1
|
Wu J, Bao Q, Wang X, Chen H, Chen X, Wen Y, Chen J. Research progress of co-delivery nanoparticle drug delivery systems in non-small cell lung cancer: A review. Colloids Surf B Biointerfaces 2025; 254:114795. [PMID: 40403441 DOI: 10.1016/j.colsurfb.2025.114795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/25/2025] [Accepted: 05/10/2025] [Indexed: 05/24/2025]
Abstract
Non-small cell lung cancer (NSCLC), as the most commonly diagnosed type of lung cancer, has long been a major focus for cancer drug researchers. Traditional chemotherapy has shown significant efficacy in patients initially diagnosed with NSCLC; however, with the emergence of drug resistance and notable toxic side effects, conventional and single-agent chemotherapy can no longer meet the treatment needs of patients. Nanomedicine systems have gained widespread attention among scholars due to their unique advantages, such as particle size, stable in vivo circulation, and multifunctional carrier materials. However, most single-drug delivery systems fail to meet the treatment expectations for NSCLC patients, prompting the active development of co-delivery nanomedicine systems in preclinical NSCLC research. These systems can utilize surface-modified carriers to co-deliver drugs, genes, photosensitizers, or sonosensitizers with different mechanisms of action. This approach not only achieves the synergistic effects of multiple drugs, multiple pathways, and the combination of chemotherapy with photodynamic/sonodynamic therapy but also, through the encapsulation of inorganic materials, allows for more controllable drug release under external forces such as magnetic fields. This further amplifies the synergistic effects between the drugs, and the results of these studies are significantly superior to those of single-drug treatments. In conclusion, this review summarizes the delivery strategies and the extended use of inorganic materials in the co-delivery of nanoparticles for NSCLC research in recent years, with the hope of providing reference for researchers' drug design strategies.
Collapse
Affiliation(s)
- Jiali Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Qiaohong Bao
- Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Xinyu Wang
- Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Hang Chen
- Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Xinmei Chen
- Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Yan Wen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, No.415, Fengyang Road, Shanghai 200003, China.
| | - Jianming Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
2
|
Li R, Liang H, Li J, Shao Z, Yang D, Bao J, Wang K, Xi W, Gao Z, Guo R, Mu X. Paclitaxel liposome (Lipusu) based chemotherapy combined with immunotherapy for advanced non-small cell lung cancer: a multicenter, retrospective real-world study. BMC Cancer 2024; 24:107. [PMID: 38238648 PMCID: PMC10797919 DOI: 10.1186/s12885-024-11860-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Paclitaxel liposome (Lipusu) is known to be effective in non-small cell lung cancer (NSCLC) as first-line treatment. This study aimed to evaluate the effectiveness and safety of paclitaxel liposome based chemotherapy plus PD-1/PD-L1 inhibitor in patients with advanced NSCLC. METHODS In this multicenter, retrospective, real-world study, patients with advanced NSCLC who were administered paclitaxel liposome based chemotherapy plus PD-1/PD-L1 inhibitor in three centers (Peking University People's Hospital as the lead center) in China between 2016 and 2022 were included. Progression-free survival (PFS), overall survival (OS), objective response rate, disease control rate, and adverse events (AEs) were evaluated. RESULTS A total of 49 patients were included, with 33 (67.3%) receiving paclitaxel liposome based chemotherapy plus PD-1/PD-L1 inhibitor as first-line treatment. There were 34 patients (69.4%) diagnosed with squamous cell carcinoma and 15 (30.6%) with adenocarcinoma. The median follow-up was 20.5 (range: 3.1-41.1) months. The median PFS and OS of all patients were 9.7 months (95% confidence interval [CI], 7.0-12.4) and 30.5 months (95% CI, not evaluable-not evaluable), respectively. Patients with squamous cell carcinoma and adenocarcinoma had median PFS of 11 months (95%CI, 6.5-15.5) and 9.3 months (95%CI, 7.0-12.4), respectively. The median PFS was 9.9 months (95%CI, 7.1-12.7) in patients who received the combined regimen as first-line treatment. Treatment-related AEs of any grade were observed in 25 (51.0%) patients, and AEs of grade 3 or worse were observed in nine patients (18.4%). The most common treatment-related AEs were myelosuppression (14.3%) and fever (10.2%). CONCLUSIONS Paclitaxel liposome based chemotherapy plus PD-1/PD-L1 inhibitor prolonged the PFS in advanced NSCLC with acceptable safety, which was worthy of clinical application.
Collapse
Affiliation(s)
- Ran Li
- Department of Respiratory and Critical Care Medicine, Lung Cancer Center, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, 100044, Beijing, China
| | - Hongge Liang
- Department of Respiratory and Critical Care Medicine, Lung Cancer Center, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, 100044, Beijing, China
| | - Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Zhenyu Shao
- Department of Radiation Oncology, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Donghong Yang
- Department of Respiratory and Critical Care Medicine, Lung Cancer Center, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, 100044, Beijing, China
| | - Jing Bao
- Department of Respiratory and Critical Care Medicine, Lung Cancer Center, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, 100044, Beijing, China
| | - Keqiang Wang
- Department of Respiratory and Critical Care Medicine, Lung Cancer Center, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, 100044, Beijing, China
| | - Wen Xi
- Department of Respiratory and Critical Care Medicine, Lung Cancer Center, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, 100044, Beijing, China
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Lung Cancer Center, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, 100044, Beijing, China
| | - Renhua Guo
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Xinlin Mu
- Department of Respiratory and Critical Care Medicine, Lung Cancer Center, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, 100044, Beijing, China.
| |
Collapse
|
3
|
Wu GR, Zhou M, Wang Y, Zhou Q, Zhang L, He L, Zhang S, Yu Q, Xu Y, Zhao J, Xiong W, Wang CY. Blockade of Mbd2 by siRNA-loaded liposomes protects mice against OVA-induced allergic airway inflammation via repressing M2 macrophage production. Front Immunol 2022; 13:930103. [PMID: 36090987 PMCID: PMC9453648 DOI: 10.3389/fimmu.2022.930103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo address the role of methyl-CpG-binding domain 2 (MBD2) in the pathogenesis of asthma and its potential as a target for the asthmatic therapy.MethodsStudies were conducted in asthmatic patients and macrophage-specific Mbd2 knockout mice to dissect the role of MBD2 in asthma pathogenesis. Additionally, RNAi-based therapy with Mbd2 siRNA-loaded liposomes was conducted in an ovalbumin (OVA)-induced allergic airway inflammation mouse model.ResultsAsthmatic patients and mice challenged with OVA exhibited upregulated MBD2 expression in macrophages, especially in alternatively activated (M2) macrophages. In particular, macrophage-specific knockout of Mbd2 protected mice from OVA-induced allergic airway inflammation and suppressed the M2 program. Notably, intratracheal administration of liposomes carrying Mbd2 siRNA decreased the expression of Mbd2 and prevented OVA-induced allergic airway inflammation in mice, as indicated by the attenuated airway inflammation and mucus production.ConclusionsThe above data indicate that Mbd2 implicates in the pathogenesis of asthma predominantly by regulating the polarization of M2 macrophages, which supports that Mbd2 could be a viable target for treatment of asthma in clinical settings.
Collapse
Affiliation(s)
- Guo-Rao Wu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Min Zhou
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qing Zhou
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Lei Zhang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Long He
- Department of Clinical Laboratory, Shanghai East Hospital; School of Medicine, Tongji University, Shanghai, China
| | - Shu Zhang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qilin Yu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yongjian Xu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
- Department of Respiratory and Critical Care Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Cong-Yi Wang, ; Weining Xiong,
| | - Cong-Yi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
- *Correspondence: Cong-Yi Wang, ; Weining Xiong,
| |
Collapse
|
4
|
Lu J, Gu A, Wang W, Huang A, Han B, Zhong H. Polymeric micellar paclitaxel (Pm-Pac) prolonged overall survival for NSCLC patients without pleural metastasis. Int J Pharm 2022; 623:121961. [PMID: 35764263 DOI: 10.1016/j.ijpharm.2022.121961] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 01/01/2023]
Abstract
Nanoparticle polymeric micellar paclitaxel (Pm-Pac) has been demonstrated to have a safety profile and efficacy in advanced non-small cell lung cancer (NSCLC) patients. However, whether Pm-Pac could prolong overall survival (OS) for specific advanced NSCLC patients is still unknown. In the present study, a total of 448 patients were randomly assigned (2:1) by the permuted block algorithm to receive Pm-Pac plus cisplatin or solvent-based paclitaxel (Sb-Pac) plus cisplatin (NCT02667743). We performed subgroup analysis based on metastatic status to identify the potential benefit patients. Our results indicated that the metastatic profiles were similar between the Sb-Pac plus cisplatin cohort and the Pm-Pac plus cisplatin cohort. Several subgroups (Metastases = 2, Bone metastasis, No pleural metastasis, etc.) were observed to have increased progression-free survival (PFS) due to Pm-Pac plus cisplatin. Importantly, we found the first evidence that Pm-Pac potentially prolonged OS with a favourable safety profile in NSCLC patients without pleural metastasis. Collectively, this study provides a novel perspective on the development of nanomedicine to investigate chemotherapeutic efficacy and toxicity and provides the first clinical evidence that Pm-Pac administration not only prolongs PFS but also prolongs OS with a favourable safety profile in advanced NSCLC patients without pleural metastasis.
Collapse
Affiliation(s)
- Jun Lu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China; Translational Medical Research Platform for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China; Department of Bio-bank, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Aiqin Gu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weimin Wang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Aimi Huang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China; Translational Medical Research Platform for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Hua Zhong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China; Translational Medical Research Platform for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Canão F, Ferreira H, Neves NM. Liposomal formulations for lung cancer treatment in the last two decades: a systematic review. J Cancer Res Clin Oncol 2022; 148:2375-2386. [PMID: 35660950 DOI: 10.1007/s00432-022-04079-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/19/2022] [Indexed: 12/17/2022]
Abstract
PURPOSE Lung cancer is the leading cause of cancer mortality worldwide. To improve the therapeutic outcomes, drug delivery systems, and particularly liposomes, have been widely investigated. Therefore, this review analyzed systematically the literature to inquire about the safety and efficacy of liposomal formulations in lung cancer treatment. METHODS Three electronic databases (PubMed, Web of Science and Cochrane CENTRAL) were systematically searched until May 2020. Clinical trials containing information about the effects of liposomal formulations in lung cancer patients were considered eligible. RESULTS Twenty two selected studies present different treatment options for both small and non-small-cell lung cancers. After compiling and analyzing all the published information, we verified that combination of liposomal cisplatin and paclitaxel led to a statistically significant improvement of the evaluated outcomes. Moreover, tecemotide, a liposome-based immunotherapy, demonstrated lower toxicity compared to control groups. Evidences that other subgroups could benefit from this formulation were also provided. CONCLUSION This systematic review (registration number CRD42021246587) demonstrates that liposomal formulations are promising alternatives to overcome limitations of traditional cancer therapy. However, larger, longer, randomized and double-blinded clinical trials, selecting their patients' cohort considering more responsive subgroups would be beneficial to strengthen the scientific and clinical evidence of the results herein reported.
Collapse
Affiliation(s)
- Filipa Canão
- School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Helena Ferreira
- 3B's Research Group, I3Bs Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, University of Minho, 4805-017, Barco/Guimarães, Portugal.
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Nuno M Neves
- 3B's Research Group, I3Bs Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, University of Minho, 4805-017, Barco/Guimarães, Portugal.
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
6
|
Zhang J, Pan Y, Shi Q, Zhang G, Jiang L, Dong X, Gu K, Wang H, Zhang X, Yang N, Li Y, Xiong J, Yi T, Peng M, Song Y, Fan Y, Cui J, Chen G, Tan W, Zang A, Guo Q, Zhao G, Wang Z, He J, Yao W, Wu X, Chen K, Hu X, Hu C, Yue L, Jiang D, Wang G, Liu J, Yu G, Li J, Bai J, Xie W, Zhao W, Wu L, Zhou C. Paclitaxel liposome for injection (Lipusu) plus cisplatin versus gemcitabine plus cisplatin in the first-line treatment of locally advanced or metastatic lung squamous cell carcinoma: A multicenter, randomized, open-label, parallel controlled clinical study. Cancer Commun (Lond) 2022; 42:3-16. [PMID: 34699693 PMCID: PMC8753311 DOI: 10.1002/cac2.12225] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/02/2021] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Lipusu is the first commercialized liposomal formulation of paclitaxel and has demonstrated promising efficacy against locally advanced lung squamous cell carcinoma (LSCC) in a small-scale study. Here, we conducted a multicenter, randomized, phase 3 study to compare the efficacy and safety of cisplatin plus Lipusu (LP) versus cisplatin plus gemcitabine (GP) as first-line treatment in locally advanced or metastatic LSCC. METHODS Patients enrolled were aged between 18 to 75 years, had locally advanced (clinical stage IIIB, ineligible for concurrent chemoradiation or surgery) or metastatic (Stage IV) LSCC, had no previous systemic chemotherapy and at least one measurable lesion as per the Response Evaluation Criteria in Solid Tumors (version 1.1) before administration of the trial drug. The primary endpoint was progression-free survival (PFS). The secondary endpoints included objective response rate (ORR), disease control rate (DCR), overall survival (OS), and safety profiles. To explore the possible predictive value of plasma cytokines for LP treatment, plasma samples were collected from the LP group at baseline and first efficacy evaluation time and were then subjected to analysis by 45-Plex ProcartaPlex Panel 1 to detect the presence of 45 cytokines using the Luminex xMAP technology. The correlation between treatment outcomes and dynamic changes in the levels of cytokines were evaluated in preliminary analyses. RESULTS The median duration of follow-up was 15.4 months. 237 patients in the LP group and 253 patients in the GP group were included in the per protocol set (PPS). In the PPS, the median PFS was 5.2 months versus 5.5 months in the LP and GP group (hazard ratio [HR]: 1.03, P = 0.742) respectively. The median OS was 14.6 months versus 12.5 months in the LP and GP group (HR: 0.83, P = 0.215). The ORR (41.8% versus 45.9%, P = 0.412) and DCR (90.3% versus 88.1%, P = 0.443) were also similar between the LP and GP group. A significantly lower proportion of patients in the LP group experienced adverse events (AEs) leading to treatment interruptions (10.9% versus 26.4%, P < 0.001) or treatment termination (14.3% versus 23.1%, P = 0.011). The analysis of cytokine levels in the LP group showed that low baseline levels of 27 cytokines were associated with an increased ORR, and 15 cytokines were associated with improved PFS, with 14 cytokines, including TNF-α, IFN-γ, IL-6, and IL-8, demonstrating an overlapping trend. CONCLUSION The LP regimen demonstrated similar PFS, OS, ORR and DCR as the GP regimen for patients with locally advanced or metastatic LSCC but had more favorable toxicity profiles. The study also identified a spectrum of different cytokines that could be potentially associated with the clinical benefit in patients who received the LP regimen.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Yueyin Pan
- Department of Chemotherapy, Anhui Provincial Hospital, Hefei, Anhui, 230001, P. R. China
| | - Qin Shi
- Department of Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, P. R. China
| | - Guojun Zhang
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Liyan Jiang
- Department of Respiration, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Xiaorong Dong
- Cancer Center, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Kangsheng Gu
- Department of Medical Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Huijuan Wang
- Department of Respiration, Henan Cancer Hospital, Zhengzhou, Henan, 450008, P. R. China
| | - Xiaochun Zhang
- Department of Medical Oncology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, P. R. China
| | - Nong Yang
- Department of Medical Oncology, Hunan Cancer Hospital, Changsha, Hunan, 410013, P. R. China
| | - Yuping Li
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical College, Shangcai village, Wenzhou, Zhejiang, 325000, P. R. China
| | - Jianping Xiong
- Department of Medical Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Tienan Yi
- Department of Medical Oncology, Xiang Yang Central Hospital, Xiangyang, Hubei, 441021, P. R. China
| | - Min Peng
- Department of Medical Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Yong Song
- Department of Respiration, General Hospital of Eastern Theater Command of Chinese People's Liberation Army, Nanjing, Jiangsu, 210002, P. R. China
| | - Yun Fan
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, P. R. China
| | - Jiuwei Cui
- Cancer Center, the First Bethune Hospital of Jilin University, Changchun, Jilin, 130021, P. R. China
| | - Gongyan Chen
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, P. R. China
| | - Wei Tan
- Department of Respiratory Medicine, Weifang People's Hospital, Weifang, Shandong, 261000, P. R. China
| | - Aimin Zang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071030, P. R. China
| | - Qisen Guo
- Department of Internal Medicine, Shandong Cancer Hospital & Institute, Jinan, Shandong, 250117, P. R. China
| | - Guangqiang Zhao
- Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, P. R. China
| | - Ziping Wang
- Department of Medical Oncology, Beijing Cancer Hospital, Beijing, 100142, P. R. China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, P. R. China
| | - Wenxiu Yao
- Department of Chemotherapy, Sichuan Cancer Hospital & Institute, Chengdu, Sichuan, 610041, P. R. China
| | - Xiaohong Wu
- Department of Medical Oncology, the Fourth People's Hospital of Wuxi, Wuxi, Jiangsu, 214062, P. R. China
| | - Kai Chen
- Department of Medical Oncology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Xiaohua Hu
- Department of Medical Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
| | - Chunhong Hu
- Department of Medical Oncology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, P. R. China
| | - Lu Yue
- Department of Medical Oncology, Qingdao Municipal Hospital, Qingdao, Shandong, 266071, P. R. China
| | - Da Jiang
- Department of Medical Oncology, the 4th Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050010, P. R. China
| | - Guangfa Wang
- Department of Respiratory Medicine, Peking University First Hospital, Beijing, 100034, P. R. China
| | - Junfeng Liu
- Department of Thoracic Surgery, the 4th Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050010, P. R. China
| | - Guohua Yu
- Department of Medical Oncology, Weifang People's Hospital, Weifang, Shandong, 261000, P. R. China
| | - Junling Li
- Cancer Hospital Chinese Academy of Medical Sciences, Beijing, 100021, P. R. China
| | - Jianling Bai
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Wenmin Xie
- Nanjing Luye Pharmaceutical Co., Ltd, Nanjing, Jiangsu, 210061, P. R. China
| | - Weihong Zhao
- Nanjing Luye Pharmaceutical Co., Ltd, Nanjing, Jiangsu, 210061, P. R. China
| | - Lihong Wu
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, 214104, P. R. China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| |
Collapse
|
7
|
Zeng J, Cui X, Cheng L, Chen Y, Du X, Sheng L. Liposome-paclitaxel and carboplatin combination chemoradiotherapy for patients with locally advanced esophageal squamous cell carcinoma. Cancer Radiother 2021; 25:441-446. [PMID: 33958272 DOI: 10.1016/j.canrad.2021.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 12/01/2022]
Abstract
PURPOSE The aim of this study was to evaluate the efficacy of liposome-paclitaxel and carboplatin combination chemoradiotherapy for patients with locally advanced esophageal squamous cell carcinoma (ESCC). PATIENTS AND METHODS Seventy-nine consecutive patients treated with liposome-paclitaxel based concurrent chemoradiotherapy between January 2015 and December 2019 at Cancer hospital of the University of Chinese Academy of Sciences (Zhejiang cancer hospital) were enrolled in this study. The overall response, toxicities, progression-free survival and overall survival were analyzed with SPSS software. RESULTS A total of 302 cycles of weekly chemotherapy were delivered, with a median 4 courses. After concurrent chemoradiotherapy (CCRT), the efficacy was classified as CR in 4 cases (5.1%), PR in 22 cases (28.2%) and SD in 51 cases (65.4%). The median PFS and OS time were 18.2 months and 23.4 months. The 3-year PFS and OS rates were 45.1% and 43.6%, respectively. CONCLUSIONS Liposome-paclitaxel and carboplatin concurrent with radiotherapy is a safe and effective modality for locally advanced ESCC. Further clinical investigation are warranted to evaluate the efficacy of this regimen.
Collapse
Affiliation(s)
- J Zeng
- Department of Thoracic surgery, Cancer hospital of the University of Chinese Academy of Sciences (Zhejiang cancer hospital), Hangzhou, Zhejiang, China; Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Zhejiang, China
| | - X Cui
- Department of Radiotherapy, Cancer hospital of the University of Chinese Academy of Sciences (Zhejiang cancer hospital), 1, Banshandong road, 310022 Hangzhou, Zhejiang, China; Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Zhejiang, China; The Second Clinical Medical College, Zhejiang Chinese Medical University
| | - L Cheng
- Department of Radiotherapy, Cancer hospital of the University of Chinese Academy of Sciences (Zhejiang cancer hospital), 1, Banshandong road, 310022 Hangzhou, Zhejiang, China; Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Zhejiang, China
| | - Y Chen
- Department of Radiotherapy, Cancer hospital of the University of Chinese Academy of Sciences (Zhejiang cancer hospital), 1, Banshandong road, 310022 Hangzhou, Zhejiang, China; Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Zhejiang, China
| | - X Du
- Department of Radiotherapy, Cancer hospital of the University of Chinese Academy of Sciences (Zhejiang cancer hospital), 1, Banshandong road, 310022 Hangzhou, Zhejiang, China; Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Zhejiang, China
| | - L Sheng
- Department of Radiotherapy, Cancer hospital of the University of Chinese Academy of Sciences (Zhejiang cancer hospital), 1, Banshandong road, 310022 Hangzhou, Zhejiang, China; Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Zhejiang, China.
| |
Collapse
|
8
|
Alavi M, Webster TJ. Nano liposomal and cubosomal formulations with platinum-based anticancer agents: therapeutic advances and challenges. Nanomedicine (Lond) 2020; 15:2399-2410. [PMID: 32945246 DOI: 10.2217/nnm-2020-0199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nephrotoxicity, neurotoxicity and multidrug resistance in tumor cells can result from platinum-based anticancer (PBA) agents which can be reduced by nano formulations. Recently, novel formulations based on liposomes and cubosomes have been described as efficient strategies to overcome nephrotoxicity, ototoxicity, neurotoxicity, cardiotoxicity, hematological toxicities, hepatotoxicity and gastrointestinal toxicity as well as multidrug resistance. The co-delivery of anticancer agents concomitant with PBAs via biocompatible and biodegradable smart liposomes and cubosomes can augment therapeutic results of chemotherapy as well as radiotherapy owing to their high accessibility of surface and internal modification. For this purpose, surface, bilayer or core sections of these formulations can be functionalized by pure PBAs or modified PBAs. In this review, recent significant advances and challenges related to various liposomal and cubosomal formulations of PBA are presented in order to emphasize suitable formulations for anticancer applications with critical thoughts provided on how the field can progress.
Collapse
Affiliation(s)
- Mehran Alavi
- Nanobiotechnology Laboratory, Biology Department, Faculty of Science, Razi University, Kermanshah, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
9
|
Progress in research on paclitaxel and tumor immunotherapy. Cell Mol Biol Lett 2019; 24:40. [PMID: 31223315 PMCID: PMC6567594 DOI: 10.1186/s11658-019-0164-y] [Citation(s) in RCA: 331] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Paclitaxel is a well-known anticancer agent with a unique mechanism of action. It is considered to be one of the most successful natural anticancer drugs available. This study summarizes the recent advances in our understanding of the sources, the anticancer mechanism, and the biosynthetic pathway of paclitaxel. With the advancement of biotechnology, improvements in endophytic fungal strains, and the use of recombination techniques and microbial fermentation engineering, the yield of extracted paclitaxel has increased significantly. Recently, paclitaxel has been found to play a large role in tumor immunity, and it has a great potential for use in many cancer treatments.
Collapse
|
10
|
Liu SL, Sun XS, Li XY, Chen QY, Lin HX, Wen YF, Guo SS, Liu LT, Xie HJ, Tang QN, Liang YJ, Yan JJ, Lin C, Yang ZC, Tang LQ, Guo L, Mai HQ. Liposomal paclitaxel versus docetaxel in induction chemotherapy using Taxanes, cisplatin and 5-fluorouracil for locally advanced nasopharyngeal carcinoma. BMC Cancer 2018; 18:1279. [PMID: 30572856 PMCID: PMC6302514 DOI: 10.1186/s12885-018-5192-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 12/06/2018] [Indexed: 11/13/2022] Open
Abstract
Background We wished to evaluate the efficacy and safety of liposomal paclitaxel and docetaxel for induction chemotherapy (IC) for nasopharyngeal carcinoma (NPC). Methods A total of 1498 patients with newly-diagnosed NPC between 2009 and 2017 treated with IC plus concurrent chemotherapy were included in our observational study. Overall survival (OS), progression-free survival (PFS), locoregional relapse-free survival (LRFS), distant metastasis-free survival (DMFS) and grade-3–4 toxicities were compared between groups using propensity score matching (PSM). Results In total, 767 patients were eligible for this study, with 104 (13.6%) and 663 (86.4%) receiving a liposomal paclitaxel-based and docetaxel-based taxanes, cisplatin and 5-fluorouracil (TPF) regimen, respectively. PSM identified 103 patients in the liposomal-paclitaxel group and 287 patients in the docetaxel group. There was no significant difference at 3 years for OS (92.2% vs. 93.9%, P = 0.942), PFS (82.6% vs. 81.7%, P = 0.394), LRFS (94.7% vs. 93.3%, P = 0.981) or DMFS (84.6% vs. 87.4%, P = 0.371) between the two groups after PSM. Significant interactions were not observed between the effect of chemotherapy regimen and sex, age, T stage, N stage, overall stage, or Epstein–Barr virus DNA level in the subgroup multivariate analysis. The prevalence of grade-3–4 leukopenia and neutropenia in the liposomal-paclitaxel group was significantly lower than that of the docetaxel group (P < 0.05 for all). Conclusions Compared with docetaxel, liposomal paclitaxel has identical anti-tumor efficacy, but causes fewer and milder adverse reactions in IC for NPC.
Collapse
Affiliation(s)
- Sai-Lan Liu
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Xue-Song Sun
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Xiao-Yun Li
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Qiu-Yan Chen
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Huan-Xin Lin
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Radiotherapy, Sun Yat-sen University Cancer Center
- , Guangzhou, Guangdong Province, People's Republic of China
| | - Yue-Feng Wen
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Shan-Shan Guo
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Li-Ting Liu
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Hao-Jun Xie
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Qing-Nan Tang
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Yu-Jing Liang
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Jin-Jie Yan
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Chao Lin
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Zhen-Chong Yang
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Lin-Quan Tang
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Ling Guo
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Hai-Qiang Mai
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China. .,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.
| |
Collapse
|