1
|
Maguire WF, Schmitz JC, Scemama J, Czambel K, Lin Y, Green AG, Wu S, Lin H, Puhalla S, Rhee J, Stoller R, Tawbi H, Lee JJ, Wright JJ, Beumer JH, Chu E, Appleman LJ. Phase 1 study of safety, pharmacokinetics, and pharmacodynamics of tivantinib in combination with bevacizumab in adult patients with advanced solid tumors. Cancer Chemother Pharmacol 2021; 88:643-654. [PMID: 34164713 DOI: 10.1007/s00280-021-04317-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/10/2021] [Indexed: 01/28/2023]
Abstract
PURPOSE We investigated the combination of tivantinib, a c-MET tyrosine kinase inhibitor (TKI), and bevacizumab, an anti-VEGF-A antibody. METHODS Patients with advanced solid tumors received bevacizumab (10 mg/kg intravenously every 2 weeks) and escalating doses of tivantinib (120-360 mg orally twice daily). In addition to safety and preliminary efficacy, we evaluated pharmacokinetics of tivantinib and its metabolites, as well as pharmacodynamic biomarkers in peripheral blood and skin. RESULTS Eleven patients received the combination treatment, which was generally well tolerated. The main dose-limiting toxicity was grade 3 hypertension, which was observed in four patients. Other toxicities included lymphopenia and electrolyte disturbances. No exposure-toxicity relationship was observed for tivantinib or metabolites. No clinical responses were observed. Mean levels of the serum cytokine bFGF increased (p = 0.008) after the bevacizumab-only lead-in and decreased back to baseline (p = 0.047) after addition of tivantinib. Tivantinib reduced levels of both phospho-MET (7/11 patients) and tubulin (4/11 patients) in skin. CONCLUSIONS The combination of tivantinib and bevacizumab produced toxicities that were largely consistent with the safety profiles of the individual drugs. The study was terminated prior to establishment of the recommended phase II dose (RP2D) due to concerns regarding the mechanism of tivantinib, as well as lack of clinical efficacy seen in this and other studies. Tivantinib reversed the upregulation of bFGF caused by bevacizumab, which has been considered a potential mechanism of resistance to therapies targeting the VEGF pathway. The findings from this study suggest that the mechanism of action of tivantinib in humans may involve inhibition of both c-MET and tubulin expression. TRIAL REGISTRATION NCT01749384 (First posted 12/13/2012).
Collapse
Affiliation(s)
- William F Maguire
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John C Schmitz
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA
| | - Jonas Scemama
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA
| | - Ken Czambel
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA
| | - Yan Lin
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center Biostatistics Facility, Pittsburgh, PA, USA.,Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony G Green
- Pitt Biospecimen Core Research Histology Department, Health Sciences Core Research Facilities, Pittsburgh, PA, USA
| | - Shaoyu Wu
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Huang Lin
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,Roche Product Development, Roche (China) Holding Ltd., Shanghai, China
| | - Shannon Puhalla
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John Rhee
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ronald Stoller
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hussein Tawbi
- Department of Melanoma and Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - James J Lee
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John J Wright
- Cancer Therapy Evaluation Program, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jan H Beumer
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Edward Chu
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Oncology and Cancer Therapeutics Program, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Leonard J Appleman
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA. .,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | |
Collapse
|
2
|
Zaky MY, Liu X, Wang T, Wang S, Liu F, Wang D, Wu Y, Zhang Y, Guo D, Sun Q, Li Q, Zhang J, Zhang Y, Dong W, Liu Z, Liu S, Liu H. Dynasore potentiates c-Met inhibitors against hepatocellular carcinoma through destabilizing c-Met. Arch Biochem Biophys 2019; 680:108239. [PMID: 31881189 DOI: 10.1016/j.abb.2019.108239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 12/22/2022]
Abstract
c-Met receptor is frequently overexpressed in hepatocellular carcinoma and thus considered as an attractive target for pharmacological intervention with small molecule tyrosine kinase inhibitors. Albeit with the development of multiple c-Met inhibitors, none reached clinical application in the treatment of hepatoma so far. To improve the efficacy of c-Met inhibitors towards hepatocellular carcinoma, we investigated the combined effects of the dynamin inhibitor dynasore with several c-Met inhibitors, including tivantinib, PHA-665752, and JNJ-38877605. We provide several lines of evidence that dynasore enhanced the inhibitory effects of these inhibitors on hepatoma cell proliferation and migration, accompanied with increased cell cycle arrest and apoptosis. Mechanically, the combinatorial treatments decreased c-Met levels and hence markedly disrupted downstream signaling, as revealed by the dramatically declined phosphorylation of AKT and MEK. Taken together, our findings demonstrate that the candidate agent dynasore potentiated the inhibitory effects of c-Met inhibitors against hepatoma cells and will shed light on the development of novel therapeutic strategies to target c-Met in the clinical management of hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Mohamed Y Zaky
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China; Molecular Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Xiuxiu Liu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Taishu Wang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shanshan Wang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Fang Liu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Duchuang Wang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yueguang Wu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yang Zhang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Dong Guo
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qianhui Sun
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qiong Li
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jinrui Zhang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yingqiu Zhang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Weijie Dong
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Zhenhua Liu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China; Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Shuyan Liu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Han Liu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
5
|
Song ZL, Yang GZ, Li JC, Liu YQ, Yang CJ, Goto M, Zhang ZJ, Morris-Natschke SL, Liu H, Lee KH. Design and synthesis of novel 7-[( N-substituted-thioureidopiperazinyl)-methyl]-camptothecin derivatives as potential cytotoxic agents. Nat Prod Res 2019; 34:2022-2029. [PMID: 30784310 DOI: 10.1080/14786419.2019.1573231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As part of continuing our research on diverse C-7 derivatives of camptothecin (CPT), 16 CPT derivatives bearing piperazinyl-thiourea chemical scaffold and different substituent groups have been designed, synthesized and evaluated in vitro for cytotoxicity against five tumor cell lines (A-549, MDA-MB-231, MCF-7, KB and KBvin). As a result, all the synthesized compounds showed promising in vitro cytotoxic activity against the five tumor cell lines tested, and were more potent than irinotecan. Importantly, compounds 13 g (IC50 = 0.514 μM) and 13o (IC50 = 0.275 μM) possessed similar or better antiproliferative activity against the multidrug-resistant (MDR) KBvin subline than that of topotecan (IC50 = 0.511 μM) and merit further development as anticancer candidates for clinical trail. With these results in hand, we have a reason to conclude that incorporating piperazinyl-thiourea motifs into position-7 of camptothecin confers well cytotoxic activity against cancer cell lines, probably resulting in new anticancer drugs.
Collapse
Affiliation(s)
- Zi-Long Song
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Guan-Zhou Yang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Jun-Cai Li
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Chen-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hua Liu
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA.,Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|