1
|
Xiong G, Zhang H, Peng Y, Shi H, Han M, Hu T, Wang H, Zhang S, Wu X, Xu G, Zhang J, Liu Y. Subchronic co-exposure of polystyrene nanoplastics and 3-BHA significantly aggravated the reproductive toxicity of ovaries and uterus in female mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124101. [PMID: 38710361 DOI: 10.1016/j.envpol.2024.124101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Both nanoplastics (NPs) and 3-tert-butyl-4-hydroxyanisole (3-BHA) are environmental contaminants that can bio-accumulate through the food chain. However, the combined effects of which on mammalian female reproductive system remain unclear. Here, the female ICR-CD1 mice were used to evaluate the damage effects of ovaries and uterus after NPs and 3-BHA co-treatment for 35 days. Firstly, co-exposure significantly reduced the body weight and organ index of ovaries and uterus in mice. Secondly, combined effects of NPs and 3-BHA exacerbated the histopathological abnormalities to the ovaries and uterus and decreased female sex hormones such as FSH and LH while increased antioxidant activities including CAT and GSH-Px. Moreover, the apoptotic genes, inflammatory cytokines and the key reproductive development genes such as FSTL1 were significantly up-regulated under co-exposure conditions. Thirdly, through transcriptional and bioinformatics analysis, immunofluorescence and western blotting assays, together with molecular docking simulation, we determined that co-exposure up-regulated the FSTL1, TGF-β and p-Smad1/5/9 but down-regulated the expression of BMP4. Finally, the pharmacological rescue experiments further demonstrated that co-exposure of NPs and 3-BHA mainly exacerbated the female reproductive toxicity through FSTL1-mediated BMP4/TGF-β/SMAD signaling pathway. Taken together, our studies provided the theoretical basis of new environmental pollutants on the reproductive health in female mammals.
Collapse
Affiliation(s)
- Guanghua Xiong
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Haiyan Zhang
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China; College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Yulin Peng
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Huangqi Shi
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Meiling Han
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Tianle Hu
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Hongcheng Wang
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Shangrong Zhang
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Xiaoqing Wu
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Gaoxiao Xu
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Jun'e Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Yong Liu
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China.
| |
Collapse
|
2
|
Du R, Li K, Guo K, Chen Z, Han L, Bian H. FSTL1: A double-edged sword in cancer development. Gene 2024; 906:148263. [PMID: 38346455 DOI: 10.1016/j.gene.2024.148263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Flolistatin-related protein 1 (FSTL1), a secreted glycoprotein that is involved in many physiological functions, has attracted much interest and has been implicated in a wide range of diseases, including heart diseases and inflammatory diseases. In recent years, the involvement of FSTL1 in cancer progression has been implicated and researched. FSTL1 plays a contradictory role in cancer, depending on the cancer type as well as the contents of the tumor microenvironment. As reviewed here, the structure and distribution of FSTL1 are first introduced. Subsequently, the expression and clinical significance of FSTL1 in various types of cancer as a tumor enhancer or inhibitor are addressed. Furthermore, we discuss the functional role of FSTL1 in various processes that involve tumor cell proliferation, metastasis, immune responses, stemness, cell apoptosis, and resistance to chemotherapy. FSTL1 expression is tightly controlled in cancer, and a multitude of cancer-related signaling cascades like TGF-β/BMP/Smad signaling, AKT, NF-κB, and Wnt-β-catenin signaling pathways are modulated by FSTL1. Finally, FSTL1 as a therapeutic target using monoclonal antibodies is stated. Herein, we review recent findings showing the double-edged characteristics and mechanisms of FSTL1 in cancer and elaborate on the current understanding of therapeutic approaches targeting FSTL1.
Collapse
Affiliation(s)
- Ruijuan Du
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, Henan Province, PR China
| | - Kai Li
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, Henan Province, PR China
| | - Kelei Guo
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, Henan Province, PR China
| | - Zhiguo Chen
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, Henan Province, PR China
| | - Li Han
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, Henan Province, PR China.
| | - Hua Bian
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, Henan Province, PR China.
| |
Collapse
|
3
|
Wang J, Ma C, Tang Z, Sun Z, Qaed E, Chi X, Wang J, Jamalat Y, Geng Z, Tang Z, Yao Q. Mechanism study of oleanolic acid derivative, K73-03, inducing cell apoptosis in hepatocellular carcinoma. Cancer Cell Int 2024; 24:17. [PMID: 38185661 PMCID: PMC10771654 DOI: 10.1186/s12935-023-03119-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/30/2023] [Indexed: 01/09/2024] Open
Abstract
Oleanolic acid (3β-hydroxyolean-12-en-28-oic acid, OA) is a kind of pentacyclic triterpene, which widely distributes in nature. OA possesses a powerful anti-cancer effect; however, its low solubility limits its bioavailability and application. In this study, a new OA derivative, K73-03, was used to determine its effect on liver cancer cells and detailed molecular mechanisms. Here, we show that K73-03 may lead to the disorder of mitochondria in HepG2 cells, leading to excessive ROS production and apoptosis in cells. Meanwhile, K73-03 could induce cell apoptosis by inhibiting JAK2/STAT3 pathway and NF-κB/P65 pathway. Collectively, this study may provide a preliminary basis for further cancer treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Physiology, Dalian Medical University, Dalian, China
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130000, China
| | - Chuchu Ma
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Zhongyuan Tang
- Department of Orthodontics, College of Stomatology, Jilin University, Changchun, Jilin, 130033, P.R. China
| | - Zhengwu Sun
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Eskandar Qaed
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Xinming Chi
- Histology and Embryology Department, Dalian Medical University, Dalian, China
| | - Jun Wang
- Pathophysiology Department, Dalian Medical University, Dalian, China
| | - Yazeed Jamalat
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Zhaohong Geng
- Department of Cardiology, 2th Affiliated Hospital of Dalian Medical University, Zhongshan Road No. 467, Dalian, 116000, China.
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, Dalian, China.
| | - Qiying Yao
- Department of Physiology, Dalian Medical University, Dalian, China.
| |
Collapse
|
4
|
Chen Y, He Z, Yang S, Chen C, Xiong W, He Y, Liu S. RUNX1 knockdown induced apoptosis and impaired EMT in high-grade serous ovarian cancer cells. J Transl Med 2023; 21:886. [PMID: 38057816 PMCID: PMC10702124 DOI: 10.1186/s12967-023-04762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023] Open
Abstract
Ovarian cancer is the leading cause of death from gynecologic illnesses worldwide. High-grade serous ovarian cancer (HGSOC) is a gynecological tumor that accounts for roughly 70% of ovarian cancer deaths in women. Runt-related transcription factor 1(RUNX1) proteins were identified with overexpression in the HGSOC. However, the roles of RUNX1 in the development of HGSOC are poorly understood. In this study, combined with whole-transcriptome analysis and multiple research methods, RUNX1 was identified as vital in developing HGSOC. RUNX1 knockdown inhibits the physiological function of ovarian cancer cells and regulates apoptosis through the FOXO1-Bcl2 axis. Down-regulated RUNX1 impairs EMT function through the EGFR-AKT-STAT3 axis signaling. In addition, RUNX1 knockdown can significantly increase the sensitivity to clinical drug therapy for ovarian cancer. It is strongly suggested that RUNX1 work as a potential diagnostic and therapeutic target for HGSOC patients with better prognoses and treatment options. It is possible to generate novel potential targeted therapy strategies and translational applications for serous ovarian carcinoma patients with better clinical outcomes.
Collapse
Affiliation(s)
- Yuanzhi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132 Lanhei Road, Panlong District, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhicheng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132 Lanhei Road, Panlong District, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuting Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132 Lanhei Road, Panlong District, Kunming, 650201, Yunnan, People's Republic of China
- School of Life Science, Yunnan University, Kunming, China
| | - Cheng Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132 Lanhei Road, Panlong District, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenyong Xiong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132 Lanhei Road, Panlong District, Kunming, 650201, Yunnan, People's Republic of China
| | - YingYing He
- School of Chemical Science & Technology, Yunnan University, Kunming, 650091, Yunnan, China.
| | - Shubai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132 Lanhei Road, Panlong District, Kunming, 650201, Yunnan, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Dai D, Xie J, Zheng Y, Chen F, Zhao B, Miao L. H3K27 acetylation-induced FSTL1 upregulation by P300/RUNX1 co-activation exacerbated autophagy-mediated neuronal damage and NF-κB-stimulated inflammation in Alzheimer's disease. Cytotechnology 2023; 75:449-460. [PMID: 37655275 PMCID: PMC10465437 DOI: 10.1007/s10616-023-00589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/02/2023] [Indexed: 09/02/2023] Open
Abstract
Follistatin-like protein 1 (FSTL1) has been demonstrated to participate in the pathogenesis of several neurological diseases. The current study informed the role of H3K27 acetylation-induced FSTL1 upregulation in Alzheimer's disease (AD). Our investigation discovered the upregulated FSTL1 expression and enhanced autophagy activity in AD. FSTL1 knockdown successfully attenuated the injuries of Aβ1-42-challenged SH-SY5Y cells through the inhibition of autophagy activity. Besides, FSTL1 deficiency suppresses the inflammatory response and NF-κB signaling in AD. Moreover, it was found that p300 was recruited by transcriptional factor RUNX1 to stimulate the H3K27 acetylation in FSTL1 promoter region, which caused the upregulation of FSTL1 in AD. To summarize, p300 acted as a co-activator of RUNX1 to trigger the activation of FSTL1 in AD, resulting in the exacerbated injuries and inflammatory responses of Aβ1-42-induced SH-SY5Y cells.
Collapse
Affiliation(s)
- Dongmei Dai
- Department of Psychiatry, 904th Hospital of Joint Logistic Support Force of PLA, No. 55, Heping North Rd., Tianning District, Changzhou, 213000 Jiangsu China
| | - Junzheng Xie
- Department of Psychiatry, 904th Hospital of Joint Logistic Support Force of PLA, No. 55, Heping North Rd., Tianning District, Changzhou, 213000 Jiangsu China
| | - Yun Zheng
- Department of Psychiatry, 904th Hospital of Joint Logistic Support Force of PLA, No. 55, Heping North Rd., Tianning District, Changzhou, 213000 Jiangsu China
| | - Fangbin Chen
- Department of Psychiatry, 904th Hospital of Joint Logistic Support Force of PLA, No. 55, Heping North Rd., Tianning District, Changzhou, 213000 Jiangsu China
| | - Bin Zhao
- Department of Material Dependency, 904th Hospital of Joint Logistic Support Force of PLA, Changzhou, China
| | - Li Miao
- Department of Material Dependency, 904th Hospital of Joint Logistic Support Force of PLA, Changzhou, China
| |
Collapse
|
6
|
Chen Y, He Y, Liu S. RUNX1-Regulated Signaling Pathways in Ovarian Cancer. Biomedicines 2023; 11:2357. [PMID: 37760803 PMCID: PMC10525517 DOI: 10.3390/biomedicines11092357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 09/29/2023] Open
Abstract
Ovarian cancer is the leading cause of gynecological death worldwide, and its poor prognosis and high mortality seriously affect the life of ovarian cancer patients. Runt-related transcription factor 1 (RUNX1) has been widely studied in hematological diseases and plays an important role in the occurrence and development of hematological diseases. In recent years, studies have reported the roles of RUNX1 in solid tumors, including the significantly increased expression of RUNX1 in ovarian cancer. In ovarian cancer, the dysregulation of the RUNX1 signaling pathway has been implicated in tumor progression, metastasis, and response to therapy. At the same time, the decreased expression of RUNX1 in ovarian cancer can significantly improve the sensitivity of clinical chemotherapy and provide theoretical support for the subsequent diagnosis and treatment target of ovarian cancer, providing prognosis and treatment options to patients with ovarian cancer. However, the role of RUNX1 in ovarian cancer remains unclear. Therefore, this article reviews the relationship between RUNX1 and the occurrence and development of ovarian cancer, as well as the closely regulated signaling pathways, to provide some inspiration and theoretical support for future research on RUNX1 in ovarian cancer and other diseases.
Collapse
Affiliation(s)
- Yuanzhi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying He
- School of Chemical Science & Technology, Yunnan University, Kunming 650091, China
| | - Shubai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Wang Y, Wang C, Zhu Y. CARD9 contributes to ovarian cancer cell proliferation, cycle arrest, and cisplatin sensitivity. BMC Mol Cell Biol 2022; 23:49. [PMID: 36443670 PMCID: PMC9703781 DOI: 10.1186/s12860-022-00447-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/01/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Ovarian cancer recurrence and chemotherapy resistance are still urgent issues, and exploring the mechanisms of metastasis and chemotherapy resistance is beneficial to the development of therapeutic methods. Caspase recruitment domain family member 9 (CARD9) and homeobox B5 (HOXB5) are related and both are upregulated in ovarian cancer. This study aimed to define their functions in ovarian cancer cell proliferation, migration, and cisplatin sensitivity. RESULTS The levels of CARD9 were detected in acquired ovarian cancer tissues and cell lines. CARD9 was indeed abnormally upregulated in them. CARD9 knockdown significantly suppressed cell proliferation, colony formation, migration, cycle arrest, and cisplatin sensitivity. HOXB5 bound to the CARD9 promoter, and HOXB5 overexpression reversed the regulation by CARD9 knockdown in cells, as well as the activation of NF-κB signaling. This indicated that CARD9 was positively regulated by HOXB5 in ovarian cancer cells. CONCLUSION Together, CARD9 is involved in ovarian cancer cell proliferation, migration, and cisplatin sensitivity via NF-κB signaling after transcriptional activation by HOXB5.
Collapse
Affiliation(s)
- Yanming Wang
- grid.452867.a0000 0004 5903 9161Department of Obstetrics and Gynecology, the first Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, 121000 Liaoning China
| | - Chao Wang
- Department of Otolaryngology, the 968th Hospital of the PLA Joint Logistic Support Force, No. 9, Section 2, Chongqing Road, Jinzhou, 121000 Liaoning China
| | - Yan Zhu
- grid.452867.a0000 0004 5903 9161Department of Obstetrics and Gynecology, the first Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, 121000 Liaoning China
| |
Collapse
|
8
|
Tossetta G. Metformin Improves Ovarian Cancer Sensitivity to Paclitaxel and Platinum-Based Drugs: A Review of In Vitro Findings. Int J Mol Sci 2022; 23:12893. [PMID: 36361682 PMCID: PMC9654053 DOI: 10.3390/ijms232112893] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Ovarian cancer is one of the most dangerous gynecologic cancers worldwide, showing a high fatality rate and recurrence due to diagnosis at an advanced stage of the disease and the occurrence of chemoresistance, which weakens the therapeutic effects of the chemotherapeutic treatments. In fact, although paclitaxel and platinum-based drugs (carboplatin or cisplatin) are widely used alone or in combination to treat ovarian cancer, the occurrence of chemoresistance significantly reduces the effects of these drugs. Metformin is a hypoglycemic agent that is commonly used for the treatment of type 2 diabetes mellitus and non-alcoholic fatty liver disease. However, this drug also shows anti-tumor activity, reducing cancer risk and chemoresistance. This review analyzes the current literature regarding the role of metformin in ovarian cancer and investigates what is currently known about its effects in reducing paclitaxel and platinum resistance to restore sensitivity to these drugs.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; ; Tel.: +39-0712206270
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126 Ancona, Italy
| |
Collapse
|
9
|
Ranasinghe R, Mathai ML, Zulli A. Cisplatin for cancer therapy and overcoming chemoresistance. Heliyon 2022; 8:e10608. [PMID: 36158077 PMCID: PMC9489975 DOI: 10.1016/j.heliyon.2022.e10608] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Cisplatin spearheads the anticancer chemotherapeutics in present-day use although acute toxicity is its primary impediment factor. Among a plethora of experimental medications, a drug as effective or surpassing the benefits of cisplatin has not been discovered yet. Although Oxaliplatin is considered more superior to cisplatin, the former has been better for colorectal cancer while cisplatin is widely used for treating gynaecological cancers. Carcinoma imposes a heavy toll on mortality rates worldwide despite the novel treatment strategies and detection methods that have been introduced; nanomedicine combined with precision medicine, immunotherapy, volume-regulated anion channels, and fluorodeoxyglucose-positron emission tomography. Millions of deaths occur annually from metastatic cancers which escape early detection and the concomitant diseases caused by highly toxic chemotherapy that causes organ damage. It continues due to insufficient knowledge of the debilitative mechanisms induced by cancer biology. To overcome chemoresistance and to attenuate the adverse effects of cisplatin therapy, both in vitro and in vivo models of cisplatin-treated cancers and a few multi-centred, multi-phasic, randomized clinical trials in pursuant with recent novel strategies have been tested. They include plant-based phytochemical compounds, de novo drug delivery systems, biochemical/immune pathways, 2D and 3D cell culture models using small molecule inhibitors and genetic/epigenetic mechanisms, that have contributed to further the understanding of cisplatin's role in modulating the tumour microenvironment. Cisplatin was beneficial in cancer therapy for modulating the putative cellular mechanisms; apoptosis, autophagy, cell cycle arrest and gene therapy of micro RNAs. Specific importance of drug influx, efflux, systemic circulatory toxicity, half-maximal inhibition, and the augmentation of host immunometabolism have been identified. This review offers a discourse on the recent anti-neoplastic treatment strategies to enhance cisplatin efficacy and to overcome chemoresistance, given its superiority among other tolerable chemotherapies.
Collapse
Affiliation(s)
- Ranmali Ranasinghe
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Australia
| | - Michael L. Mathai
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Australia
| | - Anthony Zulli
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Australia
| |
Collapse
|
10
|
Yu Z, Ouyang L. Odd-skipped related 1 plays a tumor suppressor role in ovarian cancer via promoting follistatin-like protein 1 transcription. Hum Cell 2022; 35:1824-1837. [DOI: 10.1007/s13577-022-00767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/06/2022] [Indexed: 11/04/2022]
|
11
|
Español A, Sanchez Y, Salem A, Obregon J, Sales ME. Nicotinic receptors modulate antitumor therapy response in triple negative breast cancer cells. World J Clin Oncol 2022; 13:505-519. [PMID: 35949430 PMCID: PMC9244968 DOI: 10.5306/wjco.v13.i6.505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/24/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Triple negative breast cancer is more aggressive than other breast cancer subtypes and constitutes a public health problem worldwide since it has high morbidity and mortality due to the lack of defined therapeutic targets. Resistance to chemotherapy complicates the course of patients’ treatment. Several authors have highlighted the participation of nicotinic acetylcholine receptors (nAChR) in the modulation of conventional chemotherapy treatment in cancers of the airways. However, in breast cancer, less is known about the effect of nAChR activation by nicotine on chemotherapy treatment in smoking patients.
AIM To investigate the effect of nicotine on paclitaxel treatment and the signaling pathways involved in human breast MDA-MB-231 tumor cells.
METHODS Cells were treated with paclitaxel alone or in combination with nicotine, administered for one or three 48-h cycles. The effect of the addition of nicotine (at a concentration similar to that found in passive smokers’ blood) on the treatment with paclitaxel (at a therapeutic concentration) was determined using the 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The signaling mediators involved in this effect were determined using selective inhibitors. We also investigated nAChR expression, and ATP “binding cassette” G2 drug transporter (ABCG2) expression and its modulation by the different treatments with Western blot. The effect of the treatments on apoptosis induction was determined by flow cytometry using annexin-V and 7AAD markers.
RESULTS Our results confirmed that treatment with paclitaxel reduced MDA-MB-231 cell viability in a concentration-dependent manner and that the presence of nicotine reversed the cytotoxic effect induced by paclitaxel by involving the expression of functional α7 and α9 nAChRs in these cells. The action of nicotine on paclitaxel treatment was linked to modulation of the protein kinase C, mitogen-activated protein kinase, extracellular signal-regulated kinase, and NF-κB signaling pathways, and to an up-regulation of ABCG2 protein expression. We also detected that nicotine significantly reduced the increase in cell apoptosis induced by paclitaxel treatment. Moreover, the presence of nicotine reduced the efficacy of paclitaxel treatment administered in three cycles to MDA-MB-231 tumor cells.
CONCLUSION Our findings point to nAChRs as responsible for the decrease in the chemotherapeutic effect of paclitaxel in triple negative tumors. Thus, nAChRs should be considered as targets in smoking patients.
Collapse
Affiliation(s)
- Alejandro Español
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Yamila Sanchez
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Agustina Salem
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Jaqueline Obregon
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Maria Elena Sales
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
12
|
Tan X, Zhao J, Lou J, Zheng W, Wang P. Hsa_circ_0058129 regulates papillary thyroid cancer development via miR‐873‐5p/follistatin‐like 1 axis. J Clin Lab Anal 2022; 36:e24401. [PMID: 35373391 PMCID: PMC9102651 DOI: 10.1002/jcla.24401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 01/06/2023] Open
Abstract
Background Papillary thyroid cancer (PTC) is an endocrine malignancy with a high incidence. Circular RNAs (circRNAs) participate in regulating PTC. Here, we analyzed the role of hsa_circ_0058129 (circ_0058129) in PTC. Methods The expression of circ_0058129, fibronectin 1 (FN1) mRNA, microRNA‐873‐5p (miR‐873‐5p), and follistatin‐like 1 (FSTL1) was detected by qRT‐PCR and western blot. Cell proliferation was analyzed by CCK‐8, EdU, and flow cytometry analysis assays. Cell migration and invasion were evaluated by Transwell assay. The targeting relationship of miR‐873‐5p and circ_0058129 or FSTL1 was identified through dual‐luciferase reporter assay, RIP assay, and RNA pull‐down assay. Xenograft mouse model assay was implemented to determine the effect of circ_0058129 on tumor formation in vivo. Results The circ_0058129 and FSTL1 abundances were increased, while the miR‐873‐5p content was decreased in PTC tissues and cells compared with control groups. Circ_0058129 shortage inhibited PTC cell proliferation, migration, and invasion. Moreover, miR‐873‐5p repressed PTC cell malignancy by binding to FSTL1. Circ_0058129 targeted miR‐873‐5p to regulate FSTL1. Conclusion Circ_0058129 expedited PTC progression through the miR‐873‐5p/FSTL1 pathway.
Collapse
Affiliation(s)
- Xiangrong Tan
- Head and Neck Surgery The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou China
| | - Jiazheng Zhao
- Head and Neck Surgery The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou China
| | - Jianlin Lou
- Head and Neck Surgery The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou China
| | - Wen Zheng
- Head and Neck Surgery The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou China
| | - Peng Wang
- Head and Neck Surgery The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou China
| |
Collapse
|
13
|
Zhao HY, Li Q, Tian Y, Chen YH, Alvi HAK, Yuan XG. CIRCNV: Detection of CNVs Based on a Circular Profile of Read Depth from Sequencing Data. BIOLOGY 2021; 10:biology10070584. [PMID: 34202028 PMCID: PMC8301091 DOI: 10.3390/biology10070584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/10/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022]
Abstract
Simple Summary In this study, we propose a copy number variation (CNV) detection method called CIRCNV, which is based on a circular profile of the read depth from sequencing data. The proposed method is an extended version of our previously developed method CNV-LOF. The main difference of CIRCNV from CNV-LOF lies in its two new features: (1) it transfers the read depth profile from a line shape to a circular shape via a polar coordinate transformation to generate a meaningful two-dimensional dataset for CNV analysis and promote fairness between the ends and middle part of the genome, and (2) it performs two rounds of CNV declaration via estimating tumor purity and recovering the truth circular RD profile. We test and evaluate the performance of CIRCNV via conducting simulation studies and real sequencing tumor sample applications. The experimental results show that CIRCNV outperforms peer methods with respect to sensitivity, precision, and the F1-score. The experiments prove that the proposed method is a reliable and effective tool in the field of variation analysis of tumor genomes. Abstract Copy number variation (CNV) is a common type of structural variation in the human genome. Accurate detection of CNVs from tumor genomes can provide crucial information for the study of tumor genesis and cancer precision diagnosis. However, the contamination of normal genomes in tumor genomes and the crude profiles of the read depth make such a task difficult. In this paper, we propose an alternative approach, called CIRCNV, for the detection of CNVs from sequencing data. CIRCNV is an extension of our previously developed method CNV-LOF, which uses local outlier factors to predict CNVs. Comparatively, CIRCNV can be performed on individual tumor samples and has the following two new features: (1) it transfers the read depth profile from a line shape to a circular shape via a polar coordinate transformation, in order to improve the efficiency of the read depth (RD) profile for the detection of CNVs; and (2) it performs a second round of CNV declaration based on the truth circular RD profile, which is recovered by estimating tumor purity. We test and validate the performance of CIRCNV based on simulation and real sequencing data and perform comparisons with several peer methods. The results demonstrate that CIRCNV can obtain superior performance in terms of sensitivity and precision. We expect that our proposed method will be a supplement to existing methods and become a routine tool in the field of variation analysis of tumor genomes.
Collapse
Affiliation(s)
- Hai-Yong Zhao
- School of Computer Science and Technology, Liaocheng University, Liaocheng 252000, China;
| | - Qi Li
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (Q.L.); (Y.T.); (H.A.K.A.)
| | - Ye Tian
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (Q.L.); (Y.T.); (H.A.K.A.)
| | - Yue-Hui Chen
- Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Ji’nan 250022, China;
| | - Haque A. K. Alvi
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (Q.L.); (Y.T.); (H.A.K.A.)
| | - Xi-Guo Yuan
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (Q.L.); (Y.T.); (H.A.K.A.)
- Correspondence:
| |
Collapse
|
14
|
The Anticancer Effects of Flavonoids through miRNAs Modulations in Triple-Negative Breast Cancer. Nutrients 2021; 13:nu13041212. [PMID: 33916931 PMCID: PMC8067583 DOI: 10.3390/nu13041212] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/31/2022] Open
Abstract
Triple- negative breast cancer (TNBC) incidence rate has regularly risen over the last decades and is expected to increase in the future. Finding novel treatment options with minimum or no toxicity is of great importance in treating or preventing TNBC. Flavonoids are new attractive molecules that might fulfill this promising therapeutic option. Flavonoids have shown many biological activities, including antioxidant, anti-inflammatory, and anticancer effects. In addition to their anticancer effects by arresting the cell cycle, inducing apoptosis, and suppressing cancer cell proliferation, flavonoids can modulate non-coding microRNAs (miRNAs) function. Several preclinical and epidemiological studies indicate the possible therapeutic potential of these compounds. Flavonoids display a unique ability to change miRNAs' levels via different mechanisms, either by suppressing oncogenic miRNAs or activating oncosuppressor miRNAs or affecting transcriptional, epigenetic miRNA processing in TNBC. Flavonoids are not only involved in the regulation of miRNA-mediated cancer initiation, growth, proliferation, differentiation, invasion, metastasis, and epithelial-to-mesenchymal transition (EMT), but also control miRNAs-mediated biological processes that significantly impact TNBC, such as cell cycle, immune system, mitochondrial dysregulation, modulating signaling pathways, inflammation, and angiogenesis. In this review, we highlighted the role of miRNAs in TNBC cancer progression and the effect of flavonoids on miRNA regulation, emphasizing their anticipated role in the prevention and treatment of TNBC.
Collapse
|