1
|
Johnson M, Kaschek D, Ghiorghiu D, Lanke S, Miah K, Schmidt H, Mugundu GM. Population Pharmacokinetic Modeling of Adavosertib (AZD1775) in Patients with Solid Tumors. J Clin Pharmacol 2024; 64:1419-1431. [PMID: 39031510 DOI: 10.1002/jcph.2492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/03/2024] [Indexed: 07/22/2024]
Abstract
Adavosertib (AZD1775) is a potent small-molecule inhibitor of Wee1 kinase. This analysis utilized pharmacokinetic data from 8 Phase I/II studies of adavosertib to characterize the population pharmacokinetics of adavosertib in patients (n = 538) with solid tumors and evaluate the impact of covariates on exposure. A nonlinear mixed-effects modeling approach was employed to estimate population and individual parameters from the clinical trial data. The model for time dependency of apparent clearance (CL) was developed in a stepwise manner and the final model validated by visual predictive checks (VPCs). Using an adavosertib dose of 300 mg once daily on a 5 days on/2 days off dosing schedule given 2 weeks out of a 3-week cycle, simulation analyses evaluated the impact of covariates on the following exposure metrics at steady state: maximum concentration during a 21-day cycle, area under the curve (AUC) during a 21-day cycle, AUC during the second week of a treatment cycle, and AUC on day 12 of a treatment cycle. The final model was a linear 2-compartment model with lag time into the dosing compartment and first-order absorption into the central compartment, time-varying CL, and random effects on all model parameters. VPCs and steady-state observations confirmed that the final model satisfied all the requirements for reliable simulation of randomly sampled Phase I and II populations with different covariate characteristics. Simulation-based analyses revealed that body weight, renal impairment status, and race were key factors determining the variability of drug-exposure metrics.
Collapse
Affiliation(s)
- Martin Johnson
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, UK
| | | | - Dana Ghiorghiu
- Global Medicines Development, Late-Stage Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Shankar Lanke
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Boston, MA, USA
| | - Kowser Miah
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Boston, MA, USA
| | | | - Ganesh M Mugundu
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Boston, MA, USA
| |
Collapse
|
2
|
Gatz SA, Harttrampf AC, Brard C, Bautista F, André N, Abbou S, Rubino J, Rondof W, Deloger M, Rübsam M, Marshall LV, Hübschmann D, Nebchi S, Aerts I, Thebaud E, De Carli E, Defachelles AS, Paoletti X, Godin R, Miah K, Mortimer PGS, Vassal G, Geoerger B. Phase I/II Study of the WEE1 Inhibitor Adavosertib (AZD1775) in Combination with Carboplatin in Children with Advanced Malignancies: Arm C of the AcSé-ESMART Trial. Clin Cancer Res 2024; 30:741-753. [PMID: 38051741 DOI: 10.1158/1078-0432.ccr-23-2959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE AcSé-ESMART Arm C aimed to define the recommended dose and activity of the WEE1 inhibitor adavosertib in combination with carboplatin in children and young adults with molecularly enriched recurrent/refractory malignancies. PATIENTS AND METHODS Adavosertib was administered orally, twice every day on Days 1 to 3 and carboplatin intravenously on Day 1 of a 21-day cycle, starting at 100 mg/m2/dose and AUC 5, respectively. Patients were enriched for molecular alterations in cell cycle and/or homologous recombination (HR). RESULTS Twenty patients (median age: 14.0 years; range: 3.4-23.5) were included; 18 received 69 treatment cycles. Dose-limiting toxicities were prolonged grade 4 neutropenia and grade 3/4 thrombocytopenia requiring transfusions, leading to two de-escalations to adavosertib 75 mg/m2/dose and carboplatin AUC 4; no recommended phase II dose was defined. Main treatment-related toxicities were hematologic and gastrointestinal. Adavosertib exposure in children was equivalent to that in adults; both doses achieved the cell kill target. Overall response rate was 11% (95% confidence interval, 0.0-25.6) with partial responses in 2 patients with neuroblastoma. One patient with medulloblastoma experienced unconfirmed partial response and 5 patients had stable disease beyond four cycles. Seven of these eight patients with clinical benefit had alterations in HR, replication stress, and/or RAS pathway genes with or without TP53 alterations, whereas TP53 pathway alterations alone (8/10) or no relevant alterations (2/10) were present in the 10 patients without benefit. CONCLUSIONS Adavosertib-carboplatin combination exhibited significant hematologic toxicity. Activity signals and identified potential biomarkers suggest further studies with less hematotoxic DNA-damaging therapy in molecularly enriched pediatric cancers.
Collapse
Affiliation(s)
- Susanne A Gatz
- Institute of Cancer and Genomic Sciences, University of Birmingham; Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| | - Anne C Harttrampf
- Gustave Roussy Cancer Campus, Department of Pediatric and Adolescent Oncology, Villejuif, France
- Gustave Roussy Cancer Campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Caroline Brard
- Gustave Roussy Cancer Campus, Biostatistics and Epidemiology Unit, INSERM U1018, CESP, Université Paris-Saclay, Université Paris-Sud, UVSQ, Villejuif, France
| | - Francisco Bautista
- Hospital Niño Jesús, Department of Pediatric Oncology, Hematology and Stem Cell Transplantation, Madrid, Spain
| | - Nicolas André
- Hôpital de la Timone, AP-HM, Department of Pediatric Oncology, Marseille, France
- UMR INSERM 1068, CNRS UMR 7258, Aix Marseille Université U105, Marseille, Cancer Research Center (CRCM), Marseille, France
| | - Samuel Abbou
- Gustave Roussy Cancer Campus, Department of Pediatric and Adolescent Oncology, Villejuif, France
| | - Jonathan Rubino
- Gustave Roussy Cancer Campus, Clinical Research Direction, Villejuif, France
| | - Windy Rondof
- Gustave Roussy Cancer Campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
- Gustave Roussy Cancer Campus, Bioinformatics platform, Université Paris-Saclay, Villejuif, France
| | - Marc Deloger
- Gustave Roussy Cancer Campus, Bioinformatics platform, Université Paris-Saclay, Villejuif, France
| | - Marc Rübsam
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center
| | - Lynley V Marshall
- Royal Marsden Hospital & The Institute of Cancer Research, Paediatric and Adolescent Oncology Drug Development Unit, London, United Kingdom
| | - Daniel Hübschmann
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center
- Pattern Recognition and Digital Medicine Group, Heidelberg Institute for Stem cell Technology and Experimental Medicine (HI-STEM); German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Souad Nebchi
- Gustave Roussy Cancer Campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Isabelle Aerts
- Institut Curie, SIREDO Oncology Center (Care, Innovation and research for children and AYA with cancer), PSL Research University, Paris, France
| | - Estelle Thebaud
- Centre Hospitalier Universitaire, Department of Pediatric Oncology, Nantes, France
| | - Emilie De Carli
- Centre Hospitalier Universitaire, Department of Pediatric Oncology, Angers, France
| | | | - Xavier Paoletti
- Gustave Roussy Cancer Campus, Biostatistics and Epidemiology Unit, INSERM U1018, CESP, Université Paris-Saclay, Université Paris-Sud, UVSQ, Villejuif, France
| | - Robert Godin
- AstraZeneca Oncology External R&D, Waltham, Massachusetts
| | - Kowser Miah
- Clinical Pharmacology and Quantitative Pharmacology, AstraZeneca, Waltham, Massachusetts
| | | | - Gilles Vassal
- Gustave Roussy Cancer Campus, Clinical Research Direction, Villejuif, France
| | - Birgit Geoerger
- Gustave Roussy Cancer Campus, Department of Pediatric and Adolescent Oncology, Villejuif, France
- Gustave Roussy Cancer Campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
3
|
Khamidullina AI, Abramenko YE, Bruter AV, Tatarskiy VV. Key Proteins of Replication Stress Response and Cell Cycle Control as Cancer Therapy Targets. Int J Mol Sci 2024; 25:1263. [PMID: 38279263 PMCID: PMC10816012 DOI: 10.3390/ijms25021263] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Replication stress (RS) is a characteristic state of cancer cells as they tend to exchange precision of replication for fast proliferation and increased genomic instability. To overcome the consequences of improper replication control, malignant cells frequently inactivate parts of their DNA damage response (DDR) pathways (the ATM-CHK2-p53 pathway), while relying on other pathways which help to maintain replication fork stability (ATR-CHK1). This creates a dependency on the remaining DDR pathways, vulnerability to further destabilization of replication and synthetic lethality of DDR inhibitors with common oncogenic alterations such as mutations of TP53, RB1, ATM, amplifications of MYC, CCNE1 and others. The response to RS is normally limited by coordination of cell cycle, transcription and replication. Inhibition of WEE1 and PKMYT1 kinases, which prevent unscheduled mitosis entry, leads to fragility of under-replicated sites. Recent evidence also shows that inhibition of Cyclin-dependent kinases (CDKs), such as CDK4/6, CDK2, CDK8/19 and CDK12/13 can contribute to RS through disruption of DNA repair and replication control. Here, we review the main causes of RS in cancers as well as main therapeutic targets-ATR, CHK1, PARP and their inhibitors.
Collapse
Affiliation(s)
- Alvina I. Khamidullina
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Yaroslav E. Abramenko
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
| | - Alexandra V. Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Victor V. Tatarskiy
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| |
Collapse
|
4
|
Någård M, Ah-See ML, Strauss J, Wise-Draper T, Safran HP, Nadeau L, Edenfield WJ, Lewis LD, Ottesen LH, Li Y, Mugundu GM. Phase I study to assess the effect of adavosertib (AZD1775) on the pharmacokinetics of substrates of CYP1A2, CYP2C19, and CYP3A in patients with advanced solid tumors. Cancer Chemother Pharmacol 2023:10.1007/s00280-023-04554-3. [PMID: 37394627 PMCID: PMC10363032 DOI: 10.1007/s00280-023-04554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE Adavosertib may alter exposure to substrates of the cytochrome P450 (CYP) family of enzymes. This study assessed its effect on the pharmacokinetics of a cocktail of probe substrates for CYP3A (midazolam), CYP2C19 (omeprazole), and CYP1A2 (caffeine). METHODS Period 1: patients with locally advanced or metastatic solid tumors received 'cocktail': caffeine 200 mg, omeprazole 20 mg, and midazolam 2 mg (single dose); period 2: after 7- to 14-day washout, patients received adavosertib 225 mg twice daily on days 1-3 (five doses), with cocktail on day 3. After cocktail alone or in combination with adavosertib administration, 24-h pharmacokinetic sampling occurred for probe substrates and their respective metabolites paraxanthine, 5-hydroxyomeprazole (5-HO), and 1'-hydroxymidazolam (1'-HM). Safety was assessed throughout. RESULTS Of 33 patients (median age 60.0 years, range 41-83) receiving cocktail, 30 received adavosertib. Adavosertib co-administration increased caffeine, omeprazole, and midazolam exposure by 49%, 80%, and 55% (AUC0-12), respectively; AUC0-t increased by 61%, 98%, and 55%. Maximum plasma drug concentration (Cmax) increased by 4%, 46%, and 39%. Adavosertib co-administration increased 5-HO and 1'-HM exposure by 43% and 54% (AUC0-12) and 49% and 58% (AUC0-t), respectively; paraxanthine exposure was unchanged. Adavosertib co-administration decreased Cmax for paraxanthine and 5-HO by 19% and 7%; Cmax increased by 33% for 1'-HM. After receiving adavosertib, 19 (63%) patients had treatment-related adverse events (six [20%] grade ≥ 3). CONCLUSION Adavosertib (225 mg bid) is a weak inhibitor of CYP1A2, CYP2C19, and CYP3A. CLINICALTRIALS GOV: NCT03333824.
Collapse
Affiliation(s)
- Mats Någård
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.
| | - Mei-Lin Ah-See
- Late-Stage Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - James Strauss
- Mary Crowley Cancer Research Center, Dallas, TX, USA
| | | | - Howard P Safran
- Rhode Island Hospital, Lifespan Cancer Institute, Providence, RI, USA
| | | | | | - Lionel D Lewis
- The Dartmouth Cancer Center and Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Lone H Ottesen
- Late-Stage Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Yan Li
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, BioPharmaceuticals R&D, AstraZeneca, Boston, MA, USA
| | - Ganesh M Mugundu
- Clinical Pharmacology and Quantitative Pharmacology, R&D Clinical Pharmacology and Safety Sciences, AstraZeneca, Waltham, MA, USA
| |
Collapse
|
5
|
Någård M, Ah-See ML, Strauss J, Wise-Draper T, Safran HP, Nadeau L, Edenfield WJ, Lewis LD, Rekić D, Dota C, Ottesen LH, Li Y, Mugundu GM. Adavosertib (AZD1775) does not prolong the QTc interval in patients with advanced solid tumors: a phase I open-label study. Cancer Chemother Pharmacol 2023:10.1007/s00280-023-04555-2. [PMID: 37368100 DOI: 10.1007/s00280-023-04555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE Adavosertib is a small-molecule, ATP-competitive inhibitor of Wee1 kinase. Molecularly targeted oncology agents have the potential to increase the risk of cardiovascular events, including prolongation of QT interval and associated cardiac arrhythmias. This study investigated the effect of adavosertib on the QTc interval in patients with advanced solid tumors. METHODS Eligible patients were ≥ 18 years of age with advanced solid tumors for which no standard therapy existed. Patients received adavosertib 225 mg twice daily on days 1-2 at 12-h intervals and once on day 3. Patients underwent digital 12-lead electrocardiogram and pharmacokinetic assessments pre-administration and time-matched assessments during the drug administration period. The relationship between maximum plasma drug concentration (Cmax) and baseline-adjusted corrected QT interval by Fridericia (QTcF) was estimated using a prespecified linear mixed-effects model. RESULTS Twenty-one patients received adavosertib. Concentration-QT modeling of ΔQTcF and the upper limit of the 90% confidence interval corresponding to the geometric mean of Cmax observed on days 1 and 3 were below the threshold for regulatory concern (not > 10 ms). No significant relationship between ΔQTcF (vs baseline) and adavosertib concentration was identified (P = 0.27). Pharmacokinetics and the adverse event (AE) profile were consistent with previous studies at this dose. Eleven (52.4%) patients experienced 17 treatment-related AEs in total, including diarrhea and nausea (both reported in six [28.6%] patients), vomiting (reported in two [9.5%] patients), anemia, decreased appetite, and constipation (all reported in one [4.8%] patient). CONCLUSION Adavosertib does not have a clinically important effect on QTc prolongation. CLINICALTRIALS GOV: NCT03333824.
Collapse
Affiliation(s)
- Mats Någård
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.
| | - Mei-Lin Ah-See
- Late Stage Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - James Strauss
- Mary Crowley Cancer Research Center, Dallas, TX, USA
| | | | - Howard P Safran
- Rhode Island Hospital, Lifespan Cancer Institute, Providence, RI, USA
| | | | | | - Lionel D Lewis
- The Dartmouth Cancer Center and Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Dinko Rekić
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, AstraZeneca, Gothenburg, Sweden
| | - Corina Dota
- Cardiovascular Safety Center of Excellence, CMO, Oncology R&D, AstraZeneca, Gothenburg, Sweden
| | - Lone H Ottesen
- Late Stage Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Yan Li
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, BioPharmaceuticals R&D, AstraZeneca, Boston, MA, USA
| | - Ganesh M Mugundu
- Clinical Pharmacology and Quantitative Pharmacology, R&D Clinical Pharmacology and Safety Sciences Clinical Pharmacology, Waltham, MA, USA
| |
Collapse
|
6
|
Falchook GS, Sachdev J, Imedio ER, Kumar S, Mugundu GM, Jenkins S, Chmielecki J, Jones S, Spigel DR, Johnson M. A phase Ib study of adavosertib, a selective Wee1 inhibitor, in patients with locally advanced or metastatic solid tumors. Invest New Drugs 2023:10.1007/s10637-023-01371-6. [PMID: 37171722 DOI: 10.1007/s10637-023-01371-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Adavosertib selectively inhibits Wee1, which regulates intra-S and G2/M cell-cycle checkpoints. This study investigated dosing schedules for adavosertib monotherapy, determining the maximum tolerated dose (MTD) and recommended Phase II dose (RP2D) in patients with advanced solid tumors.Patients received oral adavosertib qd or bid on a 5/9 schedule (5 days on treatment, 9 days off) in 14-day cycles, or qd on one of two 5/2 schedules (weekly, or for 2 of 3 weeks) in 21-day cycles. Safety, efficacy, and pharmacokinetic analyses were performed.Sixty-two patients (female, 64.5%; median age, 61.5 years; most common primary tumors: lung [24.2%], ovary [21.0%]) received treatment (qd schedules, n = 50; bid schedules, n = 12) for 1.8 months (median). Median time to maximum adavosertib concentration was 2.2-4.1 h; mean half-life was 5-12 h. Adverse events (AEs) caused dose reductions, interruptions and discontinuations in 17 (27.4%), 25 (40.3%) and 4 (6.5%) patients, respectively. Most common grade ≥ 3 AEs were anemia, neutropenia (each n = 9, 14.5%) and diarrhea (n = 8, 12.9%). Seven (11.3%) patients experienced 10 treatment-related serious AEs (pneumonia n = 2 [3.2%], dehydration n = 2 [3.2%], anemia n = 1 [1.6%], febrile neutropenia n = 1 [1.6%], and thrombocytopenia n = 1 [1.6%]). Overall objective response rate was 3.4% (2/58); disease control rate was 48.4% (30/62); median progression-free survival was 2.7 months.MTDs were 125 mg (bid 5/9) and 300 mg (qd 5/9 and 5/2 for 2 of 3 weeks); RP2D was 300 mg (qd 5/2 for 2 of 3 weeks). The safety profile was manageable, acceptable, and generally concordant with the known safety profile.
Collapse
Affiliation(s)
| | | | | | | | - Ganesh M Mugundu
- Clinical Pharmacology and Quantitative Pharmacology, CPSS, AstraZeneca, Boston, MA, USA
| | | | - Juliann Chmielecki
- Translational Medicine, Early Research and Development, AstraZeneca, Boston, MA, USA
| | | | - David R Spigel
- Sarah Cannon Research Institute, Nashville, TN, USA
- Tennessee Oncology, Nashville, TN, USA
| | - Melissa Johnson
- Sarah Cannon Research Institute, Nashville, TN, USA
- Tennessee Oncology, Nashville, TN, USA
| |
Collapse
|
7
|
Schutte T, Embaby A, Steeghs N, van der Mierden S, van Driel W, Rijlaarsdam M, Huitema A, Opdam F. Clinical development of WEE1 inhibitors in gynecological cancers: A systematic review. Cancer Treat Rev 2023; 115:102531. [PMID: 36893690 DOI: 10.1016/j.ctrv.2023.102531] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
INTRODUCTION The anti-tumor activity of WEE1 inhibitors (WEE1i) in gynecological malignancies has recently been demonstrated in clinical trials and its rationale is based on biological/molecular features of gynecological cancers. With this systematic review, we aim to outline the clinical development and current evidence regarding the efficacy and safety of these targeted agents in in this patient group. METHODS Systematic literature review of trials including patients with gynecological cancers treated with a WEE1i. The primary objective was to summarize the efficacy of WEE1i in gynecological malignancies regarding objective response rate (ORR), clinical benefit rate (CBR), overall survival (OS) and progression-free survival (PFS). Secondary objectives included toxicity profile, Maximum Tolerated Dose (MTD), pharmacokinetics, drug-drug interactions and exploratory objectives such as biomarkers for response. RESULTS 26 records were included for data extraction. Almost all trials used the first-in-class WEE1i adavosertib; one conference abstract reported about Zn-c3. The majority of the trials included diverse solid tumors (n = 16). Six records reported efficacy results of WEE1i in gynecological malignancies (n = 6). Objective response rates of adavosertib monotherapy or in combination with chemotherapy ranged between 23% and 43% in these trials. Median PFS ranged from 3.0 to 9.9 months. The most common adverse events were bone marrow suppression, gastrointestinal toxicities and fatigue. Mainly alterations in cell cycle regulator genes TP53 and CCNE1 were potential predictors of response. CONCLUSION This report summarizes encouraging clinical development of WEE1i in gynecological cancers and considers its application in future studies. Biomarker-driven patient selection might be essential to increase the response rates.
Collapse
Affiliation(s)
- Tim Schutte
- Department of Internal Medicine and Department of Medical Oncology, Amsterdam UMC, Location VUmc, Amsterdam, Netherlands.
| | - Alaa Embaby
- Department of Clinical Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, Netherlands; Department of Medical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, Netherlands
| | - Neeltje Steeghs
- Department of Medical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, Netherlands
| | - Stevie van der Mierden
- Scientific Information Service, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Willemien van Driel
- Department of Gynecological Oncology, The Netherlands Cancer Insitute - Antoni van Leeuwenhoek, Amsterdam, Netherlands
| | - Martin Rijlaarsdam
- Department of Medical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, Netherlands
| | - Alwin Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, Netherlands; Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Frans Opdam
- Department of Medical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, Netherlands
| |
Collapse
|
8
|
DNA Damage Response Inhibitors in Cholangiocarcinoma: Current Progress and Perspectives. Cells 2022; 11:cells11091463. [PMID: 35563769 PMCID: PMC9101358 DOI: 10.3390/cells11091463] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/24/2022] [Indexed: 12/27/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a poorly treatable type of cancer and its incidence is dramatically increasing. The lack of understanding of the biology of this tumor has slowed down the identification of novel targets and the development of effective treatments. Based on next generation sequencing profiling, alterations in DNA damage response (DDR)-related genes are paving the way for DDR-targeting strategies in CCA. Based on the notion of synthetic lethality, several DDR-inhibitors (DDRi) have been developed with the aim of accumulating enough DNA damage to induce cell death in tumor cells. Observing that DDRi alone could be insufficient for clinical use in CCA patients, the combination of DNA-damaging regimens with targeted approaches has started to be considered, as evidenced by many emerging clinical trials. Hence, novel therapeutic strategies combining DDRi with patient-specific targeted drugs could be the next level for treating cholangiocarcinoma.
Collapse
|
9
|
Mueller S, Cooney T, Yang X, Pal S, Ermoian R, Gajjar A, Liu X, Prem K, Minard CG, Reid JM, Nelson M, Haas-Kogan D, Fox E, Weigel BJ. Wee1 kinase inhibitor adavosertib with radiation in newly diagnosed diffuse intrinsic pontine glioma: A Children's Oncology Group phase I consortium study. Neurooncol Adv 2022; 4:vdac073. [PMID: 35733515 PMCID: PMC9209747 DOI: 10.1093/noajnl/vdac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Background Children with diffuse intrinsic pontine gliomas (DIPG) have a dismal prognosis. Adavosertib (AZD1775) is an orally available, blood-brain barrier penetrant, Wee1 kinase inhibitor. Preclinical efficacy against DIPG is heightened by radiation induced replication stress. Methods Using a rolling six design, 7 adavosertib dose levels (DLs) (50 mg/m2 alternating weeks, 50 mg/m2 alternating with weeks of every other day, 50 mg/m2, then 95, 130, 160, 200 mg/m2) were assessed. Adavosertib was only given on days of cranial radiation therapy (CRT).The duration of CRT (54 Gy over 30 fractions; 6 weeks) constituted the dose limiting toxicity (DLT) period. Endpoints included tolerability, pharmacokinetics, overall survival (OS) and peripheral blood γH2AX levels as a marker of DNA damage. Results A total of 46 eligible patients with newly diagnosed DIPG [median (range) age 6 (3-21) years; 52% female] were enrolled. The recommend phase 2 dose (RP2D) of adavosertib was 200 mg/m2/d during days of CRT. Dose limiting toxicity included ALT elevation (n = 1, DL4) and neutropenia (n = 1, DL7). The mean Tmax, T1/2 and Clp on Day 1 were 2 h, 4.4 h, and 45.2 L/hr/m2, respectively. Modest accumulation of adavosertib was observed comparing day 5 versus day 1 AUC0-8h (accumulation ratio = 1.6). OS was 11.1 months (95% CI: 9.4, 12.5) and did not differ from historical control. Conclusion Adavosertib in combination with CRT is well tolerated in children with newly diagnosed DIPG, however, compared to historical controls, did not improve OS. These results can inform future trial design in children with high-risk cancer.
Collapse
Affiliation(s)
- Sabine Mueller
- Department of Neurology, University of California, San Francisco, San Francisco, California
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California
| | - Tabitha Cooney
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Xiaodong Yang
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California
| | - Sharmistha Pal
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ralph Ermoian
- Department of Radiation Oncology, University of Washington Medical Center, Seattle, Washington
| | - Amar Gajjar
- St. Jude Children’s Research Hospital, Memphis, Tenesse
| | - Xiaowei Liu
- Children’s Oncology Group, Monrovia, California
| | - Komal Prem
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Charles G Minard
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
| | - Joel M Reid
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Marvin Nelson
- Children’s Hospital Los Angeles, Radiology, Keck USC School of Medicine, Los Angeles, California
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Fox
- St. Jude Children’s Research Hospital, Memphis, Tenesse
| | - Brenda J Weigel
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|