1
|
Lomovsky AI, Baburina YL, Fadeev RS, Lomovskaya YV, Kobyakova MI, Krestinin RR, Sotnikova LD, Krestinina OV. Melatonin Can Enhance the Effect of Drugs Used in the Treatment of Leukemia. BIOCHEMISTRY (MOSCOW) 2023; 88:73-85. [PMID: 37068876 DOI: 10.1134/s0006297923010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine, MEL), secreted by the pineal gland, plays an important role in regulation of various functions in the human body. There is evidence that MEL exhibits antitumor effect in various types of cancer. We studied the combined effect of MEL and drugs from different pharmacological groups, such as cytarabine (CYT) and navitoclax (ABT-737), on the state of the pool of acute myeloid leukemia (AML) tumor cell using the MV4-11 cell line as model. The combined action of MEL with CYT or ABT-737 contributed to the decrease in proliferative activity of leukemic cells, decrease in the membrane potential of mitochondria, and increase in the production of reactive oxygen species (ROS) and cytosolic Ca2+. We have shown that introduction of MEL together with CYT or ABT-737 increases expression of the C/EBP homologous protein (CHOP) and the autophagy marker LC3A/B and decreases expression of the protein disulfide isomerase (PDI) and binding immunoglobulin protein (BIP), and, therefore, could modulate endoplasmic reticulum (ER) stress and initiate autophagy. The findings support an early suggestion that MEL is able to provide benefits for cancer treatment and be considered as an adjunct to the drugs used in cancer therapy.
Collapse
Affiliation(s)
- Alexey I Lomovsky
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Yulia L Baburina
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Roman S Fadeev
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Yana V Lomovskaya
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Margarita I Kobyakova
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Roman R Krestinin
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Linda D Sotnikova
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Olga V Krestinina
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
2
|
Baker F, Polat IH, Abou-El-Ardat K, Alshamleh I, Thoelken M, Hymon D, Gubas A, Koschade SE, Vischedyk JB, Kaulich M, Schwalbe H, Shaid S, Brandts CH. Metabolic Rewiring Is Essential for AML Cell Survival to Overcome Autophagy Inhibition by Loss of ATG3. Cancers (Basel) 2021; 13:6142. [PMID: 34885250 PMCID: PMC8657081 DOI: 10.3390/cancers13236142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 01/05/2023] Open
Abstract
Autophagy is an important survival mechanism that allows recycling of nutrients and removal of damaged organelles and has been shown to contribute to the proliferation of acute myeloid leukemia (AML) cells. However, little is known about the mechanism by which autophagy- dependent AML cells can overcome dysfunctional autophagy. In our study we identified autophagy related protein 3 (ATG3) as a crucial autophagy gene for AML cell proliferation by conducting a CRISPR/Cas9 dropout screen with a library targeting around 200 autophagy-related genes. shRNA-mediated loss of ATG3 impaired autophagy function in AML cells and increased their mitochondrial activity and energy metabolism, as shown by elevated mitochondrial ROS generation and mitochondrial respiration. Using tracer-based NMR metabolomics analysis we further demonstrate that the loss of ATG3 resulted in an upregulation of glycolysis, lactate production, and oxidative phosphorylation. Additionally, loss of ATG3 strongly sensitized AML cells to the inhibition of mitochondrial metabolism. These findings highlight the metabolic vulnerabilities that AML cells acquire from autophagy inhibition and support further exploration of combination therapies targeting autophagy and mitochondrial metabolism in AML.
Collapse
Affiliation(s)
- Fatima Baker
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
| | - Ibrahim H. Polat
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
| | - Khalil Abou-El-Ardat
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany;
| | - Islam Alshamleh
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Marlyn Thoelken
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
| | - Daniel Hymon
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Andrea Gubas
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, 60590 Frankfurt am Main, Germany;
| | - Sebastian E. Koschade
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany;
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, 60590 Frankfurt am Main, Germany;
| | - Jonas B. Vischedyk
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany;
| | - Manuel Kaulich
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany;
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, 60590 Frankfurt am Main, Germany;
- Cardio-Pulmonary Institute, 60590 Frankfurt am Main, Germany
| | - Harald Schwalbe
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Shabnam Shaid
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
- University Cancer Center Frankfurt (UCT), University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
| | - Christian H. Brandts
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany;
- University Cancer Center Frankfurt (UCT), University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Cardilin T, Lundh T, Jirstrand M. Optimization of additive chemotherapy combinations for an in vitro cell cycle model with constant drug exposures. Math Biosci 2021; 338:108595. [PMID: 33831415 DOI: 10.1016/j.mbs.2021.108595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/25/2022]
Abstract
Proliferation of an in vitro population of cancer cells is described by a linear cell cycle model with n states, subject to provocation with m chemotherapeutic compounds. Minimization of a linear combination of constant drug exposures is considered, with stability of the system used as a constraint to ensure a stable or shrinking cell population. The main result concerns the identification of redundant compounds, and an explicit solution formula for the case where all exposures are nonzero. The orthogonal case, where each drug acts on a single and different stage of the cell cycle, leads to a version of the classic inequality between the arithmetic and geometric means. Moreover, it is shown how the general case can be solved by converting it to the orthogonal case using a linear invertible transformation. The results are illustrated with two examples corresponding to combination treatment with two and three compounds, respectively.
Collapse
Affiliation(s)
- Tim Cardilin
- Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Gothenburg, Sweden; Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden.
| | - Torbjörn Lundh
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Mats Jirstrand
- Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Gothenburg, Sweden
| |
Collapse
|