounds (10-500 μM; 72 h) was evaluated on monocultures of several malignant and non-malignant cells lines (HBF, BEAS-2B, RenG2, SC-DRenG2) and the effects estimated by MTT assay. Co-cultures of non-malignant human bronchial fibroblasts (HBF) and malignant human bronchial epithelial cells (RenG2) were implemented and the compounds ability to selectively kill CSCs was evaluated by sphere forming assay. The interleucine-6 (IL-6) levels were also determined as cytokine is crucial for CSCs. Regarding the monocultures results bromosphaerol selectively eliminated the malignant cells. Both 12S-hydroxy-bromosphaerol and 12R-hydroxy-bromosphaerol steroisomers were cytotoxic towards non-malignant bronchial BEAS-2B cell line, IC50 of 4.29 and 4.30 μM respectively. However, none of the steroisomers induced damage in the HBFs. As to the co-cultures, 12R-hydroxy-bromosphaerol revealed the highest cytotoxicity and ability to abrogate the malignant stem cells; however its effects were IL-6 independent. The results presented here are the first evidence of the potential of these bromoterpenes to abrogate CSCs opening new research opportunities. The 12R-hydroxy-bromosphaerol revealed to be the most promising compound to be test in more complex living models.
Collapse
Affiliation(s)
- Celso Alves
- MARE-Marine and Environmental Sciences Centre, Instituto Politécnico de Leiria, 2520-630 Peniche, Portugal.
| | - Eurico Serrano
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517, Coimbra, Portugal
| | - Joana Silva
- MARE-Marine and Environmental Sciences Centre, Instituto Politécnico de Leiria, 2520-630 Peniche, Portugal
| | - Carlos Rodrigues
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517, Coimbra, Portugal; Department of Internal Medicine, Hospital of Aveiro, Centro Hospitalar do Baixo Vouga, Aveiro, Portugal
| | - Susete Pinteus
- MARE-Marine and Environmental Sciences Centre, Instituto Politécnico de Leiria, 2520-630 Peniche, Portugal
| | - Helena Gaspar
- MARE-Marine and Environmental Sciences Centre, Instituto Politécnico de Leiria, 2520-630 Peniche, Portugal; University of Lisbon, Faculty of Science, BioISI - Biosystems and Integrative Sciences Institute, 1749-016 Lisbon, Portugal
| | - Luis M Botana
- Departament of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Maria C Alpoim
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517, Coimbra, Portugal
| | - Rui Pedrosa
- MARE-Marine and Environmental Sciences Centre, Instituto Politécnico de Leiria, 2520-630 Peniche, Portugal.
| |
Collapse
|
10
|
Ascites-derived ALDH+CD44+ tumour cell subsets endow stemness, metastasis and metabolic switch via PDK4-mediated STAT3/AKT/NF-κB/IL-8 signalling in ovarian cancer. Br J Cancer 2020; 123:275-287. [PMID: 32390009 PMCID: PMC7374705 DOI: 10.1038/s41416-020-0865-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 01/27/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Background Ovarian cancer is characterised by frequent recurrence due to persistent presence of residual cancer stem cells (CSCs). Here, we identify and characterise tumour subsets from ascites-derived tumour cells with stemness, metastasis and metabolic switch properties and to delineate the involvement of pyruvate dehydrogenase kinase 4 (PDK4) in such process. Methods Ovarian cancer cells/cell lines derived from ascites were used for tumourspheres/ALDH+CD44+ subset isolation. The functional roles and downstream signalling of PDK4 were explored. Its association with clinical outcome of ovarian cancer was analysed. Results We demonstrated enhanced CSC characteristics of tumour cells derived from ovarian cancer ascites, concomitant with ALDH and CD44 subset enrichment and high PDK4 expression, compared to primary tumours. We further showed tumourspheres/ALDH+CD44+ subsets from ascites-derived tumour cells/cell lines with CSC properties and enhanced glycolysis. Clinically, PDK4 expression was correlated with aggressive features. Notably, blockade of PDK4 in tumourspheres/ALDH+CD44+ subsets led to inhibition of CSC characteristics, glycolysis and activation of STAT3/AKT/NF-κB/IL-8 (signal transducer and activator of transcription 3/protein kinases B/nuclear factor-κB/interleukin-8) signalling. Conversely, overexpression of PDK4 in ALDH−CD44– subsets exerted the opposite effects. Conclusion Ascites-derived ALDH+CD44+ tumour cell subsets endow stemness, metastatic and metabolic switch properties via PDK4-mediated STAT3/AKT/NF-κB/IL-8 signalling, suggesting PDK4 as a viable therapeutic molecular target for ovarian cancer management.
Collapse
|
11
|
Garcia-Mayea Y, Mir C, Masson F, Paciucci R, LLeonart ME. Insights into new mechanisms and models of cancer stem cell multidrug resistance. Semin Cancer Biol 2020; 60:166-180. [PMID: 31369817 DOI: 10.1016/j.semcancer.2019.07.022] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022]
Abstract
The acquisition of genetic alterations, clonal evolution, and the tumor microenvironment promote cancer progression, metastasis and therapy resistance. These events correspond to the establishment of the great phenotypic heterogeneity and plasticity of cancer cells that contribute to tumor progression and resistant disease. Targeting resistant cancers is a major challenge in oncology; however, the underlying processes are not yet fully understood. Even though current treatments can reduce tumor size and increase life expectancy, relapse and multidrug resistance (MDR) ultimately remain the second cause of death in developed countries. Recent evidence points toward stem-like phenotypes in cancer cells, promoted by cancer stem cells (CSCs), as the main culprit of cancer relapse, resistance (radiotherapy, hormone therapy, and/or chemotherapy) and metastasis. Many mechanisms have been proposed for CSC resistance, such as drug efflux through ABC transporters, overactivation of the DNA damage response (DDR), apoptosis evasion, prosurvival pathways activation, cell cycle promotion and/or cell metabolic alterations. Nonetheless, targeted therapy toward these specific CSC mechanisms is only partially effective to prevent or abolish resistance, suggesting underlying additional causes for CSC resilience. This article aims to provide an integrated picture of the MDR mechanisms that operate in CSCs' behavior and to propose a novel model of tumor evolution during chemotherapy. Targeting the pathways mentioned here might hold promise and reveal new strategies for future clinical therapeutic approaches.
Collapse
Affiliation(s)
- Y Garcia-Mayea
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - C Mir
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - F Masson
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - R Paciucci
- Clinical Biochemistry Group, Vall d'Hebron Hospital and Vall d´Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - M E LLeonart
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain; Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Spain.
| |
Collapse
|
12
|
Potential neurotrophic activity and cytotoxicity of selected C21 steroidal glycosides from Cynanchum otophyllum. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02506-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|