1
|
Ghini V, Tristán AI, Di Paco G, Massai L, Mannelli M, Gamberi T, Fernández I, Rosato A, Turano P, Messori L. Novel NMR-Based Approach to Reveal the 'Metabolic Fingerprint' of Cytotoxic Gold Drugs in Cancer Cells. J Proteome Res 2025; 24:813-823. [PMID: 39757834 DOI: 10.1021/acs.jproteome.4c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
A combination of pathway enrichment and metabolite clustering analysis is used to interpret untargeted 1H NMR metabolomics data, enabling a biochemically informative comparison of the effects induced by a panel of known cytotoxic gold(I) and gold(III) compounds in A2780 ovarian cancer cells. The identification of the most dysregulated pathways for the major classes of compounds highlights specific chemical features that lead to common biological effects. The proposed approach may have broader applicability to the screening of metal-based drug candidate libraries, which is always complicated by their multitarget nature, and support the comprehensive interpretation of their metabolic actions.
Collapse
Affiliation(s)
- Veronica Ghini
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| | - Ana Isabel Tristán
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, Almeria 04120, Spain
| | - Giorgio Di Paco
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| | - Michele Mannelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence 50134, Italy
| | - Tania Gamberi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence 50134, Italy
| | - Ignacio Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, Almeria 04120, Spain
| | - Antonio Rosato
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
- Magnetic Resonance Center (CERM), University of Florece, Sesto Fiorentino 50019, Italy
| | - Paola Turano
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
- Magnetic Resonance Center (CERM), University of Florece, Sesto Fiorentino 50019, Italy
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| |
Collapse
|
2
|
Pellegrino M, Checconi P, Ceramella J, Prezioso C, Limongi D, Marra M, Mariconda A, Catalano A, De Angelis M, Nencioni L, Sinicropi MS, Longo P, Aquaro S. Antibacterial and Anti-Influenza Activities of N-Heterocyclic Carbene-Gold Complexes. Pharmaceuticals (Basel) 2024; 17:1680. [PMID: 39770522 PMCID: PMC11677531 DOI: 10.3390/ph17121680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Infectious diseases represent a serious threat due to rising antimicrobial resistance, particularly among multidrug-resistant bacteria and influenza viruses. Metal-based complexes, such as N-heterocyclic carbene-gold (NHC-gold) complexes, show promising therapeutic potential due to their ability to inhibit various pathogens. METHODS Eight NHC-gold complexes were synthesized and tested for antibacterial activity against Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, and for anti-influenza activity in lung and bronchial epithelial cells infected with influenza virus A/H1N1. Antibacterial activity was assessed through the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC), while the viral load was quantified using qRT-PCR. RESULTS Complexes 3, 4, and 6 showed significant antibacterial activity at concentrations of 10-20 µg/mL. Additionally, these complexes significantly reduced viral load, with complexes 3 and 4 markedly inhibiting replication. CONCLUSIONS These findings support the potential use of NHC-gold complexes in combined antimicrobial and antiviral therapies, representing an attractive option for fighting resistant infections.
Collapse
Affiliation(s)
- Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy; (M.P.); (M.M.); (M.S.S.)
| | - Paola Checconi
- Department for the Promotion of Human Sciences and Quality of Life, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy; (C.P.); (D.L.)
- Laboratory of Microbiology, IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy; (M.P.); (M.M.); (M.S.S.)
| | - Carla Prezioso
- Department for the Promotion of Human Sciences and Quality of Life, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy; (C.P.); (D.L.)
- Laboratory of Microbiology, IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Dolores Limongi
- Department for the Promotion of Human Sciences and Quality of Life, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy; (C.P.); (D.L.)
- Laboratory of Microbiology, IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy; (M.P.); (M.M.); (M.S.S.)
| | - Annaluisa Mariconda
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy;
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (L.N.)
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (L.N.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy; (M.P.); (M.M.); (M.S.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | - Stefano Aquaro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Piazzale Salvatore Tommasi 1, Blocco 11, Coppito, 67010 L’Aquila, Italy;
| |
Collapse
|
3
|
Geri A, Massai L, Novinec M, Turel I, Messori L. Reactions of Medicinal Gold Compounds with Cathepsin B Explored through Electrospray Mass Spectrometry Measurements. Chempluschem 2024; 89:e202300321. [PMID: 37930642 DOI: 10.1002/cplu.202300321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Medicinal gold compounds, a novel class of potential anticancer drugs, are believed to produce their pharmacological effects mainly through direct gold binding to protein targets at the level of solvent exposed cysteine (or selenocysteine) residues. We have explored therein the reactions of a panel of seven representative gold compounds with the cysteine protease cathepsin B according to an established ESI MS approach. Detailed information on the mode of protein binding of these gold compounds is gained; notably, quite distinct patterns of cathepsin B metalation have emerged from these studies. It is shown that panel gold compounds interact preferentially, often exclusively, with the free cysteine located in the active site of the enzyme.
Collapse
Affiliation(s)
- Andrea Geri
- Department of Chemistry "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Marko Novinec
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Knoke LR, Leichert LI. Global approaches for protein thiol redox state detection. Curr Opin Chem Biol 2023; 77:102390. [PMID: 37797572 DOI: 10.1016/j.cbpa.2023.102390] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
Due to its nucleophilicity, the thiol group of cysteine is chemically very versatile. Hence, cysteine often has important functions in a protein, be it as the active site or, in extracellular proteins, as part of a structural disulfide. Within the cytosol, cysteines are typically reduced. But the nucleophilicity of its thiol group makes it also particularly prone to post-translational oxidative modifications. These modifications often lead to an alteration of the function of the affected protein and are reversible in vivo, e.g. by the thioredoxin and glutaredoxin system. The in vivo-reversible nature of these modifications and their genesis in the presence of localized high oxidant levels led to the paradigm of thiol-based redox regulation, the adaptation, and modulation of the cellular metabolism in response to oxidative stimuli by thiol oxidation in regulative proteins. Consequently, the proteomic study of these oxidative posttranslational modifications of cysteine plays an indispensable role in redox biology.
Collapse
Affiliation(s)
- Lisa R Knoke
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Universitätsstrasse 150, 44780 Bochum, Germany.
| |
Collapse
|
5
|
Ghini V, Mannelli M, Massai L, Geri A, Zineddu S, Gamberi T, Messori L, Turano P. The effects of two cytotoxic gold(i) carbene compounds on the metabolism of A2780 ovarian cancer cells: mechanistic inferences through NMR analysis. RSC Adv 2023; 13:21629-21632. [PMID: 37476042 PMCID: PMC10354608 DOI: 10.1039/d3ra04032a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023] Open
Abstract
NMR metabolomics is a powerful tool to characterise the changes in cancer cell metabolism elicited by anticancer drugs. Here, the large metabolic alterations produced by two cytotoxic gold carbene compounds in A2780 ovarian cancer cells are described and discussed in comparison to auranofin, in the frame of the available mechanistic knowledge.
Collapse
Affiliation(s)
- Veronica Ghini
- Department of Chemistry "Ugo Schiff", University of Florence Sesto Fiorentino 50019 Italy
- Magnetic Resonance Center (CERM), University of Florence Sesto Fiorentino 50019 Italy
| | - Michele Mannelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence Florence 50134 Italy
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence Sesto Fiorentino 50019 Italy
| | - Andrea Geri
- Department of Chemistry "Ugo Schiff", University of Florence Sesto Fiorentino 50019 Italy
| | - Stefano Zineddu
- Department of Chemistry "Ugo Schiff", University of Florence Sesto Fiorentino 50019 Italy
- Magnetic Resonance Center (CERM), University of Florence Sesto Fiorentino 50019 Italy
| | - Tania Gamberi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence Florence 50134 Italy
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence Sesto Fiorentino 50019 Italy
| | - Paola Turano
- Department of Chemistry "Ugo Schiff", University of Florence Sesto Fiorentino 50019 Italy
- Magnetic Resonance Center (CERM), University of Florence Sesto Fiorentino 50019 Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP) Sesto Fiorentino 50019 Italy
| |
Collapse
|
6
|
Geri A, Massai L, Messori L. Protein Metalation by Medicinal Gold Compounds: Identification of the Main Features of the Metalation Process through ESI MS Experiments. Molecules 2023; 28:5196. [PMID: 37446857 DOI: 10.3390/molecules28135196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Gold compounds form a new class of promising anticancer agents with innovative modes of action. It is generally believed that anticancer gold compounds, at variance with clinically established platinum drugs, preferentially target proteins rather than nucleic acids. The reactions of several gold compounds with a few model proteins have been systematically explored in recent years through ESI MS measurements to reveal adduct formation and identify the main features of those reactions. Here, we focus our attention on a group of five gold compounds of remarkable medicinal interest, i.e., Auranofin, Au(NHC)Cl, [Au(NHC)2]PF6, Aubipyc, and Auoxo6, and on their reactions with four different biomolecular targets, i.e., the proteins HEWL, hCA I, HSA and the C-terminal dodecapeptide of the enzyme thioredoxin reductase. Complete ESI MS data are available for those reactions due to previous experimental work conducted in our laboratory. From the comparative analysis of the ESI MS reaction profiles, some characteristic trends in the metallodrug-protein reactivity may be identified as detailed below. The main features are described and analyzed in this review. Overall, all these observations are broadly consistent with the concept that cytotoxic gold drugs preferentially target cancer cell proteins, with a remarkable selectivity for the cysteine and selenocysteine proteome. These interactions typically result in severe damage to cancer cell metabolism and profound alterations in the redox state, leading to eventual cancer cell death.
Collapse
Affiliation(s)
- Andrea Geri
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Florence, Italy
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Florence, Italy
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Florence, Italy
| |
Collapse
|
7
|
Catalano A, Mariconda A, Sinicropi MS, Ceramella J, Iacopetta D, Saturnino C, Longo P. Biological Activities of Ruthenium NHC Complexes: An Update. Antibiotics (Basel) 2023; 12:365. [PMID: 36830276 PMCID: PMC9952499 DOI: 10.3390/antibiotics12020365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Ruthenium N-heterocyclic carbene (NHC) complexes have unique physico-chemical properties as catalysts and a huge potential in medicinal chemistry and pharmacology, exhibiting a variety of notable biological activities. In this review, the most recent studies on ruthenium NHC complexes are summarized, focusing specifically on antimicrobial and antiproliferative activities. Ruthenium NHC complexes are generally active against Gram-positive bacteria, such as Bacillus subtilis, Staphylococcus aureus, Micrococcus luteus, Listeria monocytogenes and are seldom active against Gram-negative bacteria, including Salmonella typhimurium, Pseudomonas aeruginosa and Escherichia coli and fungal strains of Candida albicans. The antiproliferative activity was tested against cancer cell lines of human colon, breast, cervix, epidermis, liver and rat glioblastoma cell lines. Ruthenium NHC complexes generally demonstrated cytotoxicity higher than standard anticancer drugs. Further studies are needed to explore the mechanism of action of these interesting compounds.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | | | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
8
|
Massai L, Grifagni D, De Santis A, Geri A, Cantini F, Calderone V, Banci L, Messori L. Gold-Based Metal Drugs as Inhibitors of Coronavirus Proteins: The Inhibition of SARS-CoV-2 Main Protease by Auranofin and Its Analogs. Biomolecules 2022; 12:1675. [PMID: 36421689 PMCID: PMC9687241 DOI: 10.3390/biom12111675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 08/08/2023] Open
Abstract
Gold compounds have a long tradition in medicine and offer many opportunities for new therapeutic applications. Herein, we evaluated the lead compound Auranofin and five related gold(I) complexes as possible inhibitors of SARS-CoV-2 Main Protease (SARS-CoV-2 Mpro), a validated drug target for the COVID-19 disease. The investigational panel of gold compounds included Auranofin; three halido analogues, i.e., Au(PEt3)Cl, Au(PEt3)Br, and Au(PEt3)I; and two gold carbene complexes, i.e., Au(NHC)Cl and [Au(NHC)2]PF6. Notably, all these gold compounds, with the only exception of [Au(NHC)2]PF6, turned out to be potent inhibitors of the catalytic activity of SARS-CoV-2 Mpro: the measured Ki values were in the range 2.1-0.4 μM. The reactions of the various gold compounds with SARS-CoV-2 Mpro were subsequently investigated through electrospray ionization (ESI) mass spectrometry (MS) upon a careful optimization of the experimental conditions; the ESI MS spectra provided clear evidence for the formation of tight metallodrug-protein adducts and for the coordination of well defined gold-containing fragments to the SARS-CoV-2 Mpro, again with the only exception of [Au(NHC)2]PF6, The metal-protein stoichiometry was unambiguously determined for the resulting species. The crystal structures of the metallodrug- Mpro adducts were solved in the case of Au(PEt3)Br and Au(NHC)Cl. These crystal structures show that gold coordination occurs at the level of catalytic Cys 145 in the case of Au(NHC)Cl and at the level of both Cys 145 and Cys 156 for Au(PEt3)Br. Tight coordination of gold atoms to functionally relevant cysteine residues is believed to represent the true molecular basis of strong enzyme inhibition.
Collapse
Affiliation(s)
- Lara Massai
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3, 50019 Florence, Italy
| | - Deborah Grifagni
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3, 50019 Florence, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Alessia De Santis
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3, 50019 Florence, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Andrea Geri
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3, 50019 Florence, Italy
| | - Francesca Cantini
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3, 50019 Florence, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), University of Florence, Via L. Sacconi 6, 50019 Florence, Italy
| | - Vito Calderone
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3, 50019 Florence, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), University of Florence, Via L. Sacconi 6, 50019 Florence, Italy
| | - Lucia Banci
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3, 50019 Florence, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), University of Florence, Via L. Sacconi 6, 50019 Florence, Italy
| | - Luigi Messori
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3, 50019 Florence, Italy
| |
Collapse
|
9
|
Silencing of lncRNA SNHG17 inhibits the tumorigenesis of epithelial ovarian cancer through regulation of miR-485-5p/AKT1 axis. Biochem Biophys Res Commun 2022; 637:117-126. [DOI: 10.1016/j.bbrc.2022.10.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/12/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022]
|