1
|
Feng T, Xie F, Lyu Y, Yu P, Chen B, Yu J, Zhang G, To KF, Tsang CM, Kang W. The arginine metabolism and its deprivation in cancer therapy. Cancer Lett 2025; 620:217680. [PMID: 40157492 DOI: 10.1016/j.canlet.2025.217680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Arginine deprivation has emerged as a promising therapeutic strategy in cancer treatment due to the auxotrophy of certain tumors. Many cancers, such as pancreatic, colorectal, and hepatocellular carcinoma, exhibit downregulated argininosuccinate synthetase, making them reliant on external arginine sources. This dependency allows targeted therapies that deplete arginine, inhibiting tumor growth while sparing normal cells. Arginine is crucial for various cellular processes, including protein synthesis and immune function. Its deprivation affects both tumor metabolism and immune responses, potentially enhancing cancer therapy. Studies have explored using enzymes like arginine deiminase and arginase, often modified for increased stability and reduced immunogenicity, to effectively lower arginine levels in the tumor microenvironment. These approaches show promise, particularly in tumors with low argininosuccinate synthetase expression. However, the impact on immune cells and the potential for resistance highlight the need for further research. Combining arginine deprivation with other treatments might improve outcomes, offering a novel approach to combat arginine-dependent cancers.
Collapse
Affiliation(s)
- Tiejun Feng
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, China; CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Yang Lyu
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China
| | - Peiyao Yu
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, China; CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China
| | - Chi Man Tsang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China.
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, China; CUHK-Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
2
|
Wolkersdorfer AM, Endo Y, Kehrein J, Kappus M, Hattori S, Gutmann M, Rudel T, Caliskan N, Lühmann T, Kato Y, Meinel L. Designing the Aplysia punctata Arginine-Depleting Enzyme for Tumor Targeting. Mol Pharm 2025; 22:1253-1261. [PMID: 39950605 DOI: 10.1021/acs.molpharmaceut.4c00964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
l-Amino acid oxidases (LAAO) deaminate amino acids to α-keto acids and generate hydrogen peroxide, a reactive oxygen species (ROS) with potential value for cancer therapy. We recombinantly expressed the LAAO from Aplysia punctata, called APIT (Cuvier 1803). The resulting wild-type APIT (APITwt) was conjugated to polyethylene glycol (APIT-PEG). Furthermore, an APIT mutant with an affibody targeting the human epidermal growth factor receptor 2 (HER2; zHER2-APIT) was genetically engineered resulting in a binding affinity KD of ∼ 2.2 nM to the HER2 receptor ectodomain. Further, we evaluated if the APIT and tumor-targeted APIT can be used as an APIT-drug conjugate by covalently amidating the lysine residues on the protein surface. However, for the HER2-targeted APIT, the affibody contains lysines as well, and amidation of these lysines could have impaired the affibody's affinity to the HER2 receptor. Therefore, we designed a lysine-free variant of the tumor-targeting part of zHER2-APIT using an in silico mutation analysis, suggesting the replacement of the lysines of the affibody by arginine or alanine. This new variant is referred to as zHER2(K-del)-APIT. To simulate a covalent drug loading to APIT and the targeting constructs, we attached biotin by amidation. Biotin-zHER2(K-del)-APIT successfully allowed binding to HER2-positive but not HER2-negative cells in vitro. The biodistribution of these novel constructs was tested in xenografted mice with a HER2-positive and negative tumor in each animal. The zHER2(K-del)-APIT lost its ability to target HER2-positive tumors despite the in vitro data suggesting otherwise. The zHER2-APIT accumulated within the HER2-positive tumors but not in the negative tumors. APIT-PEG had increased uptake in HER2-positive and negative tumors compared to APITwt, which can be attributed to a prolonged serum half-life achieved by PEGylation, due to the absence of any tumor-targeting effect. These biodistribution studies point to HER2-targeting LAAOs for cancer therapy and PEGylation increasing tumor accumulation.
Collapse
Affiliation(s)
- Alena Maria Wolkersdorfer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Yuri Endo
- Laboratory for Bioanalysis and Onco-Pharmaceutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Josef Kehrein
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, Helsinki 00014, Finland
| | - Maximilian Kappus
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Sumitto Hattori
- Laboratory for Bioanalysis and Onco-Pharmaceutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Marcus Gutmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Thomas Rudel
- Chair of Microbiology, University of Würzburg, Würzburg 97074, Germany
- Helmholtz Centre for Infection Research, Helmholtz-Institute for RNA-based Infection Research (HIRI), Josef-Schneider-Str.2/D15, Würzburg 97080, Germany
| | - Neva Caliskan
- Helmholtz Centre for Infection Research, Helmholtz-Institute for RNA-based Infection Research (HIRI), Josef-Schneider-Str.2/D15, Würzburg 97080, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Yoshinori Kato
- Laboratory for Bioanalysis and Onco-Pharmaceutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
- Helmholtz Centre for Infection Research, Helmholtz-Institute for RNA-based Infection Research (HIRI), Josef-Schneider-Str.2/D15, Würzburg 97080, Germany
| |
Collapse
|
3
|
Wolkersdorfer A, Bergmann B, Adelmann J, Ebbinghaus M, Günther E, Gutmann M, Hahn L, Hurwitz R, Krähmer R, Leenders F, Lühmann T, Schueler J, Schmidt L, Teifel M, Meinel L, Rudel T. PEGylated Recombinant Aplysia punctata Ink Toxin Depletes Arginine and Lysine and Inhibits the Growth of Tumor Xenografts. ACS Biomater Sci Eng 2024; 10:3825-3832. [PMID: 38722049 PMCID: PMC11168412 DOI: 10.1021/acsbiomaterials.4c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024]
Abstract
In recent years, a novel treatment method for cancer has emerged, which is based on the starvation of tumors of amino acids like arginine. The deprivation of arginine in serum is based on enzymatic degradation and can be realized by arginine deaminases like the l-amino acid oxidase found in the ink toxin of the sea hare Aplysia punctata. Previously isolated from the ink, the l-amino acid oxidase was described to oxidate the essential amino acids l-lysine and l-arginine to their corresponding deaminated alpha-keto acids. Here, we present the recombinant production and functionalization of the amino acid oxidase Aplysia punctata ink toxin (APIT). PEGylated APIT (APIT-PEG) increased the blood circulation time. APIT-PEG treatment of patient-derived xenografted mice shows a significant dose-dependent reduction of tumor growth over time mediated by amino acid starvation of the tumor. Treatment of mice with APIT-PEG, which led to deprivation of arginine, was well tolerated.
Collapse
Affiliation(s)
- Alena
M. Wolkersdorfer
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, 97074 Würzburg, Germany
| | - Birgit Bergmann
- Chair
of Microbiology, Biocentre, University of
Würzburg, 97074 Würzburg, Germany
| | - Juliane Adelmann
- Institute
of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Matthias Ebbinghaus
- Charles
River Laboratories Germany GmbH, Am Flughafen 12−14, 79108 Freiburg, Germany
| | - Eckhard Günther
- Aeterna
Zentaris GmbH, Weismuellerstr. 50, 60314 Frankfurt am Main, Germany
| | - Marcus Gutmann
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, 97074 Würzburg, Germany
| | - Lukas Hahn
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, 97074 Würzburg, Germany
| | - Robert Hurwitz
- Max-Planck-Institute
for Infection Biology, Virchowweg 12, 10117 Berlin, Germany
| | - Ralf Krähmer
- Celares
GmbH, Otto-Warburg-Haus, 13125 Berlin, Germany
| | | | - Tessa Lühmann
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, 97074 Würzburg, Germany
| | - Julia Schueler
- Charles
River Laboratories Germany GmbH, Am Flughafen 12−14, 79108 Freiburg, Germany
| | - Luisa Schmidt
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, 97074 Würzburg, Germany
| | - Michael Teifel
- Aeterna
Zentaris GmbH, Weismuellerstr. 50, 60314 Frankfurt am Main, Germany
| | - Lorenz Meinel
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, 97074 Würzburg, Germany
- Helmholtz-Institute
for RNA-based Infection Research (HIRI), Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Thomas Rudel
- Chair
of Microbiology, Biocentre, University of
Würzburg, 97074 Würzburg, Germany
- Helmholtz-Institute
for RNA-based Infection Research (HIRI), Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| |
Collapse
|
4
|
Szlosarek PW, Creelan BC, Sarkodie T, Nolan L, Taylor P, Olevsky O, Grosso F, Cortinovis D, Chitnis M, Roy A, Gilligan D, Kindler H, Papadatos-Pastos D, Ceresoli GL, Mansfield AS, Tsao A, O’Byrne KJ, Nowak AK, Steele J, Sheaff M, Shiu CF, Kuo CL, Johnston A, Bomalaski J, Zauderer MG, Fennell DA. Pegargiminase Plus First-Line Chemotherapy in Patients With Nonepithelioid Pleural Mesothelioma: The ATOMIC-Meso Randomized Clinical Trial. JAMA Oncol 2024; 10:475-483. [PMID: 38358753 PMCID: PMC10870227 DOI: 10.1001/jamaoncol.2023.6789] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/29/2023] [Indexed: 02/16/2024]
Abstract
Importance Arginine deprivation using ADI-PEG20 (pegargiminase) combined with chemotherapy is untested in a randomized study among patients with cancer. ATOMIC-Meso (ADI-PEG20 Targeting of Malignancies Induces Cytotoxicity-Mesothelioma) is a pivotal trial comparing standard first-line chemotherapy plus pegargiminase or placebo in patients with nonepithelioid pleural mesothelioma. Objective To determine the effect of pegargiminase-based chemotherapy on survival in nonepithelioid pleural mesothelioma, an arginine-auxotrophic tumor. Design, Setting, and Participants This was a phase 2-3, double-blind randomized clinical trial conducted at 43 centers in 5 countries that included patients with chemotherapy-naive nonepithelioid pleural mesothelioma from August 1, 2017, to August 15, 2021, with at least 12 months' follow-up. Final follow-up was on August 15, 2022. Data analysis was performed from March 2018 to June 2023. Intervention Patients were randomly assigned (1:1) to receive weekly intramuscular pegargiminase (36.8 mg/m2) or placebo. All patients received intravenous pemetrexed (500 mg/m2) and platinum (75-mg/m2 cisplatin or carboplatin area under the curve 5) chemotherapy every 3 weeks up to 6 cycles. Pegargiminase or placebo was continued until progression, toxicity, or 24 months. Main Outcomes and Measures The primary end point was overall survival, and secondary end points were progression-free survival and safety. Response rate by blinded independent central review was assessed in the phase 2 portion only. Results Among 249 randomized patients (mean [SD] age, 69.5 [7.9] years; 43 female individuals [17.3%] and 206 male individuals [82.7%]), all were included in the analysis. The median overall survival was 9.3 months (95% CI, 7.9-11.8 months) with pegargiminase-chemotherapy as compared with 7.7 months (95% CI, 6.1-9.5 months) with placebo-chemotherapy (hazard ratio [HR] for death, 0.71; 95% CI, 0.55-0.93; P = .02). The median progression-free survival was 6.2 months (95% CI, 5.8-7.4 months) with pegargiminase-chemotherapy as compared with 5.6 months (95% CI, 4.1-5.9 months) with placebo-chemotherapy (HR, 0.65; 95% CI, 0.46-0.90; P = .02). Grade 3 to 4 adverse events with pegargiminase occurred in 36 patients (28.8%) and with placebo in 21 patients (16.9%); drug hypersensitivity and skin reactions occurred in the experimental arm in 3 patients (2.4%) and 2 patients (1.6%), respectively, and none in the placebo arm. Rates of poststudy treatments were comparable in both arms (57 patients [45.6%] with pegargiminase vs 58 patients [46.8%] with placebo). Conclusions and Relevance In this randomized clinical trial of arginine depletion with pegargiminase plus chemotherapy, survival was extended beyond standard chemotherapy with a favorable safety profile in patients with nonepithelioid pleural mesothelioma. Pegargiminase-based chemotherapy as a novel antimetabolite strategy for mesothelioma validates wider clinical testing in oncology. Trial Registration ClinicalTrials.gov Identifier: NCT02709512.
Collapse
Affiliation(s)
- Peter W. Szlosarek
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- The Mid and South Essex University Hospitals Group, Chelmsford, United Kingdom
- Barts Cancer Centre, St Bartholomew’s Hospital, London, United Kingdom
| | | | - Thomas Sarkodie
- The Mid and South Essex University Hospitals Group, Chelmsford, United Kingdom
| | - Luke Nolan
- Southampton University Hospital NHS Foundation Trust, Southampton, United Kingdom
| | - Paul Taylor
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Olga Olevsky
- David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Federica Grosso
- Mesothelioma Unit, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | | | - Meenali Chitnis
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Amy Roy
- University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom
| | - David Gilligan
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Hedy Kindler
- University of Chicago Medicine, Chicago, Illinois
| | | | | | | | - Anne Tsao
- The University of Texas MD Anderson Cancer Center, Houston
| | - Kenneth J. O’Byrne
- Princess Alexandra Hospital and Queensland University of Technology, Brisbane, Australia
| | - Anna K. Nowak
- Medical School, The University of Western Australia and Sir Charles Gairdner Hospital, Perth, Western Australia
| | - Jeremy Steele
- Barts Cancer Centre, St Bartholomew’s Hospital, London, United Kingdom
| | - Michael Sheaff
- Barts Cancer Centre, St Bartholomew’s Hospital, London, United Kingdom
| | | | | | | | | | - Marjorie G. Zauderer
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Dean A. Fennell
- University of Leicester & University Hospitals of Leicester NHS, United Kingdom
| |
Collapse
|
5
|
Hajaj E, Pozzi S, Erez A. From the Inside Out: Exposing the Roles of Urea Cycle Enzymes in Tumors and Their Micro and Macro Environments. Cold Spring Harb Perspect Med 2024; 14:a041538. [PMID: 37696657 PMCID: PMC10982720 DOI: 10.1101/cshperspect.a041538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Catabolic pathways change in anabolic diseases such as cancer to maintain metabolic homeostasis. The liver urea cycle (UC) is the main catabolic pathway for disposing excess nitrogen. Outside the liver, the UC enzymes are differentially expressed based on each tissue's needs for UC intermediates. In tumors, there are changes in the expression of UC enzymes selected for promoting tumorigenesis by increasing the availability of essential UC substrates and products. Consequently, there are compensatory changes in the expression of UC enzymes in the cells that compose the tumor microenvironment. Moreover, extrahepatic tumors induce changes in the expression of the liver UC, which contribute to the systemic manifestations of cancer, such as weight loss. Here, we review the multilayer changes in the expression of UC enzymes throughout carcinogenesis. Understanding the changes in UC expression in the tumor and its micro and macro environment can help identify biomarkers for early cancer diagnosis and vulnerabilities that can be targeted for therapy.
Collapse
Affiliation(s)
- Emma Hajaj
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sabina Pozzi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
6
|
Chu YD, Lai MW, Yeh CT. Unlocking the Potential of Arginine Deprivation Therapy: Recent Breakthroughs and Promising Future for Cancer Treatment. Int J Mol Sci 2023; 24:10668. [PMID: 37445845 DOI: 10.3390/ijms241310668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Arginine is a semi-essential amino acid that supports protein synthesis to maintain cellular functions. Recent studies suggest that arginine also promotes wound healing, cell division, ammonia metabolism, immune system regulation, and hormone biosynthesis-all of which are critical for tumor growth. These discoveries, coupled with the understanding of cancer cell metabolic reprogramming, have led to renewed interest in arginine deprivation as a new anticancer therapy. Several arginine deprivation strategies have been developed and entered clinical trials. The main principle behind these therapies is that arginine auxotrophic tumors rely on external arginine sources for growth because they carry reduced key arginine-synthesizing enzymes such as argininosuccinate synthase 1 (ASS1) in the intracellular arginine cycle. To obtain anticancer effects, modified arginine-degrading enzymes, such as PEGylated recombinant human arginase 1 (rhArg1-PEG) and arginine deiminase (ADI-PEG 20), have been developed and shown to be safe and effective in clinical trials. They have been tried as a monotherapy or in combination with other existing therapies. This review discusses recent advances in arginine deprivation therapy, including the molecular basis of extracellular arginine degradation leading to tumor cell death, and how this approach could be a valuable addition to the current anticancer arsenal.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Ming-Wei Lai
- Liver Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
7
|
Jiménez-Alonso JJ, López-Lázaro M. Dietary Manipulation of Amino Acids for Cancer Therapy. Nutrients 2023; 15:2879. [PMID: 37447206 DOI: 10.3390/nu15132879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer cells cannot proliferate and survive unless they obtain sufficient levels of the 20 proteinogenic amino acids (AAs). Unlike normal cells, cancer cells have genetic and metabolic alterations that may limit their capacity to obtain adequate levels of the 20 AAs in challenging metabolic environments. However, since normal diets provide all AAs at relatively constant levels and ratios, these potentially lethal genetic and metabolic defects are eventually harmless to cancer cells. If we temporarily replace the normal diet of cancer patients with artificial diets in which the levels of specific AAs are manipulated, cancer cells may be unable to proliferate and survive. This article reviews in vivo studies that have evaluated the antitumor activity of diets restricted in or supplemented with the 20 proteinogenic AAs, individually and in combination. It also reviews our recent studies that show that manipulating the levels of several AAs simultaneously can lead to marked survival improvements in mice with metastatic cancers.
Collapse
Affiliation(s)
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| |
Collapse
|
8
|
Bench-to-Bedside Studies of Arginine Deprivation in Cancer. Molecules 2023; 28:molecules28052150. [PMID: 36903394 PMCID: PMC10005060 DOI: 10.3390/molecules28052150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
Arginine is a semi-essential amino acid which becomes wholly essential in many cancers commonly due to the functional loss of Argininosuccinate Synthetase 1 (ASS1). As arginine is vital for a plethora of cellular processes, its deprivation provides a rationale strategy for combatting arginine-dependent cancers. Here we have focused on pegylated arginine deiminase (ADI-PEG20, pegargiminase)-mediated arginine deprivation therapy from preclinical through to clinical investigation, from monotherapy to combinations with other anticancer therapeutics. The translation of ADI-PEG20 from the first in vitro studies to the first positive phase 3 trial of arginine depletion in cancer is highlighted. Finally, this review discusses how the identification of biomarkers that may denote enhanced sensitivity to ADI-PEG20 beyond ASS1 may be realized in future clinical practice, thus personalising arginine deprivation therapy for patients with cancer.
Collapse
|
9
|
Gustafson KT, Mokhtari N, Manalo EC, Montoya Mira J, Gower A, Yeh YS, Vaidyanathan M, Esener SC, Fischer JM. Hybrid Silica-Coated PLGA Nanoparticles for Enhanced Enzyme-Based Therapeutics. Pharmaceutics 2022; 15:143. [PMID: 36678770 PMCID: PMC9866096 DOI: 10.3390/pharmaceutics15010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Some cancer cells rely heavily on non-essential biomolecules for survival, growth, and proliferation. Enzyme based therapeutics can eliminate these biomolecules, thus specifically targeting neoplastic cells; however, enzyme therapeutics are susceptible to immune clearance, exhibit short half-lives, and require frequent administration. Encapsulation of therapeutic cargo within biocompatible and biodegradable poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) is a strategy for controlled release. Unfortunately, PLGA NPs exhibit burst release of cargo shortly after delivery or upon introduction to aqueous environments where they decompose via hydrolysis. Here, we show the generation of hybrid silica-coated PLGA (SiLGA) NPs as viable drug delivery vehicles exhibiting sub-200 nm diameters, a metastable Zeta potential, and high loading efficiency and content. Compared to uncoated PLGA NPs, SiLGA NPs offer greater retention of enzymatic activity and slow the burst release of cargo. Thus, SiLGA encapsulation of therapeutic enzymes, such as asparaginase, could reduce frequency of administration, increase half-life, and improve efficacy for patients with a range of diseases.
Collapse
Affiliation(s)
- Kyle T. Gustafson
- Cancer Early Detection Advanced Research (CEDAR) Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Negin Mokhtari
- Cancer Early Detection Advanced Research (CEDAR) Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Electrical Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elise C. Manalo
- Cancer Early Detection Advanced Research (CEDAR) Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jose Montoya Mira
- Cancer Early Detection Advanced Research (CEDAR) Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Austin Gower
- Cancer Early Detection Advanced Research (CEDAR) Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ya-San Yeh
- Cancer Early Detection Advanced Research (CEDAR) Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mukanth Vaidyanathan
- Cancer Early Detection Advanced Research (CEDAR) Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Nano Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sadik C. Esener
- Cancer Early Detection Advanced Research (CEDAR) Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Electrical Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Nano Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jared M. Fischer
- Cancer Early Detection Advanced Research (CEDAR) Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
10
|
Chu YD, Liu HF, Chen YC, Chou CH, Yeh CT. WWOX-rs13338697 genotype predicts therapeutic efficacy of ADI-PEG 20 for patients with advanced hepatocellular carcinoma. Front Oncol 2022; 12:996820. [PMID: 36530994 PMCID: PMC9756969 DOI: 10.3389/fonc.2022.996820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/14/2022] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Previous studies have identified three single nucleotide polymorphisms (SNPs): GALNT14-rs9679162, WWOX-rs13338697 and rs6025211. Their genotypes are associated with therapeutic outcomes in hepatocellular carcinoma (HCC). Herein, we examined whether these SNP genotypes could predict the clinical outcome of HCC patients treated with ADI-PEG 20. METHODS Totally 160 patients with advanced HCC, who had previously been enrolled in clinical trials, including 113 receiving ADI-PEG 20 monotherapy (cohort-1) and 47 receiving FOLFOX/ADI-PEG 20 combination treatment (cohort-2), were included retrospectively. RESULTS The WWOX-rs13338697-GG genotype was associated with favorable overall survival in cohort-1 patients (P = 0.025), whereas the rs6025211-TT genotype was associated with unfavorable time-to-tumor progression in cohort-1 (P = 0.021) and cohort-1 plus 2 patients (P = 0.008). As ADI-PEG 20 can reduce plasma arginine levels, we examined its pretreatment levels in relation to the WWOX-rs13338697 genotypes. Pretreatment plasma arginine levels were found to be significantly higher in patients carrying the WWOX-rs13338697-GG genotype (P = 0.006). We next examined the association of the WWOX-rs13338697 genotypes with WWOX tissue protein levels in 214 paired (cancerous/noncancerous) surgically resected HCC tissues (cohort-3). The WWOX-rs13338697-GG genotype was associated with decreased tissue levels of WWOX and ASS1. Mechanistic studies showed that WWOX and ASS1 levels were downregulated in hypoxic HCC cells. Silencing WWOX to mimic low WWOX protein expression in HCC in patients with the WWOX-rs13338697-GG genotype, enhanced HIF1A increment under hypoxia, further decreased ASS1, and increased cell susceptibility to ADI-PEG 20. COMCLUSION In summary, the WWOX-rs13338697 and rs6025211 genotypes predicted treatment outcomes in ADI-PEG 20-treated advanced HCC patients. The WWOX-rs13338697-GG genotype was associated with lower tissue WWOX and ASS1 levels and higher pretreatment plasma arginine levels, resembling an arginine auxotrophic phenotype requires excessive extracellular arginine supply. Silencing WWOX to mimic HCC with the WWOX-rs13338697-GG genotype further stimulated HCC cell response to hypoxia through increased HIF1A expression, leading to further reduction of ASS1 and thus increased cell susceptibility to ADI-PEG 20.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hui-Fen Liu
- Polaris Pharmaceuticals, Inc., Polaris Group, Taipei, Taiwan
| | - Yi-Chen Chen
- Polaris Pharmaceuticals, Inc., Polaris Group, Taipei, Taiwan
| | - Chun-Hung Chou
- Polaris Pharmaceuticals, Inc., Polaris Group, Taipei, Taiwan
- Ph.D. Program for Biotechnology Industry, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
11
|
Ping Y, Shen C, Huang B, Zhang Y. Reprogramming T-Cell Metabolism for Better Anti-Tumor Immunity. Cells 2022; 11:3103. [PMID: 36231064 PMCID: PMC9562038 DOI: 10.3390/cells11193103] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
T cells play central roles in the anti-tumor immunity, whose activation and differentiation are profoundly regulated by intrinsic metabolic reprogramming. Emerging evidence has revealed that metabolic processes of T cells are generally altered by tumor cells or tumor released factors, leading to crippled anti-tumor immunity. Therefore, better understanding of T cell metabolic mechanism is crucial in developing the next generation of T cell-based anti-tumor immunotherapeutics. In this review, we discuss how metabolic pathways affect T cells to exert their anti-tumor effects and how to remodel the metabolic programs to improve T cell-mediated anti-tumor immune responses. We emphasize that glycolysis, carboxylic acid cycle, fatty acid oxidation, cholesterol metabolism, amino acid metabolism, and nucleotide metabolism work together to tune tumor-reactive T-cell activation and proliferation.
Collapse
Affiliation(s)
- Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chunyi Shen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 100005, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
12
|
Szyszko TA, Dunn JT, Phillips MM, Bomalaski J, Sheaff MT, Ellis S, Pike L, Goh V, Cook GJ, Szlosarek PW. Role of 3'-Deoxy-3'-[ 18F] Fluorothymidine Positron Emission Tomography-Computed Tomography as a Predictive Biomarker in Argininosuccinate Synthetase 1-Deficient Thoracic Cancers Treated With Pegargiminase. JTO Clin Res Rep 2022; 3:100382. [PMID: 36082278 PMCID: PMC9445378 DOI: 10.1016/j.jtocrr.2022.100382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 10/26/2022] Open
Abstract
Introduction Pegargiminase (ADI-PEG 20I) degrades arginine in patients with argininosuccinate synthetase 1-deficient malignant pleural mesothelioma (MPM) and NSCLC. Imaging with proliferation biomarker 3'-deoxy-3'-[18F] fluorothymidine (18F-FLT) positron emission tomography (PET)-computed tomography (CT) was performed in a phase 1 study of pegargiminase with pemetrexed and cisplatin (ADIPemCis). The aim was to determine whether FLT PET-CT predicts treatment response earlier than CT. Methods A total of 18 patients with thoracic malignancies (10 MPM; eight NSCLC) underwent imaging. FLT PET-CT was performed at baseline (PET1), 24 hours post-pegargiminase monotherapy (PET2), post one cycle of ADIPemCis (PET3), and at end of treatment (EOT, PET4). CT was performed at baseline (CT1) and EOT (CT4). CT4 (modified) Response Evaluation Criteria in Solid Tumors (RECIST) response was compared with treatment response on PET (changes in maximum standardized uptake value [SUVmax] on European Organisation for Research and Treatment of Cancer-based criteria). Categorical responses (progression, partial response, and stable disease) for PET2, PET3, and PET4 were compared against CT using Cohen's kappa. Results ADIPemCis treatment response resulted in 22% mean decrease in size between CT1 and CT4 and 37% mean decrease in SUVmax between PET1 and PET4. PET2 agreed with CT4 response in 62% (8 of 13) of patients (p = 0.043), although decrease in proliferation (SUVmax) did not precede decrease in size (RECIST). Partial responses on FLT PET-CT were detected in 20% (3 of 15) of participants at PET2 and 69% (9 of 13) at PET4 with good agreement between modalities in MPM at EOT. Conclusions Early FLT imaging (PET2) agrees with EOT CT results in nearly two-thirds of patients. Both early and late FLT PET-CT provide evidence of response to ADIPemCis therapy in MPM and NSCLC. We provide first-in-human FLT PET-CT data in MPM, indicating it is comparable with modified RECIST.
Collapse
Affiliation(s)
- Teresa A. Szyszko
- King’s College London and Guy’s and St Thomas’ PET Centre, St Thomas’ Hospital, London, United Kingdom
- Department of Nuclear Medicine, Royal Free Hospital NHS Trust, London, United Kingdom
- Department of Oncology, University College London, London, United Kingdom
| | - Joel T. Dunn
- King’s College London and Guy’s and St Thomas’ PET Centre, St Thomas’ Hospital, London, United Kingdom
| | - Melissa M. Phillips
- Department of Medical Oncology, St. Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | | | - Michael T. Sheaff
- Department of Histopathology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Steve Ellis
- Department of Diagnostic Imaging, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Lucy Pike
- King’s College London and Guy’s and St Thomas’ PET Centre, St Thomas’ Hospital, London, United Kingdom
| | - Vicky Goh
- Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Gary J.R. Cook
- King’s College London and Guy’s and St Thomas’ PET Centre, St Thomas’ Hospital, London, United Kingdom
- Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Peter W. Szlosarek
- Department of Medical Oncology, St. Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
13
|
Zhang Y, Higgins CB, Van Tine BA, Bomalaski JS, DeBosch BJ. Pegylated arginine deiminase drives arginine turnover and systemic autophagy to dictate energy metabolism. Cell Rep Med 2022; 3:100498. [PMID: 35106510 PMCID: PMC8784773 DOI: 10.1016/j.xcrm.2021.100498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/16/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022]
Abstract
Obesity is a multi-systemic disorder of energy balance. Despite intense investigation, the determinants of energy homeostasis remain incompletely understood, and efficacious treatments against obesity and its complications are lacking. Here, we demonstrate that conferred arginine iminohydrolysis by the bacterial virulence factor and arginine deiminase, arcA, promotes mammalian energy expenditure and insulin sensitivity and reverses dyslipidemia, hepatic steatosis, and inflammation in obese mice. Extending this, pharmacological arginine catabolism via pegylated arginine deiminase (ADI-PEG 20) recapitulates these metabolic effects in dietary and genetically obese models. These effects require hepatic and whole-body expression of the autophagy complex protein BECN1 and hepatocyte-specific FGF21 secretion. Single-cell ATAC sequencing further reveals BECN1-dependent hepatocyte chromatin accessibility changes in response to ADI-PEG 20. The data thus reveal an unexpected therapeutic utility for arginine catabolism in modulating energy metabolism by activating systemic autophagy, which is now exploitable through readily available pharmacotherapy.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cassandra B. Higgins
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian A. Van Tine
- Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
- Division of Pediatric Hematology/Oncology, St. Louis Children’s Hospital, St. Louis, MO 63108, USA
- Siteman Cancer Center, St. Louis, MO 63108, USA
| | | | - Brian J. DeBosch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
14
|
Yao S, Janku F, Koenig K, Tsimberidou AM, Piha-Paul SA, Shi N, Stewart J, Johnston A, Bomalaski J, Meric-Bernstam F, Fu S. Phase 1 trial of ADI-PEG 20 and liposomal doxorubicin in patients with metastatic solid tumors. Cancer Med 2021; 11:340-347. [PMID: 34841717 PMCID: PMC8729058 DOI: 10.1002/cam4.4446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 01/30/2023] Open
Abstract
Background Arginine depletion interferes with pyrimidine metabolism and DNA damage repair pathways. Preclinical data demonstrated that depletion of arginine by PEGylated arginine deiminase (ADI‐PEG 20) enhanced liposomal doxorubicin (PLD) cytotoxicity in cancer cells with argininosuccinate synthase 1 (ASS1) deficiency. The objective of this study was to assess safety and tolerability of ADI‐PEG 20 and PLD in patients with metastatic solid tumors. Methods Patients with advanced ASS1‐deficient solid tumors were enrolled in this phase 1 trial of ADI‐PEG 20 and PLD following a 3 + 3 design. Eligible patients were given intravenous PLD biweekly and intramuscular (IM) ADI‐PEG 20 weekly. Toxicity and efficacy were evaluated according to the Common Terminology Criteria for Adverse Events (version 4.0) and Response Evaluation Criteria in Solid Tumors (version 1.1), respectively. Results Of 15 enrolled patients, 9 had metastatic HER2‐negative breast carcinoma. We observed no dose‐limiting toxicities or treatment‐related deaths. One patient safely received 880 mg/m2 PLD in this study and 240 mg/m2 doxorubicin previously. Treatment led to stable disease in 9 patients and was associated with a median progression‐free survival time of 3.95 months in 15 patients. Throughout the duration of treatment, decreased arginine and increased citrulline levels in peripheral blood remained significant in a majority of patients. We detected no induction of anti‐ADI‐PEG 20 antibodies by week 8 in one third of patients. Conclusion Concurrent IM injection of ADI‐PEG 20 at 36 mg/m2 weekly and intravenous infusion of PLD at 20 mg/m2 biweekly had an acceptable safety profile in patients with advanced ASS1‐deficient solid tumors. Further evaluation of this combination is under discussion.
Collapse
Affiliation(s)
- Shuyang Yao
- Department of Investigational Cancer Therapeutics, Houston, Texas, USA.,Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Filip Janku
- Department of Investigational Cancer Therapeutics, Houston, Texas, USA
| | | | | | | | - Nai Shi
- Department of Investigational Cancer Therapeutics, Houston, Texas, USA
| | - John Stewart
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - John Bomalaski
- Polaris Pharmaceuticals, Inc., San Diego, California, USA
| | | | - Siqing Fu
- Department of Investigational Cancer Therapeutics, Houston, Texas, USA
| |
Collapse
|
15
|
Chisari A, Golán I, Campisano S, Gélabert C, Moustakas A, Sancho P, Caja L. Glucose and Amino Acid Metabolic Dependencies Linked to Stemness and Metastasis in Different Aggressive Cancer Types. Front Pharmacol 2021; 12:723798. [PMID: 34588983 PMCID: PMC8473699 DOI: 10.3389/fphar.2021.723798] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022] Open
Abstract
Malignant cells are commonly characterised by being capable of invading tissue, growing self-sufficiently and uncontrollably, being insensitive to apoptosis induction and controlling their environment, for example inducing angiogenesis. Amongst them, a subpopulation of cancer cells, called cancer stem cells (CSCs) shows sustained replicative potential, tumor-initiating properties and chemoresistance. These characteristics make CSCs responsible for therapy resistance, tumor relapse and growth in distant organs, causing metastatic dissemination. For these reasons, eliminating CSCs is necessary in order to achieve long-term survival of cancer patients. New insights in cancer metabolism have revealed that cellular metabolism in tumors is highly heterogeneous and that CSCs show specific metabolic traits supporting their unique functionality. Indeed, CSCs adapt differently to the deprivation of specific nutrients that represent potentially targetable vulnerabilities. This review focuses on three of the most aggressive tumor types: pancreatic ductal adenocarcinoma (PDAC), hepatocellular carcinoma (HCC) and glioblastoma (GBM). The aim is to prove whether CSCs from different tumour types share common metabolic requirements and responses to nutrient starvation, by outlining the diverse roles of glucose and amino acids within tumour cells and in the tumour microenvironment, as well as the consequences of their deprivation. Beyond their role in biosynthesis, they serve as energy sources and help maintain redox balance. In addition, glucose and amino acid derivatives contribute to immune responses linked to tumourigenesis and metastasis. Furthermore, potential metabolic liabilities are identified and discussed as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Andrea Chisari
- Department of Chemistry, School of Sciences, National University of Mar del Plata, Mar del Plata, Argentina
| | - Irene Golán
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Sabrina Campisano
- Department of Chemistry, School of Sciences, National University of Mar del Plata, Mar del Plata, Argentina
| | - Caroline Gélabert
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Patricia Sancho
- Translational Research Unit, Hospital Universitario Miguel Servet, IIS Aragon, Zaragoza, Spain
| | - Laia Caja
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Hajaj E, Sciacovelli M, Frezza C, Erez A. The context-specific roles of urea cycle enzymes in tumorigenesis. Mol Cell 2021; 81:3749-3759. [PMID: 34469752 DOI: 10.1016/j.molcel.2021.08.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
The expression of the urea cycle (UC) proteins is dysregulated in multiple cancers, providing metabolic benefits to tumor survival, proliferation, and growth. Here, we review the main changes described in the expression of UC enzymes and metabolites in different cancers at various stages and suggest that these changes are dynamic and should hence be viewed in a context-specific manner. Understanding the evolvability in the activity of the UC pathway in cancer has implications for cancer-immune cell interactions and for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Emma Hajaj
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Marco Sciacovelli
- Medical Research Council Cancer Unit, University of Cambridge, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK.
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
17
|
Harding JJ, Yang TS, Chen YY, Feng YH, Yen CJ, Ho CL, Huang WT, El Dika I, Akce M, Tan B, Cohen SA, Meyer T, Sarker D, Lee DW, Ryoo BY, Lim HY, Johnston A, Bomalaski JS, O'Reilly EM, Qin S, Abou-Alfa GK. Assessment of pegylated arginine deiminase and modified FOLFOX6 in patients with advanced hepatocellular carcinoma: Results of an international, single-arm, phase 2 study. Cancer 2021; 127:4585-4593. [PMID: 34415578 DOI: 10.1002/cncr.33870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Arginine starvation depletes the micronutrients required for DNA synthesis and interferes with both thymidylate synthetase activity and DNA repair pathways in preclinical models of hepatocellular carcinoma (HCC). Pegylated arginine deiminase (ADI-PEG 20), an arginine degrader, potentiates the cytotoxic activity of platinum and pyrimidine antimetabolites in HCC cellular and murine models. METHODS This was a global, multicenter, open-label, single-arm, phase 2 trial of ADI-PEG 20 and modified 5-fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) in patients who had HCC with Child-Pugh A cirrhosis and disease progression on ≥2 prior lines of treatment. The primary objective was the objective response rate assessed according to Response Evaluation Criteria in Solid Tumors, version 1.1. Secondary objectives were to estimate progression-free survival, overall survival, safety, and tolerability. Eligible patients were treated with mFOLFOX6 intravenously biweekly at standard doses and ADI-PEG-20 intramuscularly weekly at 36 mg/m2 . RESULTS In total, 140 patients with advanced HCC were enrolled. The median patient age was 62 years (range, 30-85 years), 83% of patients were male, 76% were of Asian race, 56% had hepatitis B viremia, 10% had hepatitis C viremia, 100% had received ≥2 prior lines of systemic therapy, and 39% had received ≥3 prior lines of systemic therapy. The objective response rate was 9.3% (95% confidence interval [CI], 5.0%-15.4%), with a median response duration of 10.2 months (95% CI, 5.8 months to not reached). The median progression-free survival was 3.8 months (95% CI, 1.8-6.3 months), and the median overall survival was 14.5 months (95% CI, 13.6-20.9 months). The most common grade ≥3 treatment-related events were neutropenia (32.9%), white blood cell count decrease (20%), platelet count decrease (19.3%), and anemia (9.3%). CONCLUSIONS Concurrent mFOLFOX6 plus ADI-PEG 20 exhibited limited antitumor activity in patients with treatment-refractory HCC. The study was terminated early, and no further evaluation of the combination will be pursued. LAY SUMMARY Arginine is an important nutrient for hepatocellular carcinoma (HCC). The depletion of arginine with pegylated arginine deiminase (ADI-PEG 20), an arginine degrader, appeared to make chemotherapy (FOLFOX) work better in animal models of HCC and in patients with HCC on an early phase clinical trial. To formally test this hypothesis in the clinical setting, a large, global, phase 2 clinical trial was conducted of ADI-PEG 20 and FOLFOX in the treatment of patients with refractory HCC. The study showed limited activity of ADI-PEG 20 and FOLFOX in advanced HCC and was stopped early.
Collapse
Affiliation(s)
- James J Harding
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Tsai-Sheng Yang
- Internal Medicine, Linkou Chang Gung Medical Foundation, Taoyuan City, Taiwan
| | - Yen-Yang Chen
- College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan
| | - Yin-Hsun Feng
- Internal Medicine, Chi Mei Medical Center, Tainan City, Taiwan
| | - Chia-Jui Yen
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ching-Liang Ho
- Division of Hematology, Department of Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei City, Taiwan
| | - Wen-Tsung Huang
- Department of Medicine, Chi Mei Medical Center-Liouying, Tainan City, Taiwan
| | - Imane El Dika
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Mehmet Akce
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Benjamin Tan
- Department of Medicine, Washington University in St Louis, St Louis, Missouri
| | | | - Timothy Meyer
- Oncology, Royal Free Hospital, London, United Kingdom
| | - Debashis Sarker
- Department of Medicine, Guys Hospital, London, United Kingdom
| | - Dae-Won Lee
- Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Baek-Yeol Ryoo
- Department of Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul, Korea
| | | | | | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Shukui Qin
- Cancer Center, Bayi Hospital of Nanjing Chinese Medicine University, Nanjing, China
| | - Ghassan K Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| |
Collapse
|
18
|
Kumari N, Bansal S. Arginine depriving enzymes: applications as emerging therapeutics in cancer treatment. Cancer Chemother Pharmacol 2021; 88:565-594. [PMID: 34309734 DOI: 10.1007/s00280-021-04335-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Cancer is the second leading cause of death globally. Chemotherapy and radiation therapy and other medications are employed to treat various types of cancer. However, each treatment has its own set of side effects, owing to its low specificity. As a result, there is an urgent need for newer therapeutics that do not disrupt healthy cells' normal functioning. Depriving nutrient or non/semi-essential amino acids to which cancerous cells are auxotrophic remains one such promising anticancer strategy. L-Arginine (Arg) is a semi-essential vital amino acid involved in versatile metabolic processes, signaling pathways, and cancer cell proliferation. Hence, the administration of Arg depriving enzymes (ADE) such as arginase, arginine decarboxylase (ADC), and arginine deiminase (ADI) could be effective in cancer therapy. The Arg auxotrophic cancerous cells like hepatocellular carcinoma, human colon cancer, leukemia, and breast cancer cells are sensitive to ADE treatment due to low expression of crucial enzymes argininosuccinate synthetase (ASS), argininosuccinate lyase (ASL), and ornithine transcarbamylase (OCT). These therapeutic enzyme treatments induce cell death through inducing autophagy, apoptosis, generation of oxidative species, i.e., oxidative stress, and arresting the progression and expansion of cancerous cells at certain cell cycle checkpoints. The enzymes are undergoing clinical trials and could be successfully exploited as potential anticancer agents in the future.
Collapse
Affiliation(s)
- Neha Kumari
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Waknaghat, Solan, 173234, Himachal Pradesh, India
| | - Saurabh Bansal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Waknaghat, Solan, 173234, Himachal Pradesh, India.
| |
Collapse
|
19
|
Chen CL, Hsu SC, Ann DK, Yen Y, Kung HJ. Arginine Signaling and Cancer Metabolism. Cancers (Basel) 2021; 13:3541. [PMID: 34298755 PMCID: PMC8306961 DOI: 10.3390/cancers13143541] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
Arginine is an amino acid critically involved in multiple cellular processes including the syntheses of nitric oxide and polyamines, and is a direct activator of mTOR, a nutrient-sensing kinase strongly implicated in carcinogenesis. Yet, it is also considered as a non- or semi-essential amino acid, due to normal cells' intrinsic ability to synthesize arginine from citrulline and aspartate via ASS1 (argininosuccinate synthase 1) and ASL (argininosuccinate lyase). As such, arginine can be used as a dietary supplement and its depletion as a therapeutic strategy. Strikingly, in over 70% of tumors, ASS1 transcription is suppressed, rendering the cells addicted to external arginine, forming the basis of arginine-deprivation therapy. In this review, we will discuss arginine as a signaling metabolite, arginine's role in cancer metabolism, arginine as an epigenetic regulator, arginine as an immunomodulator, and arginine as a therapeutic target. We will also provide a comprehensive summary of ADI (arginine deiminase)-based arginine-deprivation preclinical studies and an update of clinical trials for ADI and arginase. The different cell killing mechanisms associated with various cancer types will also be described.
Collapse
Affiliation(s)
- Chia-Lin Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Miaoli County, Taiwan;
| | - Sheng-Chieh Hsu
- Institute of Biotechnology, National Tsing-Hua University, Hsinchu 30035, Taiwan;
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Miaoli County, Taiwan
| | - David K. Ann
- Department of Diabetes and Metabolic Diseases Research, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Yun Yen
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Miaoli County, Taiwan;
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Comprehensive Cancer Center, Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA 95817, USA
| |
Collapse
|
20
|
Chang KY, Chiang NJ, Wu SY, Yen CJ, Chen SH, Yeh YM, Li CF, Feng X, Wu K, Johnston A, Bomalaski JS, Wu BW, Gao J, Subudhi SK, Kaseb AO, Blando JM, Yadav SS, Szlosarek PW, Chen LT. Phase 1b study of pegylated arginine deiminase (ADI-PEG 20) plus Pembrolizumab in advanced solid cancers. Oncoimmunology 2021; 10:1943253. [PMID: 34290906 PMCID: PMC8276661 DOI: 10.1080/2162402x.2021.1943253] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023] Open
Abstract
Background Pegylated arginine deiminase (ADI-PEG 20) is a metabolism-based strategy that depletes arginine, resulting in tumoral stress and cytotoxicity. Preclinically, ADI-PEG 20 modulates T-cell activity and enhances the therapeutic efficacy of programmed death-1 (PD-1) inhibition. Methods A phase 1b study, including a dose-escalation cohort and an expansion cohort, was undertaken to explore the effects of ADI-PEG 20 in combination with pembrolizumab, an anti-PD-1 antibody, for safety, pharmacodynamics, and response. CD3 levels and programmed death-ligand 1 (PD-L1) expression were assessed in paired biopsies collected prior to and after ADI-PEG 20 treatment but before pembrolizumab. Results Twenty-five patients, nine in the dose-escalation cohort and sixteen in the expansion cohort, were recruited. Treatment was feasible with adverse events consistent with those known for each agent, except for Grade 3/4 neutropenia which was higher than expected, occurring in 10/25 (40%) patients. Mean arginine levels were suppressed for 1-3 weeks, but increased gradually. CD3+ T cells increased in 10/12 (83.3%) subjects following ADI-PEG 20 treatment, including in three partial responders (p = .02). PD-L1 expression was low and increased in 3/10 (30%) of subjects. Partial responses occurred in 6/25 (24%) heavily pretreated patients, in both argininosuccinate synthetase 1 proficient and deficient subjects. Conclusions The immunometabolic combination was safe with the caveat that the incidence of neutropenia might be increased compared with either agent alone. ADI-PEG 20 treatment increased T cell infiltration in the low PD-L1 tumor microenvironment. The recommended phase 2 doses are 36 mg/m2 weekly for ADI-PEG 20 and 200 mg every 3 weeks for pembrolizumab.
Collapse
Affiliation(s)
- Kwang-Yu Chang
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Nai-Jung Chiang
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Shang-Yin Wu
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Jui Yen
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Hung Chen
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Yu-Min Yeh
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Feng Li
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan
| | - Xiaoxing Feng
- Polaris Pharmaceuticals, Inc., San Diego, California, USA
| | - Katherine Wu
- Polaris Pharmaceuticals, Inc., San Diego, California, USA
| | | | | | - Bor-Wen Wu
- Polaris Pharmaceuticals, Inc., San Diego, California, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sumit K. Subudhi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ahmed O. Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jorge M. Blando
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TXUSA
| | - Shalini S. Yadav
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TXUSA
| | - Peter W. Szlosarek
- Center for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, UK
| | - Li-Tzong Chen
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
21
|
Hsu SC, Chen CL, Cheng ML, Chu CY, Changou CA, Yu YL, Yeh SD, Kuo TC, Kuo CC, Chuu CP, Li CF, Wang LH, Chen HW, Yen Y, Ann DK, Wang HJ, Kung HJ. Arginine starvation elicits chromatin leakage and cGAS-STING activation via epigenetic silencing of metabolic and DNA-repair genes. Am J Cancer Res 2021; 11:7527-7545. [PMID: 34158865 PMCID: PMC8210599 DOI: 10.7150/thno.54695] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/13/2021] [Indexed: 12/15/2022] Open
Abstract
Rationale: One of the most common metabolic defects in cancers is the deficiency in arginine synthesis, which has been exploited therapeutically. Yet, challenges remain, and the mechanisms of arginine-starvation induced killing are largely unclear. Here, we sought to demonstrate the underlying mechanisms by which arginine starvation-induced cell death and to develop a dietary arginine-restriction xenograft model to study the in vivo effects. Methods: Multiple castration-resistant prostate cancer cell lines were treated with arginine starvation followed by comprehensive analysis of microarray, RNA-seq and ChIP-seq were to identify the molecular and epigenetic pathways affected by arginine starvation. Metabolomics and Seahorse Flux analyses were used to determine the metabolic profiles. A dietary arginine-restriction xenograft mouse model was developed to assess the effects of arginine starvation on tumor growth and inflammatory responses. Results: We showed that arginine starvation coordinately and epigenetically suppressed gene expressions, including those involved in oxidative phosphorylation and DNA repair, resulting in DNA damage, chromatin-leakage and cGAS-STING activation, accompanied by the upregulation of type I interferon response. We further demonstrated that arginine starvation-caused depletion of α-ketoglutarate and inactivation of histone demethylases are the underlying causes of epigenetic silencing. Significantly, our dietary arginine-restriction model showed that arginine starvation suppressed prostate cancer growth in vivo, with evidence of enhanced interferon responses and recruitment of immune cells. Conclusions: Arginine-starvation induces tumor cell killing by metabolite depletion and epigenetic silencing of metabolic genes, leading to DNA damage and chromatin leakage. The resulting cGAS-STING activation may further enhance these killing effects.
Collapse
|
22
|
Tsai HJ, Hsiao HH, Hsu YT, Liu YC, Kao HW, Liu TC, Cho SF, Feng X, Johnston A, Bomalaski JS, Kuo MC, Chen TY. Phase I study of ADI-PEG20 plus low-dose cytarabine for the treatment of acute myeloid leukemia. Cancer Med 2021; 10:2946-2955. [PMID: 33787078 PMCID: PMC8085967 DOI: 10.1002/cam4.3871] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Most acute myeloid leukemia (AML) cells are argininosuccinate synthetase‐deficient. Pegylated arginine deiminase (ADI‐PEG20) monotherapy depletes circulating arginine, thereby selectively inducing tumor cell death. ADI‐PEG20 was shown to induce complete responses in ~10% of relapsed/refractory or poor‐risk AML patients. We conducted a phase I, dose‐escalation study combining ADI‐PEG20 and low‐dose cytarabine (LDC) in AML patients. Patients received 20 mg LDC subcutaneously twice daily for 10 days every 28 days and ADI‐PEG20 at 18 or 36 mg/m2 (dose levels 1 and 2) intramuscularly weekly. An expansion cohort for the maximal tolerated dose of ADI‐PEG20 was planned to further estimate the toxicity and preliminary response of this regimen. The primary endpoints were safety and tolerability. The secondary endpoints were time on treatment, overall survival (OS), overall response rate (ORR), and biomarkers (pharmacodynamics and immunogenicity detection). Twenty‐three patients were included in the study, and seventeen patients were in the expansion cohort (dose level 2). No patients developed dose‐limiting toxicities. The most common grade III/IV toxicities were thrombocytopenia (61%), anemia (52%), and neutropenia (30%). One had an allergic reaction to ADI‐PEG20. The ORR in 18 evaluable patients was 44.4%, with a median OS of 8.0 (4.5‐not reached) months. In seven treatment‐naïve patients, the ORR was 71.4% and the complete remission rate was 57.1%. The ADI‐PEG20 and LDC combination was well‐tolerated and resulted in an encouraging ORR. Further combination studies are warranted. (This trial was registered in ClinicalTrials.gov as a Ph1 Study of ADI‐PEG20 Plus Low‐Dose Cytarabine in Older Patients With AML, NCT02875093).
Collapse
Affiliation(s)
- Hui-Jen Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,Department of Oncology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan.,Division of Hematology/Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Hua Hsiao
- Division of Hematology/Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ting Hsu
- Division of Hematology, Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Chang Liu
- Division of Hematology/Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiao-Wen Kao
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan
| | - Ta-Chih Liu
- Division of Hematology/Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Hematology-Oncology and Cancer Center, Chang Bing Show Chwan Hospital, Changhua, Taiwan
| | - Shih-Feng Cho
- Division of Hematology/Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Xiaoxing Feng
- Polaris Pharmaceuticals, Inc, Polaris Group, San Diego, CA, USA
| | - Amanda Johnston
- Polaris Pharmaceuticals, Inc, Polaris Group, San Diego, CA, USA
| | | | - Ming-Chung Kuo
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan
| | - Tsai-Yun Chen
- Division of Hematology, Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
23
|
Phase 1 trial of ADI-PEG20 plus cisplatin in patients with pretreated metastatic melanoma or other advanced solid malignancies. Br J Cancer 2021; 124:1533-1539. [PMID: 33674736 DOI: 10.1038/s41416-020-01230-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Arginine depletion interferes with pyrimidine metabolism and DNA damage-repair pathways, and pairing arginine deiminase pegylated with 20,000-molecular-weight polyethylene glycol (ADI-PEG20) with platinum enhances cytotoxicity in vitro and in vivo in arginine auxotrophs. METHODS This single-centre, Phase 1 trial was conducted using a 3 + 3 dose escalation designed to assess safety, tolerability and determine the recommended Phase 2 dose (RP2D) of ADI-PEG20. RESULTS We enrolled 99 patients with metastatic argininosuccinate synthetase 1 (ASS1) deficient malignancies. We observed no dose-limiting toxic effects or treatment-related mortality. Three percent of patients discontinued treatment because of toxicity. After treatment, 5% (5/99) of patients had partial responses, and 41% had stable disease. The median progression-free and overall survival durations were 3.62 and 8.06 months, respectively. Substantial arginine depletion and citrulline escalation persisted in most patients through weeks 24 and 8, respectively. Tumour responses were associated with anti-ADI-PEG20 antibody levels at weeks 8 and 16 (p = 0.031 and p = 0.0357, respectively). CONCLUSION Concurrently administered ADI-PEG20 and cisplatin had an acceptable safety profile and had shown antitumour activity against metastatic ASS1-deficient solid tumours. Further evaluation of this treatment combination is warranted.
Collapse
|
24
|
Chu CY, Lee YC, Hsieh CH, Yeh CT, Chao TY, Chen PH, Lin IH, Hsieh TH, Shih JW, Cheng CH, Chang CC, Lin PS, Huang YL, Chen TM, Yen Y, Ann DK, Kung HJ. Genome-wide CRISPR/Cas9 knockout screening uncovers a novel inflammatory pathway critical for resistance to arginine-deprivation therapy. Theranostics 2021; 11:3624-3641. [PMID: 33664852 PMCID: PMC7914361 DOI: 10.7150/thno.51795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/01/2021] [Indexed: 12/24/2022] Open
Abstract
Arginine synthesis deficiency due to the suppressed expression of ASS1 (argininosuccinate synthetase 1) represents one of the most frequently occurring metabolic defects of tumor cells. Arginine-deprivation therapy has gained increasing attention in recent years. One challenge of ADI-PEG20 (pegylated ADI) therapy is the development of drug resistance caused by restoration of ASS1 expression and other factors. The goal of this work is to identify novel factors conferring therapy resistance. Methods: Multiple, independently derived ADI-resistant clones including derivatives of breast (MDA-MB-231 and BT-549) and prostate (PC3, CWR22Rv1, and DU145) cancer cells were developed. RNA-seq and RT-PCR were used to identify genes upregulated in the resistant clones. Unbiased genome-wide CRISPR/Cas9 knockout screening was used to identify genes whose absence confers sensitivity to these cells. shRNA and CRISPR/Cas9 knockout as well as overexpression approaches were used to validate the functions of the resistant genes both in vitro and in xenograft models. The signal pathways were verified by western blotting and cytokine release. Results: Based on unbiased CRISPR/Cas9 knockout screening and RNA-seq analyses of independently derived ADI-resistant (ADIR) clones, aberrant activation of the TREM1/CCL2 axis in addition to ASS1 expression was consistently identified as the resistant factors. Unlike ADIR, MDA-MB-231 overexpressing ASS1 cells achieved only moderate ADI resistance both in vitro and in vivo, and overexpression of ASS1 alone does not activate the TREM1/CCL2 axis. These data suggested that upregulation of TREM1 is an independent factor in the development of strong resistance, which is accompanied by activation of the AKT/mTOR/STAT3/CCL2 pathway and contributes to cell survival and overcoming the tumor suppressive effects of ASS1 overexpression. Importantly, knockdown of TREM1 or CCL2 significantly sensitized ADIR toward ADI. Similar results were obtained in BT-549 breast cancer cell line as well as castration-resistant prostate cancer cells. The present study sheds light on the detailed mechanisms of resistance to arginine-deprivation therapy and uncovers novel targets to overcome resistance. Conclusion: We uncovered TREM1/CCL2 activation, in addition to restored ASS1 expression, as a key pathway involved in full ADI-resistance in breast and prostate cancer models.
Collapse
|
25
|
Vachher M, Sen A, Kapila R, Nigam A. Microbial therapeutic enzymes: A promising area of biopharmaceuticals. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
26
|
Qi H, Wang Y, Yuan X, Li P, Yang L. Selective extracellular arginine deprivation by a single injection of cellular non-uptake arginine deiminase nanocapsules for sustained tumor inhibition. NANOSCALE 2020; 12:24030-24043. [PMID: 33291128 DOI: 10.1039/d0nr06823c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The metabolic enzyme-based arginine deprivation represents a tremendous opportunity to treat argininosuccinate synthetase (ASS1)-deficient tumors. Arginine deiminase (ADI), a typical representative, has aroused great interest. To date, the functional modification of ADI, such as PEGylation, has been applied to improve its weakness significantly, reducing its immunogenicity and extending its blood circulation time. However, the advantages of ADI, such as the cellular non-uptake property, are often deprived by current modification methods. The cellular non-uptake property of ADI only renders extracellular arginine degradation that negligibly influences normal cells. However, current-functionalized ADIs can be readily phagocytized by cells, causing the imbalance of intracellular amino acids and the consequent damage to normal cells. Therefore, it is necessary to exploit a new method that can simultaneously improve the weakness of ADI and maintain its advantage of cellular non-uptake. Here, we utilized a kind of phosphorylcholine (PC)-rich nanocapsule to load ADI. These nanocapsules possessed extremely weak cellular interaction and could avoid uptake by endothelial cells (HUVEC), immune cells (RAW 264.7), and tumor cells (H22), selectively depriving extracellular arginine. Besides, these nanocapsules increased the blood half-life time of ADI from the initial 2 h to 90 h and efficiently avoided its immune or inflammatory responses. After a single injection of ADI nanocapsules into H22 tumor-bearing mice, tumors were stably suppressed for 25 d without any detectable side effects. This new strategy first realizes the selective extracellular arginine deprivation for the treatment of ASS1-deficient tumors, potentially promoting the clinical translation of metabolic enzyme-based amino acid deprivation therapy. Furthermore, the research reminds us that the functionalization of drugs can not only improve its weakness but also maintain its advantages.
Collapse
Affiliation(s)
- Hongzhao Qi
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | | | | | | | | |
Collapse
|
27
|
He X, Feng J, Yan S, Zhang Y, Zhong C, Liu Y, Shi D, Abagyan R, Xiang T, Zhang J. Biomimetic microbioreactor-supramolecular nanovesicles improve enzyme therapy of hepatic cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 31:102311. [PMID: 33011392 DOI: 10.1016/j.nano.2020.102311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/05/2020] [Accepted: 09/20/2020] [Indexed: 12/24/2022]
Abstract
A novel biomimetic nanovesicle-loaded supramolecular enzyme-based therapeutics has been developed. Here, using a biomimetic lipid-D-α-tocopherol polyethylene glycol succinate (TPGS) hybrid semi-permeable membrane, cyclodextrin supramolecular docking, metal-ion-aided coordination complexing, we combined multiple functional motifs into a single biomimetic microbioreactor-supramolecular nanovesicle (MiSuNv) that allowed effective transport of arginine deiminase (ADI) to hepatic tumor cells to enhance arginine depletion. We compared two intercalated enzyme-carrying supermolecular motifs mainly comprising of 2-hydroxypropyl-β-cyclodextrin and sulfobutyl-ether-β-cyclodextrin, the only two cyclodextrin derivatives approved for injection by the United States Food and Drug Administration. The ADI-specific antitumor effects were enhanced by TPGS (one constituent of MiSuNv, having synergistic antitumor effects), as ADI was separated from adverse external environment by a semi-permeable membrane and sequestered in a favorable internal microenvironment with an optimal pH and metal-ion combination. ADI@MiSuNv contributed to cell cycle arrest, apoptosis and autophagy through the enhanced efficacy of enzyme treatment against Hep3B xenograft tumors in rats.
Collapse
Affiliation(s)
- Xiaoqian He
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiao Feng
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Shenglei Yan
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Yonghong Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Cailing Zhong
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Yuying Liu
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Da Shi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
28
|
Combinatory Treatment of Canavanine and Arginine Deprivation Efficiently Targets Human Glioblastoma Cells via Pleiotropic Mechanisms. Cells 2020; 9:cells9102217. [PMID: 33008000 PMCID: PMC7600648 DOI: 10.3390/cells9102217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/20/2022] Open
Abstract
Glioblastomas are the most frequent and aggressive form of primary brain tumors with no efficient cure. However, they often exhibit specific metabolic shifts that include deficiency in the biosynthesis of and dependence on certain exogenous amino acids. Here, we evaluated, in vitro, a novel combinatory antiglioblastoma approach based on arginine deprivation and canavanine, an arginine analogue of plant origin, using two human glioblastoma cell models, U251MG and U87MG. The combinatory treatment profoundly affected cell viability, morphology, motility and adhesion, destabilizing the cytoskeleton and mitochondrial network, and induced apoptotic cell death. Importantly, the effects were selective toward glioblastoma cells, as they were not pronounced for primary rat glial cells. At the molecular level, canavanine inhibited prosurvival kinases such as FAK, Akt and AMPK. Its effects on protein synthesis and stress response pathways were more complex and dependent on exposure time. We directly observed canavanine incorporation into nascent proteins by using quantitative proteomics. Although canavanine in the absence of arginine readily incorporated into polypeptides, no motif preference for such incorporation was observed. Our findings provide a strong rationale for further developing the proposed modality based on canavanine and arginine deprivation as a potential antiglioblastoma metabolic therapy independent of the blood-brain barrier.
Collapse
|
29
|
Ji JX, Cochrane DR, Tessier-Cloutier B, Chen SY, Ho G, Pathak KV, Alcazar IN, Farnell D, Leung S, Cheng A, Chow C, Colborne S, Negri GL, Kommoss F, Karnezis A, Morin GB, McAlpine JN, Gilks CB, Weissman BE, Trent JM, Hoang L, Pirrotte P, Wang Y, Huntsman DG. Arginine Depletion Therapy with ADI-PEG20 Limits Tumor Growth in Argininosuccinate Synthase-Deficient Ovarian Cancer, Including Small-Cell Carcinoma of the Ovary, Hypercalcemic Type. Clin Cancer Res 2020; 26:4402-4413. [PMID: 32409304 DOI: 10.1158/1078-0432.ccr-19-1905] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 01/02/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Many rare ovarian cancer subtypes, such as small-cell carcinoma of the ovary, hypercalcemic type (SCCOHT), have poor prognosis due to their aggressive nature and resistance to standard platinum- and taxane-based chemotherapy. The development of effective therapeutics has been hindered by the rarity of such tumors. We sought to identify targetable vulnerabilities in rare ovarian cancer subtypes. EXPERIMENTAL DESIGN We compared the global proteomic landscape of six cases each of endometrioid ovarian cancer (ENOC), clear cell ovarian cancer (CCOC), and SCCOHT to the most common subtype, high-grade serous ovarian cancer (HGSC), to identify potential therapeutic targets. IHC of tissue microarrays was used as validation of arginosuccinate synthase (ASS1) deficiency. The efficacy of arginine-depriving therapeutic ADI-PEG20 was assessed in vitro using cell lines and patient-derived xenograft mouse models representing SCCOHT. RESULTS Global proteomic analysis identified low ASS1 expression in ENOC, CCOC, and SCCOHT compared with HGSC. Low ASS1 levels were validated through IHC in large patient cohorts. The lowest levels of ASS1 were observed in SCCOHT, where ASS1 was absent in 12 of 31 cases, and expressed in less than 5% of the tumor cells in 9 of 31 cases. ASS1-deficient ovarian cancer cells were sensitive to ADI-PEG20 treatment regardless of subtype in vitro. Furthermore, in two cell line mouse xenograft models and one patient-derived mouse xenograft model of SCCOHT, once-a-week treatment with ADI-PEG20 (30 mg/kg and 15 mg/kg) inhibited tumor growth in vivo. CONCLUSIONS Preclinical in vitro and in vivo studies identified ADI-PEG20 as a potential therapy for patients with rare ovarian cancers, including SCCOHT.
Collapse
Affiliation(s)
- Jennifer X Ji
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Dawn R Cochrane
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, Canada
| | - Basile Tessier-Cloutier
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Shary Yutin Chen
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, Canada
| | - Germain Ho
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, Canada
| | - Khyatiben V Pathak
- Collaborative Center for Translational Mass Spectrometry, The Translational Genomics Research Institute, Phoenix, Arizona
| | - Isabel N Alcazar
- Collaborative Center for Translational Mass Spectrometry, The Translational Genomics Research Institute, Phoenix, Arizona
| | - David Farnell
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Samuel Leung
- Genetic Pathology Evaluation Center, Vancouver, Canada
| | - Angela Cheng
- Genetic Pathology Evaluation Center, Vancouver, Canada
| | | | - Shane Colborne
- Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada
| | - Gian Luca Negri
- Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada
| | - Friedrich Kommoss
- Institute of Pathology, Medizin Campus Bodensee, Friedrichshafen, Germany
| | - Anthony Karnezis
- Department of Pathology and Laboratory Medicine, University of California, Davis, California
| | - Gregg B Morin
- Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Jessica N McAlpine
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
| | - C Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Bernard E Weissman
- Department of Pathology and Laboratory Medicine, UNC-Chapel Hill, Chapel Hill, North Carolina
| | - Jeffrey M Trent
- Integrated Cancer Genomics, The Translational Genomics Research Institute, Phoenix, Arizona
| | - Lynn Hoang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, The Translational Genomics Research Institute, Phoenix, Arizona
| | - Yemin Wang
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, Canada
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada. .,Department of Molecular Oncology, BC Cancer Agency, Vancouver, Canada.,Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
30
|
A modified arginine-depleting enzyme NEI-01 inhibits growth of pancreatic cancer cells. PLoS One 2020; 15:e0231633. [PMID: 32353864 PMCID: PMC7192632 DOI: 10.1371/journal.pone.0231633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/27/2020] [Indexed: 01/18/2023] Open
Abstract
Arginine deprivation cancer therapy targets certain types of malignancies with positive result in many studies and clinical trials. NEI-01 was designed as a novel arginine-depleting enzyme comprising an albumin binding domain capable of binding to human serum albumin to lengthen its half-life. In the present work, NEI-01 is shown to bind to serum albumin from various species, including mice, rat and human. Single intraperitoneal administration of NEI-01 to mice reduced plasma arginine to undetectable level for at least 9 days. Treatment of NEI-01 specifically inhibited cell viability of MIA PaCa-2 and PANC-1 cancer cell lines, which were ASS1 negative. Using a human pancreatic mouse xenograft model, NEI-01 treatment significantly reduced tumor volume and weight. Our data provides proof of principle for a cancer treatment strategy using NEI-01.
Collapse
|
31
|
Shuvayeva GY, Bobak YP, Vovk OI, Kunz-Schughart LA, Fletcher MT, Stasyk OV. Indospicine combined with arginine deprivation triggers cancer cell death via caspase-dependent apoptosis. Cell Biol Int 2020; 45:518-527. [PMID: 32068315 DOI: 10.1002/cbin.11321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/16/2020] [Indexed: 12/15/2022]
Abstract
Arginine-deprivation therapy is a rapidly developing metabolic anticancer approach. To overcome the resistance of some cancer cells to this monotherapy, rationally designed combination modalities are needed. In this report, we evaluated for the first time indospicine, an arginine analogue of Indigofera plant genus origin, as potential enhancer compound for the metabolic therapy that utilizes recombinant human arginase I. We demonstrate that indospicine at low micromolar concentrations is selectively toxic for human colorectal cancer cells only in the absence of arginine. In arginine-deprived cancer cells indospicine deregulates some prosurvival pathways (PI3K-Akt and MAPK) and activates mammalian target of rapamycin, exacerbates endoplasmic reticulum stress and triggers caspase-dependent apoptosis, which is reversed by the exposure to translation inhibitors. Simultaneously, indospicine is not degraded by recombinant human arginase I and does not inhibit this arginine-degrading enzyme at its effective dose. The obtained results emphasize the potential of arginine structural analogues as efficient components for combinatorial metabolic targeting of malignant cells.
Collapse
Affiliation(s)
- Galyna Y Shuvayeva
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov Street 14/16, 79005, Lviv, Ukraine
| | - Yaroslav P Bobak
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov Street 14/16, 79005, Lviv, Ukraine
| | - Olena I Vovk
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov Street 14/16, 79005, Lviv, Ukraine
| | - Leoni A Kunz-Schughart
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstr 74, Dresden, 01307, Germany.,National Center for Tumor Diseases, Partner site Dresden (NCT), Dresden, 01307, Germany
| | - Mary T Fletcher
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, PO Box 156 Archerfield, QLD, 4108, Australia
| | - Oleh V Stasyk
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov Street 14/16, 79005, Lviv, Ukraine
| |
Collapse
|
32
|
Abou-Alfa GK, Jarnagin W, El Dika I, D'Angelica M, Lowery M, Brown K, Ludwig E, Kemeny N, Covey A, Crane CH, Harding J, Shia J, O'Reilly EM. Liver and Bile Duct Cancer. ABELOFF'S CLINICAL ONCOLOGY 2020:1314-1341.e11. [DOI: 10.1016/b978-0-323-47674-4.00077-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Chang CW, Lo JF, Wang XW. Roles of mitochondria in liver cancer stem cells. Differentiation 2019; 107:35-41. [PMID: 31176254 DOI: 10.1016/j.diff.2019.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 02/08/2023]
Abstract
Primary liver cancer (PLC) is heterogeneous and it is an aggressive malignancy with a poor prognostic outcome. Current evidence suggests that PLC tumorigenesis is driven by rare subpopulations of cancer stem cells (CSCs), which contribute to tumor initiation, progression, and therapy resistance through particular molecular mechanisms. Energy metabolism and mitochondrial function play an important role in the regulation of cancer stemness and stem cell specifications. Since the role of mitochondrial function as central hubs in cell growth and survival, studies on the critical physiological mechanisms of the liver underlying their therapy-resistant phenotype is important. In this review, we focus on liver CSC-related mitochondrial metabolism that contributes to the liver CSC features, in terms of enhanced drug-resistance and increased tumorigenicity, and to discuss their roles on potential therapies windows for PLC therapies.
Collapse
Affiliation(s)
- Ching-Wen Chang
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Jeng-Fan Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan; Cancer Progression Center of Excellence, National Yang-Ming University, Taipei, Taiwan
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, USA; Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
34
|
Hall PE, Lewis R, Syed N, Shaffer R, Evanson J, Ellis S, Williams M, Feng X, Johnston A, Thomson JA, Harris FP, Jena R, Matys T, Jefferies S, Smith K, Wu BW, Bomalaski JS, Crook T, O'Neill K, Paraskevopoulos D, Khadeir RS, Sheaff M, Pacey S, Plowman PN, Szlosarek PW. A Phase I Study of Pegylated Arginine Deiminase (Pegargiminase), Cisplatin, and Pemetrexed in Argininosuccinate Synthetase 1-Deficient Recurrent High-grade Glioma. Clin Cancer Res 2019; 25:2708-2716. [PMID: 30796035 DOI: 10.1158/1078-0432.ccr-18-3729] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/30/2018] [Accepted: 02/12/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Patients with recurrent high-grade gliomas (HGG) are usually managed with alkylating chemotherapy ± bevacizumab. However, prognosis remains very poor. Preclinically, we showed that HGGs are a target for arginine depletion with pegargiminase (ADI-PEG20) due to epimutations of argininosuccinate synthetase (ASS1) and/or argininosuccinate lyase (ASL). Moreover, ADI-PEG20 disrupts pyrimidine pools in ASS1-deficient HGGs, thereby impacting sensitivity to the antifolate, pemetrexed. PATIENTS AND METHODS We expanded a phase I trial of ADI-PEG20 with pemetrexed and cisplatin (ADIPEMCIS) to patients with ASS1-deficient recurrent HGGs (NCT02029690). Patients were enrolled (01/16-06/17) to receive weekly ADI-PEG20 36 mg/m2 intramuscularly plus pemetrexed 500 mg/m2 and cisplatin 75 mg/m2 intravenously once every 3 weeks for up to 6 cycles. Patients with disease control were allowed ADI-PEG20 maintenance. The primary endpoints were safety, tolerability, and preliminary estimates of efficacy. RESULTS Ten ASS1-deficient heavily pretreated patients were treated with ADIPEMCIS therapy. Treatment was well tolerated with the majority of adverse events being Common Terminology Criteria for Adverse Events v4.03 grade 1-2. The best overall response was stable disease in 8 patients (80%). Plasma arginine was suppressed significantly below baseline with a reciprocal increase in citrulline during the sampling period. The anti-ADI-PEG20 antibody titer rose during the first 4 weeks of treatment before reaching a plateau. Median progression-free survival (PFS) was 5.2 months (95% confidence interval (CI), 2.5-20.8) and overall survival was 6.3 months (95% CI, 1.8-9.7). CONCLUSIONS In this recurrent HGG study, ADIPEMCIS was well tolerated and compares favorably to historical controls. Additional trials of ADI-PEG20 in HGG are planned.
Collapse
Affiliation(s)
- Peter E Hall
- Department of Oncology, Barts Health NHS Trust, London, United Kingdom
| | - Rachel Lewis
- Department of Oncology, Barts Health NHS Trust, London, United Kingdom
| | - Nelofer Syed
- Department of Medicine, Imperial College, London, United Kingdom
| | - Richard Shaffer
- St. Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, United Kingdom
| | - Jane Evanson
- Department of Radiology, Barts Health NHS Trust, London, United Kingdom
| | - Stephen Ellis
- Department of Radiology, Barts Health NHS Trust, London, United Kingdom
| | - Matthew Williams
- Department of Oncology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | | | | | | | - Fiona P Harris
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Raj Jena
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Tomasz Matys
- Department of Radiology, University of Cambridge, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Sarah Jefferies
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Kate Smith
- Department of Oncology, Barts Health NHS Trust, London, United Kingdom
| | - Bor-Wen Wu
- Polaris Pharmaceuticals Inc., San Diego, California
| | | | - Timothy Crook
- St. Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, United Kingdom
| | - Kevin O'Neill
- Department of Neurosurgery, Imperial College Healthcare NHS Trust, London, United Kingdom
| | | | - Ramsay S Khadeir
- Centre for Molecular Oncology, Queen Mary University of London, London, United Kingdom
| | - Michael Sheaff
- Department of Pathology, Barts Health NHS Trust, London, United Kingdom
| | - Simon Pacey
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Piers N Plowman
- Department of Oncology, Barts Health NHS Trust, London, United Kingdom
| | - Peter W Szlosarek
- Department of Oncology, Barts Health NHS Trust, London, United Kingdom.
- Centre for Molecular Oncology, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
35
|
Abstract
Cancer cells reprogramme metabolism to maximize the use of nitrogen and carbon for the anabolic synthesis of macromolecules that are required during tumour proliferation and growth. To achieve this aim, one strategy is to reduce catabolism and nitrogen disposal. The urea cycle (UC) in the liver is the main metabolic pathway to convert excess nitrogen into disposable urea. Outside the liver, UC enzymes are differentially expressed, enabling the use of nitrogen for the synthesis of UC intermediates that are required to accommodate cellular needs. Interestingly, the expression of UC enzymes is altered in cancer, revealing a revolutionary mechanism to maximize nitrogen incorporation into biomass. In this Review, we discuss the metabolic benefits underlying UC deregulation in cancer and the relevance of these alterations for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Rom Keshet
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Peter Szlosarek
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
- Barts Health NHS Trust, St Bartholomew's Hospital, London, UK
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country, Bilbao, Spain
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|