1
|
Ke S, Kil H, Roggy C, Shields T, Quinn Z, Quinn AP, Small JM, Towne FD, Brooks AE, Brooks BD. Potential Therapeutic Targets for Combination Antibody Therapy Against Staphylococcus aureus Infections. Antibiotics (Basel) 2024; 13:1046. [PMID: 39596740 PMCID: PMC11591076 DOI: 10.3390/antibiotics13111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Despite the significant advances in antibiotic treatments and therapeutics, Staphylococcus aureus (S. aureus) remains a formidable pathogen, primarily due to its rapid acquisition of antibiotic resistance. Known for its array of virulence factors, including surface proteins that promote adhesion to host tissues, enzymes that break down host barriers, and toxins that contribute to immune evasion and tissue destruction, S. aureus poses a serious health threat. Both the Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO) classify S. aureus as an ESKAPE pathogen, recognizing it as a critical threat to global health. The increasing prevalence of drug-resistant S. aureus underscores the need for new therapeutic strategies. This review discusses a promising approach that combines monoclonal antibodies targeting multiple S. aureus epitopes, offering synergistic efficacy in treating infections. Such strategies aim to reduce the capacity of the pathogen to develop resistance, presenting a potent adjunct or alternative to conventional antibiotic treatments.
Collapse
Affiliation(s)
- Sharon Ke
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA
| | - Hyein Kil
- Department of Surgery, Virtua Health, Camden, NJ 08103, USA
| | - Conner Roggy
- Department of Orthopaedic Surgery, Community Memorial Healthcare, Ventura, CA 93003, USA
| | - Ty Shields
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA
| | - Zachary Quinn
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA
| | - Alyssa P. Quinn
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA
| | - James M. Small
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA
| | - Francina D. Towne
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA
| | - Amanda E. Brooks
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA
| | - Benjamin D. Brooks
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA
| |
Collapse
|
2
|
Bear A, Locke T, Rowland-Jones S, Pecetta S, Bagnoli F, Darton TC. The immune evasion roles of Staphylococcus aureus protein A and impact on vaccine development. Front Cell Infect Microbiol 2023; 13:1242702. [PMID: 37829608 PMCID: PMC10565657 DOI: 10.3389/fcimb.2023.1242702] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
While Staphylococcus aureus (S. aureus) bacteria are part of the human commensal flora, opportunistic invasion following breach of the epithelial layers can lead to a wide array of infection syndromes at both local and distant sites. Despite ubiquitous exposure from early infancy, the life-long risk of opportunistic infection is facilitated by a broad repertoire of S. aureus virulence proteins. These proteins play a key role in inhibiting development of a long-term protective immune response by mechanisms ranging from dysregulation of the complement cascade to the disruption of leukocyte migration. In this review we describe the recent progress made in dissecting S. aureus immune evasion, focusing on the role of the superantigen, staphylococcal protein A (SpA). Evasion of the normal human immune response drives the ability of S. aureus to cause infection, often recurrently, and is also thought to be a major hindrance in the development of effective vaccination strategies. Understanding the role of S. aureus virulence protein and determining methods overcoming or subverting these mechanisms could lead to much-needed breakthroughs in vaccine and monoclonal antibody development.
Collapse
Affiliation(s)
- Alex Bear
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Thomas Locke
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Sarah Rowland-Jones
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | | | | | - Thomas C. Darton
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
3
|
Jorde I, Schreiber J, Stegemann-Koniszewski S. The Role of Staphylococcus aureus and Its Toxins in the Pathogenesis of Allergic Asthma. Int J Mol Sci 2022; 24:ijms24010654. [PMID: 36614093 PMCID: PMC9820472 DOI: 10.3390/ijms24010654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
Bronchial asthma is one of the most common chronic diseases worldwide and affects more than 300 million patients. Allergic asthma affects the majority of asthmatic children as well as approximately 50% of adult asthmatics. It is characterized by a Th2-mediated immune response against aeroallergens. Many aspects of the overall pathophysiology are known, while the underlying mechanisms and predisposing factors remain largely elusive today. Over the last decade, respiratory colonization with Staphylococcus aureus (S. aureus), a Gram-positive facultative bacterial pathogen, came into focus as a risk factor for the development of atopic respiratory diseases. More than 30% of the world’s population is constantly colonized with S. aureus in their nasopharynx. This colonization is mostly asymptomatic, but in immunocompromised patients, it can lead to serious complications including pneumonia, sepsis, or even death. S. aureus is known for its ability to produce a wide range of proteins including toxins, serine-protease-like proteins, and protein A. In this review, we provide an overview of the current knowledge about the pathophysiology of allergic asthma and to what extent it can be affected by different toxins produced by S. aureus. Intensifying this knowledge might lead to new preventive strategies for atopic respiratory diseases.
Collapse
|
4
|
Frensch M, Jäger C, Müller PF, Tadić A, Wilhelm I, Wehrum S, Diedrich B, Fischer B, Meléndez AV, Dengjel J, Eibel H, Römer W. Bacterial lectin BambL acts as a B cell superantigen. Cell Mol Life Sci 2021; 78:8165-8186. [PMID: 34731252 PMCID: PMC8629787 DOI: 10.1007/s00018-021-04009-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 10/03/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
B cell superantigens crosslink conserved domains of B cell receptors (BCRs) and cause dysregulated, polyclonal B cell activation irrespective of normal BCR-antigen complementarity. The cells typically succumb to activation-induced cell death, which can impede the adaptive immune response and favor infection. In the present study, we demonstrate that the fucose-binding lectin of Burkholderia ambifaria, BambL, bears functional resemblance to B cell superantigens. By engaging surface glycans, the bacterial lectin activated human peripheral blood B cells, which manifested in the surface expression of CD69, CD54 and CD86 but became increasingly cytotoxic at higher concentrations. The effects were sensitive to BCR pathway inhibitors and excess fucose, which corroborates a glycan-driven mode of action. Interactome analyses in a model cell line suggest BambL binds directly to glycans of the BCR and regulatory coreceptors. In vitro, BambL triggered BCR signaling and induced CD19 internalization and degradation. Owing to the lectin's six binding sites, we propose a BCR activation model in which BambL functions as a clustering hub for receptor glycans, modulates normal BCR regulation, and induces cell death through exhaustive activation.
Collapse
Affiliation(s)
- Marco Frensch
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Christina Jäger
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Peter F Müller
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Annamaria Tadić
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Isabel Wilhelm
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Sarah Wehrum
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Britta Diedrich
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Dermatology, University Medical Center and University of Freiburg, Freiburg, Germany
| | - Beate Fischer
- Center for Chronic Immunodeficiency, CCI and University Medical Center Freiburg, Freiburg, Germany
| | - Ana Valeria Meléndez
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Joern Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Dermatology, University Medical Center and University of Freiburg, Freiburg, Germany
| | - Hermann Eibel
- Center for Chronic Immunodeficiency, CCI and University Medical Center Freiburg, Freiburg, Germany.
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Dey J, Mahapatra SR, Singh P, Patro S, Kushwaha GS, Misra N, Suar M. B and T cell epitope-based peptides predicted from clumping factor protein of Staphylococcus aureus as vaccine targets. Microb Pathog 2021; 160:105171. [PMID: 34481860 DOI: 10.1016/j.micpath.2021.105171] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus infection is emerging as a global threat because of the highly debilitating nature of the associated disease's unprecedented magnitude of its spread and growing global resistance to antimicrobial medicines. Recently WHO has categorized these bacteria under the high global priority pathogen list and is one of the six nosocomial pathogens termed as ESKAPE pathogens which have emerged as a serious threat to public health worldwide. The development of a specific vaccine can stimulate an optimal antibody response, thus providing immunity against it. Therefore, in the present study efforts have been made to identify potential vaccine candidates from the Clumping factor surface proteins (ClfA and ClfB) of S. aureus. Employing the immunoinformatics approach, fourteen antigenic peptides including T-cell, B-cell epitopes were identified which were non-toxic, non-allergenic, high antigenicity, strong binding efficiency with commonly occurring MHC alleles. Consequently, a multi-epitope vaccine chimera was designed by connecting these epitopes with suitable linkers an adjuvant to enhance immunogenicity. Further, homology modeling and molecular docking were performed to construct the three-dimensional structure of the vaccine and study the interaction between the modeled structure and immune receptor (TLR-2) present on lymphocyte cells. Consequently, molecular dynamics simulation for 100 ns period confirmed the stability of the interaction and reliability of the structure for further analysis. Finally, codon optimization and in silico cloning were employed to ensure the successful expression of the vaccine candidate. As the targeted protein is highly antigenic and conserved, hence the designed novel vaccine construct holds potential against emerging multi-drug-resistant organisms.
Collapse
Affiliation(s)
- Jyotirmayee Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India
| | - Pratima Singh
- Kalinga Institute of Medical Sciences, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Swadheena Patro
- Kalinga Institute of Dental Sciences, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Gajraj Singh Kushwaha
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India; Transcription Regulation group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India; KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India; KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| |
Collapse
|
6
|
Cristinziano L, Poto R, Criscuolo G, Ferrara AL, Galdiero MR, Modestino L, Loffredo S, de Paulis A, Marone G, Spadaro G, Varricchi G. IL-33 and Superantigenic Activation of Human Lung Mast Cells Induce the Release of Angiogenic and Lymphangiogenic Factors. Cells 2021; 10:cells10010145. [PMID: 33445787 PMCID: PMC7828291 DOI: 10.3390/cells10010145] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
Human lung mast cells (HLMCs) express the high-affinity receptor FcεRI for IgE and are strategically located in different compartments of human lung, where they play a role in several inflammatory disorders and cancer. Immunoglobulin superantigens (e.g., protein A of Staphylococcus aureus and protein L of Peptostreptococcus magnus) bind to the variable regions of either the heavy (VH3) or light chain (κ) of IgE. IL-33 is a cytokine expressed by epithelial cells that exerts pleiotropic functions in the lung. The present study investigated whether immunoglobulin superantigens protein A and protein L and IL-33 caused the release of inflammatory (histamine), angiogenic (VEGF-A) and lymphangiogenic (VEGF-C) factors from HLMCs. The results show that protein A and protein L induced the rapid (30 min) release of preformed histamine from HLMCs. By contrast, IL-33 did not induce the release of histamine from lung mast cells. Prolonged incubation (12 h) of HLMCs with superantigens and IL-33 induced the release of VEGF-A and VEGF-C. Preincubation with IL-33 potentiated the superantigenic release of histamine, angiogenic and lymphangiogenic factors from HLMCs. Our results suggest that IL-33 might enhance the inflammatory, angiogenic and lymphangiogenic activities of lung mast cells in pulmonary disorders.
Collapse
Affiliation(s)
- Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
7
|
Bachert C, Humbert M, Hanania NA, Zhang N, Holgate S, Buhl R, Bröker BM. Staphylococcus aureus and its IgE-inducing enterotoxins in asthma: current knowledge. Eur Respir J 2020; 55:13993003.01592-2019. [PMID: 31980492 DOI: 10.1183/13993003.01592-2019] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/31/2019] [Indexed: 02/06/2023]
Abstract
While immunoglobulin (Ig) E is a prominent biomarker for early-onset, its levels are often elevated in non-allergic late-onset asthma. However, the pattern of IgE expression in the latter is mostly polyclonal, with specific IgEs low or below detection level albeit with an increased total IgE. In late-onset severe asthma patients, specific IgE to Staphylococcal enterotoxins (se-IgE) can frequently be detected in serum, and has been associated with asthma, with severe asthma defined by hospitalisations, oral steroid use and decrease in lung function. Recently, se-IgE was demonstrated to even predict the development into severe asthma with exacerbations over the next decade. Staphylococcus aureus manipulates the airway mucosal immunology at various levels via its proteins, including superantigens, serine-protease-like proteins (Spls), or protein A (SpA) and possibly others. Release of IL-33 from respiratory epithelium and activation of innate lymphoid cells (ILCs) via its receptor ST2, type 2 cytokine release from those ILCs and T helper (Th) 2 cells, mast cell degranulation, massive local B-cell activation and IgE formation, and finally eosinophil attraction with consequent release of extracellular traps, adding to the epithelial damage and contributing to disease persistence via formation of Charcot-Leyden crystals are the most prominent hallmarks of the manipulation of the mucosal immunity by S. aureus In summary, S. aureus claims a prominent role in the orchestration of severe airway inflammation and in current and future disease severity. In this review, we discuss current knowledge in this field and outline the needs for future research to fully understand the impact of S. aureus and its proteins on asthma.
Collapse
Affiliation(s)
- Claus Bachert
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium .,Division of ENT diseases, CLINTEC, Karolinska Institute, University of Stockholm, Stockholm, Sweden
| | - Marc Humbert
- Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Nan Zhang
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| | - Stephen Holgate
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, The Sir Henry Wellcome Research Laboratories, Southampton General Hospital, Southampton, UK
| | - Roland Buhl
- Pulmonary Dept, Mainz University Hospital, Mainz, Germany
| | - Barbara M Bröker
- Dept of Immunology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
Varricchi G, Loffredo S, Borriello F, Pecoraro A, Rivellese F, Genovese A, Spadaro G, Marone G. Superantigenic Activation of Human Cardiac Mast Cells. Int J Mol Sci 2019; 20:ijms20081828. [PMID: 31013832 PMCID: PMC6514993 DOI: 10.3390/ijms20081828] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
B cell superantigens, also called immunoglobulin superantigens, bind to the variable regions of either the heavy or light chain of immunoglobulins mirroring the lymphocyte-activating properties of classical T cell superantigens. Protein A of Staphylococcus aureus, protein L of Peptostreptococcus magnus, and gp120 of HIV are typical immunoglobulin superantigens. Mast cells are immune cells expressing the high-affinity receptor for IgE (FcεRI) and are strategically located in the human heart, where they play a role in several cardiometabolic diseases. Here, we investigated whether immunoglobulin superantigens induced the activation of human heart mast cells (HHMCs). Protein A induced the de novo synthesis of cysteinyl leukotriene C4 (LTC4) from HHMCs through the interaction with IgE VH3+ bound to FcεRI. Protein L stimulated the production of prostaglandin D2 (PGD2) from HHMCs through the interaction with κ light chains of IgE. HIV glycoprotein gp120 induced the release of preformed (histamine) and de novo synthesized mediators, such as cysteinyl leukotriene C4 (LTC4), angiogenic (VEGF-A), and lymphangiogenic (VEGF-C) factors by interacting with the VH3 region of IgE. Collectively, our data indicate that bacterial and viral immunoglobulin superantigens can interact with different regions of IgE bound to FcεRI to induce the release of proinflammatory, angiogenic, and lymphangiogenic factors from human cardiac mast cells.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), 80100 Naples, Italy.
- World Allergy Organization (WAO) Center of Excellence, 80100 Naples, Italy.
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), 80100 Naples, Italy.
- World Allergy Organization (WAO) Center of Excellence, 80100 Naples, Italy.
| | - Francesco Borriello
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), 80100 Naples, Italy.
- World Allergy Organization (WAO) Center of Excellence, 80100 Naples, Italy.
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, 02115 MA, USA.
| | - Antonio Pecoraro
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy.
| | - Felice Rivellese
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 4NS London, UK.
| | - Arturo Genovese
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), 80100 Naples, Italy.
- World Allergy Organization (WAO) Center of Excellence, 80100 Naples, Italy.
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), 80100 Naples, Italy.
- World Allergy Organization (WAO) Center of Excellence, 80100 Naples, Italy.
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), 80100 Naples, Italy.
- World Allergy Organization (WAO) Center of Excellence, 80100 Naples, Italy.
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council (CNR), 80100 Naples, Italy.
| |
Collapse
|
9
|
Gunter SM, Versteeg L, Jones KM, Keegan BP, Strych U, Bottazzi ME, Hotez PJ, Brown EL. Covalent vaccination with Trypanosoma cruzi Tc24 induces catalytic antibody production. Parasite Immunol 2018; 40:e12585. [PMID: 30132929 DOI: 10.1111/pim.12585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 11/28/2022]
Abstract
Trypanosoma cruzi 24 (Tc24) is a recently described B-cell superantigen (BC-SAg) expressed by all developmental stages of T. cruzi, the causative agent of Chagas disease. BC-SAgs are immunoevasins that interfere with the catalytic response available to a subset of natural antibodies comprising the preimmune (innate) repertoire. Electrophilic modifications of BC-SAgs facilitate the formation of highly energetic covalent reactions favouring B-cell differentiation instead of B-cell downregulation. Therefore, the aim of this study was to convert the inhibitory signals delivered to B-cells with specificity for Tc24 into activating signals after conjugating electrophilic phosphonate groups to recombinant Tc24 (eTc24). Covalent immunization with eTc24 increased the binding affinity between eTc24 and naturally nucleophilic immunoglobulins with specificity for this BC-SAg. Flow cytometric analyses demonstrated that eTc24 but not Tc24 or other electrophilically modified control proteins bound Tc24-specific IgM+ B-cells covalently. In addition, immunization of mice with eTc24 adjuvanted with ISA720 induced the production of catalytic responses specific for Tc24 compared to the abrogation of this response in mice immunized with Tc24/ISA720. eTc24-immunized mice also produced IgMs that bound recombinant Tc24 compared to the binding observed for IgMs purified from non eTc24-immunized controls. These data suggest that eTc24 immunization overrides the immunosuppressive properties of this BC-SAg.
Collapse
Affiliation(s)
- Sarah M Gunter
- Texas Children's Hospital Center for Vaccine Development, Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas
| | - Leroy Versteeg
- Texas Children's Hospital Center for Vaccine Development, Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas
| | - Kathryn M Jones
- Texas Children's Hospital Center for Vaccine Development, Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas
| | - Brian P Keegan
- Texas Children's Hospital Center for Vaccine Development, Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas
| | - Ulrich Strych
- Texas Children's Hospital Center for Vaccine Development, Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas.,Department of Biology, Baylor University, Waco, Texas
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas
| | - Eric L Brown
- Center for Infectious Disease, The University of Texas School of Public Health, Houston, Texas
| |
Collapse
|
10
|
Balachandran M, Giannone RJ, Bemis DA, Kania SA. Molecular basis of surface anchored protein A deficiency in the Staphylococcus aureus strain Wood 46. PLoS One 2017; 12:e0183913. [PMID: 28859130 PMCID: PMC5578664 DOI: 10.1371/journal.pone.0183913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/14/2017] [Indexed: 11/18/2022] Open
Abstract
Protein A in Staphylococcus aureus is encoded by the spa (staphylococcal protein A) gene and binds to immunoglobulin (Ig). The S. aureus strain Wood 46 has been variously reported as protein A-deficient and/or spa negative and used as a control in animal models of staphylococcal infections. The results of this study indicate that Wood 46 has normal spa expression but transcribes very low levels of the srtA gene which encodes the sortase A (SrtA) enzyme. This is consistent with unique mutations in the srtA promoter. In this study, a low level of sortase A explains deficient anchoring of proteins with an LPXTG motif, such as protein A, fibrinogen-binding protein and fibronectin-binding proteins A and B on to the peptidoglycan cell wall. The activity of secreted protein A is an important consideration for use of Wood 46 in functional experiments and animal models.
Collapse
Affiliation(s)
- Manasi Balachandran
- Department of Biomedical and Diagnostic Sciences, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Richard J. Giannone
- Chemical Sciences Division, Mass Spectrometry and Laser Spectrometry, Oakridge National Laboratories, Oakridge, Tennessee, United States of America
| | - David A. Bemis
- Department of Biomedical and Diagnostic Sciences, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Stephen A. Kania
- Department of Biomedical and Diagnostic Sciences, The University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
11
|
Koefoed-Nielsen P, Bistrup C, Christiansen M. Protein a Immunoadsorption May Hamper the Decision to Transplant Due to Interference With CDC Crossmatch Results. J Clin Apher 2016; 32:163-169. [PMID: 27258774 DOI: 10.1002/jca.21476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/16/2016] [Indexed: 11/10/2022]
Abstract
Transplanting immunized patients requires immunological monitoring in the pretransplant phase to follow reduction of donor specific HLA antibodies (DSA) after Staphylococcus aureus protein A (SPA) immunoadsorption (IA) or therapeutic plasma exchange followed by IVIG and Rituximab administration. Pretreatment aims to significantly reduce DSA strength. The Tissue Typing Lab at Aarhus University Hospital performs immunological monitoring of approximately 150 kidney transplantation patients per year from two transplant centers. From 2012 to 2013, we experienced seven patients desensitized using SPA IA, initially presenting negative cytotoxic complement dependent (CDC) T-cell crossmatches but positive B and T cell flowcytometric crossmatch, who despite significant DSA reduction developed weakly positive CDC T-cell crossmatch shortly prior to transplantation. We hypothesised that leached SPA during IA could be the cause, as the complication was not observed in patients who received plasma exchanges. We found that the positive CDC was not donor specific and SPA column material incubated with control serum reproduced a positive CDC T-cell crossmatch. Finally, we detected leached SPA in one of the patient samples using a highly sensitive time-resolved fluorescent assay. In conclusion, the results emphasize the importance of carefully considering CDC crossmatch results subsequent to IA, before a planned transplantation is either postponed or cancelled. J. Clin. Apheresis 32:163-169, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Claus Bistrup
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Mette Christiansen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
12
|
Gunter SM, Jones KM, Zhan B, Essigmann HT, Murray KO, Garcia MN, Gorchakov R, Bottazzi ME, Hotez PJ, Brown EL. Identification and Characterization of the Trypanosoma cruzi B-cell Superantigen Tc24. Am J Trop Med Hyg 2015; 94:114-121. [PMID: 26598565 PMCID: PMC4710414 DOI: 10.4269/ajtmh.15-0438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022] Open
Abstract
Trypanosoma cruzi causes life-long disease after infection and leads to cardiac disease in 30% of infected individuals. After infection, the parasites are readily detectable in the blood during the first few days before disseminating to infect numerous cell types. Preliminary data suggested that the Tc24 protein that localizes to the T. cruzi membrane during all life stages possesses B-cell superantigenic properties. These antigens facilitate immune escape by interfering with antibody-mediated responses, particularly the avoidance of catalytic antibodies. These antibodies are an innate host defense mechanism present in the naive repertoire, and catalytic antibody–antigen binding results in hydrolysis of the target. We tested the B-cell superantigenic properties of Tc24 by comparing the degree of Tc24 hydrolysis by IgM purified from either Tc24 unexposed or exposed mice and humans. Respective samples were subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis, silver stained, and the degree of hydrolysis was measured. Data presented in this report suggest that the T. cruzi Tc24 is a B-cell superantigen based on the observations that 1) Tc24 was hydrolyzed by IgM present in serum of unexposed mice and humans and 2) exposure to Tc24 eliminated catalytic activity as early as 4 days after T. cruzi infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Eric L. Brown
- *Address correspondence to Eric L. Brown, Center for Infectious Diseases, University of Texas School of Public Health, 1200 Pressler St. Houston, TX 77030. E-mail:
| |
Collapse
|
13
|
Evasion and interactions of the humoral innate immune response in pathogen invasion, autoimmune disease, and cancer. Clin Immunol 2015; 160:244-54. [PMID: 26145788 DOI: 10.1016/j.clim.2015.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/22/2015] [Accepted: 06/26/2015] [Indexed: 02/07/2023]
Abstract
The humoral innate immune system is composed of three major branches, complement, coagulation, and natural antibodies. To persist in the host, pathogens, such as bacteria, viruses, and cancers must evade parts of the innate humoral immune system. Disruptions in the humoral innate immune system also play a role in the development of autoimmune diseases. This review will examine how Gram positive bacteria, viruses, cancer, and the autoimmune conditions systemic lupus erythematosus and anti-phospholipid syndrome, interact with these immune system components. Through examining evasion techniques it becomes clear that an interplay between these three systems exists. By exploring the interplay and the evasion/disruption of the humoral innate immune system, we can develop a better understanding of pathogenic infections, cancer, and autoimmune disease development.
Collapse
|
14
|
Planque SA, Nishiyama Y, Sonoda S, Lin Y, Taguchi H, Hara M, Kolodziej S, Mitsuda Y, Gonzalez V, Sait HBR, Fukuchi KI, Massey RJ, Friedland RP, O'Nuallain B, Sigurdsson EM, Paul S. Specific amyloid β clearance by a catalytic antibody construct. J Biol Chem 2015; 290:10229-41. [PMID: 25724648 DOI: 10.1074/jbc.m115.641738] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Indexed: 11/06/2022] Open
Abstract
Classical immunization methods do not generate catalytic antibodies (catabodies), but recent findings suggest that the innate antibody repertoire is a rich catabody source. We describe the specificity and amyloid β (Aβ)-clearing effect of a catabody construct engineered from innate immunity principles. The catabody recognized the Aβ C terminus noncovalently and hydrolyzed Aβ rapidly, with no reactivity to the Aβ precursor protein, transthyretin amyloid aggregates, or irrelevant proteins containing the catabody-sensitive Aβ dipeptide unit. The catabody dissolved preformed Aβ aggregates and inhibited Aβ aggregation more potently than an Aβ-binding IgG. Intravenous catabody treatment reduced brain Aβ deposits in a mouse Alzheimer disease model without inducing microgliosis or microhemorrhages. Specific Aβ hydrolysis appears to be an innate immune function that could be applied for therapeutic Aβ removal.
Collapse
Affiliation(s)
- Stephanie A Planque
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Yasuhiro Nishiyama
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Sari Sonoda
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Yan Lin
- the Departments of Neuroscience, Physiology, and Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Hiroaki Taguchi
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Mariko Hara
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Steven Kolodziej
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Yukie Mitsuda
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Veronica Gonzalez
- the Departments of Neuroscience, Physiology, and Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Hameetha B R Sait
- the Departments of Neuroscience, Physiology, and Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Ken-ichiro Fukuchi
- the Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois 61605
| | | | - Robert P Friedland
- the Department of Neurology, University of Louisville School of Medicine, Louisville, Kentucky 40202, and
| | - Brian O'Nuallain
- the Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Einar M Sigurdsson
- the Departments of Neuroscience, Physiology, and Psychiatry, New York University School of Medicine, New York, New York 10016,
| | - Sudhir Paul
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030,
| |
Collapse
|
15
|
Planque SA, Nishiyama Y, Hara M, Sonoda S, Murphy SK, Watanabe K, Mitsuda Y, Brown EL, Massey RJ, Primmer SR, O'Nuallain B, Paul S. Physiological IgM class catalytic antibodies selective for transthyretin amyloid. J Biol Chem 2014; 289:13243-58. [PMID: 24648510 PMCID: PMC4036335 DOI: 10.1074/jbc.m114.557231] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/13/2014] [Indexed: 01/10/2023] Open
Abstract
Peptide bond-hydrolyzing catalytic antibodies (catabodies) could degrade toxic proteins, but acquired immunity principles have not provided evidence for beneficial catabodies. Transthyretin (TTR) forms misfolded β-sheet aggregates responsible for age-associated amyloidosis. We describe nucleophilic catabodies from healthy humans without amyloidosis that degraded misfolded TTR (misTTR) without reactivity to the physiological tetrameric TTR (phyTTR). IgM class B cell receptors specifically recognized the electrophilic analog of misTTR but not phyTTR. IgM but not IgG class antibodies hydrolyzed the particulate and soluble misTTR species. No misTTR-IgM binding was detected. The IgMs accounted for essentially all of the misTTR hydrolytic activity of unfractionated human serum. The IgMs did not degrade non-amyloidogenic, non-superantigenic proteins. Individual monoclonal IgMs (mIgMs) expressed variable misTTR hydrolytic rates and differing oligoreactivity directed to amyloid β peptide and microbial superantigen proteins. A subset of the mIgMs was monoreactive for misTTR. Excess misTTR was dissolved by a hydrolytic mIgM. The studies reveal a novel antibody property, the innate ability of IgMs to selectively degrade and dissolve toxic misTTR species as a first line immune function.
Collapse
Affiliation(s)
- Stephanie A. Planque
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Yasuhiro Nishiyama
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Mariko Hara
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Sari Sonoda
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Sarah K. Murphy
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Kenji Watanabe
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Yukie Mitsuda
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Eric L. Brown
- the Center for Infectious Diseases, University of Texas School of Public Health, Houston, Texas 77030
| | | | - Stanley R. Primmer
- the Supercentenarian Research Foundation, Lauderhill, Florida 33319, and
| | - Brian O'Nuallain
- the Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Sudhir Paul
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| |
Collapse
|
16
|
Vanura K, Rieder F, Kastner MT, Biebl J, Sandhofer M, Le T, Strassl R, Puchhammer-Stöckl E, Perkmann T, Steininger CF, Stamatopoulos K, Graninger W, Jäger U, Steininger C. Chronic lymphocytic leukemia patients have a preserved cytomegalovirus-specific antibody response despite progressive hypogammaglobulinemia. PLoS One 2013; 8:e78925. [PMID: 24194956 PMCID: PMC3806856 DOI: 10.1371/journal.pone.0078925] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/17/2013] [Indexed: 01/14/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by progressive hypogammaglobulinemia predisposing affected patients to a variety of infectious diseases but paradoxically not to cytomegalovirus (CMV) disease. Moreover, we found reactivity of a panel of CLL recombinant antibodies (CLL-rAbs) encoded by a germ-line allele with a single CMV protein, pUL32, despite differing antibody binding motifs. To put these findings into perspective, we studied prospectively relative frequency of viremia, kinetics of total and virus-specific IgG over time, and UL32 genetic variation in a cohort of therapy-naive patients (n=200). CMV-DNA was detected in 3% (6/200) of patients. The decay of total IgG was uniform (mean, 0.03; SD, 0.03) and correlated with that of IgG subclasses 1-4 in the paired samples available (n=64; p<0.001). Total CMV-specific IgG kinetics were more variable (mean, 0,02; SD, 0,06) and mean decay values differed significantly from those of total IgG (p=0.034). Boosts of CMV-specific antibody levels were observed in 49% (22/45) of CMV-seropositive patients. In contrast, VZV- and EBV-specific IgG levels decayed in parallel with total IgG levels (p=0.003 and p=0.001, respectively). VZV-specific IgG even became undetectable in 18% (9/50) of patients whereas CMV-specific ones remained detectable in all seropositive patients. The observed CMV-specific IgG kinetics were predicated upon the highly divergent kinetics of IgG specific for individual antigens - glycoprotein B-specific IgG were boosted in 51% and pUL32-specific IgG in 32% of patients. In conclusion, CLL patients have a preserved CMV-specific antibody response despite progressive decay of total IgG and IgG subclasses. CMV-specific IgG levels are frequently boosted in contrast to that of other herpesviruses indicative of a higher rate of CMV reactivation and antigen-presentation. In contrast to the reactivity of multiple different CLL-rAbs with pUL32, boosts of humoral immunity are triggered apparently by other CMV antigens than pUL32, like glycoprotein B.
Collapse
Affiliation(s)
- Katrina Vanura
- Department of Medicine I, Div. of Hematology and Hemostaseology, Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Franz Rieder
- Department of Medicine I, Div. of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Marie-Theres Kastner
- Department of Medicine I, Div. of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Julia Biebl
- Department of Medicine I, Div. of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Sandhofer
- Department of Medicine I, Div. of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Trang Le
- Department of Medicine I, Div. of Hematology and Hemostaseology, Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Robert Strassl
- Department of Virology, Medical University of Vienna, Vienna, Austria
| | | | - Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph F. Steininger
- Department of Medicine I, Div. of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Kostas Stamatopoulos
- Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | - Wolfgang Graninger
- Department of Medicine I, Div. of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Ulrich Jäger
- Department of Medicine I, Div. of Hematology and Hemostaseology, Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Christoph Steininger
- Department of Medicine I, Div. of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
17
|
|
18
|
Nishiyama Y, Planque S, Hanson CV, Massey RJ, Paul S. CD4 binding determinant mimicry for HIV vaccine design. Front Immunol 2012; 3:383. [PMID: 23251137 PMCID: PMC3523313 DOI: 10.3389/fimmu.2012.00383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/29/2012] [Indexed: 11/24/2022] Open
Abstract
The immunodominant epitopes expressed by the HIV-1 envelope protein gp120 are hypermutable, defeating attempts to develop an effective HIV vaccine. Targeting the structurally conserved gp120 determinant that binds host CD4 receptors (CD4BD) and initiates infection is a more promising route to vaccination, but this has proved difficult because of the conformational flexibility of gp120 and immune evasion mechanisms used by the virus. Mimicking the outer CD4BD conformational epitopes is difficult because of their discontinuous nature. The CD4BD region composed of residues 421–433 (CD4BDcore) is a linear epitope, but this region possesses B cell superantigenic character. While superantigen epitopes are vulnerable to a small subset of spontaneously produced neutralizing antibodies present in humans without infection (innate antibodies), their non-covalent binding to B cell receptors (BCRs) does not stimulate an effective adaptive response from B cells. Covalent binding at naturally occurring nucleophilic sites of the BCRs by an electrophilic gp120 (E-gp120) analog is a promising solution. E-gp120 induces the synthesis of neutralizing antibodies the CD4BDcore. The highly energetic covalent reaction is hypothesized to convert the abortive superantigens–BCR interaction into a stimulatory signal, and the binding of a spatially distinct epitope at the traditional combining site of the BCRs may furnish a second stimulatory signal. Flexible synthetic peptides can detect pre-existing CD4BDcore-specific neutralizing antibodies. However, induced-fit conformational transitions of the peptides dictated by the antibody combining site structure may induce the synthesis of non-neutralizing antibodies. Successful vaccine targeting of the CD4BD will require a sufficiently rigid immunogen that mimics the native epitope conformation and bypasses B cell checkpoints restricting synthesis of the neutralizing antibodies.
Collapse
Affiliation(s)
- Yasuhiro Nishiyama
- Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School Houston, TX, USA
| | | | | | | | | |
Collapse
|
19
|
Planque SA, Mitsuda Y, Nishiyama Y, Karle S, Boivin S, Salas M, Morris MK, Hara M, Liao G, Massey RJ, Hanson CV, Paul S. Antibodies to a superantigenic glycoprotein 120 epitope as the basis for developing an HIV vaccine. THE JOURNAL OF IMMUNOLOGY 2012; 189:5367-81. [PMID: 23089396 DOI: 10.4049/jimmunol.1200981] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Failure to induce synthesis of neutralizing Abs to the CD4 binding determinant (CD4BD) of gp120, a central objective in HIV vaccine research, has been alternately ascribed to insufficient immunogen binding to Abs in their germline V region configuration expressed as BCRs, insufficient adaptive mutations in Ab V regions, and conformational instability of gp120. We employed peptide analogs of gp120 residues 421-433 within the CD4BD (CD4BD(core)) to identify Abs produced without prior exposure to HIV (constitutive Abs). The CD4BD(core) peptide was recognized by single-chain Fv fragments from noninfected humans with lupus that neutralized genetically diverse strains belonging to various HIV subtypes. Replacing the framework region (FR) of a V(H)4-family single-chain Fv with the corresponding V(H)3-family FRs from single-chain Fv JL427 improved the CD4BD(core) peptide-binding activity, suggesting a CD4BD(core) binding site outside the pocket formed by the CDRs. Replacement mutations in the FR site vicinity suggested the potential for adaptive improvement. A very small subset of serum CD4BD(core)-specific serum IgAs from noninfected humans without autoimmune disease isolated by epitope-specific chromatography neutralized the virus potently. A CD4BD(core)-specific, HIV neutralizing murine IgM with H and L chain V regions (V(H) and V(L) regions) free of immunogen-driven somatic mutations was induced by immunization with a CD4BD(core) peptide analog containing an electrophilic group that binds B cells covalently. The studies indicate broad and potent HIV neutralization by constitutive Abs as an innate, germline-encoded activity directed to the superantigenic CD4BD(core) epitope that is available for amplification for vaccination against HIV.
Collapse
Affiliation(s)
- Stephanie A Planque
- Department of Pathology and Laboratory Medicine, Chemical Immunology Research Center, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Immunoglobulin gene repertoire in chronic lymphocytic leukemia: insight into antigen selection and microenvironmental interactions. Mediterr J Hematol Infect Dis 2012; 4:e2012052. [PMID: 22973496 PMCID: PMC3435129 DOI: 10.4084/mjhid.2012.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 07/16/2012] [Indexed: 11/08/2022] Open
Abstract
Immunogenetic analysis of the B cell receptors (BCRs) has been a richly rewarding field for unraveling the pathogenesis of human lymphomas, including CLL. A biased immunoglobulin gene repertoire is seen as evidence for selection of CLL progenitor cells by antigen. Additional corroborative evidence is provided by the differential prognosis of cases with distinct mutational status of the clonotypic BCRs. However, perhaps the strongest immunogenetic evidence for the importance of interactions with microenvironment in driving CLL development and evolution is the existence of subsets of patients with quasi-identical, stereotyped BCRs, collectively accounting for a remarkable one-third of the entire cohort. These observations have been instrumental in shaping the notion that CLL ontogeny is functionally driven and dynamic, rather than a simple stochastic process. From a clinical perspective, ample evidence indicates that immunogenetic information can be used for the biologically and clinically rational categorization of CLL, with important potential implications for basic, translational and clinical research.
Collapse
|
21
|
Abstract
High attack rates and the ability of Staphylococcus aureus to develop resistance to all antibiotics in medical practice heightens the urgency for vaccine development. S. aureus causes many disease syndromes, including invasive disease, pneumonia, and skin and soft tissue infections. It remains unclear whether a single vaccine could protect against all of these. Vaccine composition is also challenging. Active immunization with conjugated types 5 and 8 capsular polysaccharides, an iron scavenging protein, isdB, and passive immunization against clumping factor A and lipoteichoic acid have all proven unsuccessful in clinical trials. Many experts advocate an approach using multiple antigens and have suggested that the right combination of antigens has not yet been identified. Others advocate that a successful vaccine will require antigens that work by multiple immunologic mechanisms. Targeting staphylococcal protein A and stimulating the T-helper 17 lymphocyte pathway have each received recent attention as alternative approaches to vaccination in addition to the more traditional identification of opsonophagocytic antibodies. Many questions remain as to how to successfully formulate a successful vaccine and to whom it should be deployed.
Collapse
Affiliation(s)
- Robert S Daum
- Department of Pediatrics, Section of Infectious Diseases, The University of Chicago Medical Center, Chicago, IL, USA.
| | | |
Collapse
|
22
|
Ghia EM, Widhopf GF, Rassenti LZ, Kipps TJ. Analyses of recombinant stereotypic IGHV3-21-encoded antibodies expressed in chronic lymphocytic leukemia. THE JOURNAL OF IMMUNOLOGY 2011; 186:6338-44. [PMID: 21525382 DOI: 10.4049/jimmunol.0902875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chronic lymphocytic leukemia (CLL) cells that use IgH encoded by IGHV3-21 and that have a particular stereotypic third CDR (HCDR3), DANGMDV (motif-1), almost invariably express Ig L chains (IgL) encoded by IGLV3-21, whereas CLL that use IGHV3-21-encoded IgH with another stereotypic HCDR3, DPSFYSSSWTLFDY (motif-2), invariably express κ-IgL encoded by IGKV3-20. This nonstochastic pairing could reflect steric factors that preclude these IgH from pairing with other IgL or selection for an Ig with a particular Ag-binding activity. We generated rIg with IGHV3-21-encoded IgH with HCDR3 motif-1 or -2 and IgL encoded by IGKV3-20 or IGLV3-21. Each IgH paired equally well with matched or mismatched κ- or λ-IgL to form functional Ig, which we screened for binding to an array of different Ags. Ig with IGLV3-21-encoded λ-IgL could bind with an affinity of ∼ 2 × 10(-6) M to protein L, a cell-wall protein of Peptostreptococcus magnus, independent of the IgH, indicating that protein L is a superantigen for IGLV3-21-encoded λ-IgL. We also detected Ig binding to cofilin, a highly conserved actin-binding protein. However, cofilin binding was independent of native pairing of IgH and IgL and was not specific for Ig with IgH encoded by IGHV3-21. We conclude that steric factors or the binding activity for protein L or cofilin cannot account for the nonstochastic pairing of IgH and IgL observed for the stereotypic Ig made by CLL cells that express IGHV3-21.
Collapse
Affiliation(s)
- Emanuela M Ghia
- Moores University of California San Diego Cancer Center, La Jolla, CA 92093-0820, USA
| | | | | | | |
Collapse
|
23
|
Marginal zone B cells are naturally reactive to collagen type II and are involved in the initiation of the immune response in collagen-induced arthritis. Cell Mol Immunol 2011; 8:296-304. [PMID: 21358667 DOI: 10.1038/cmi.2011.2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Antibodies against type II collagen (CII) are essential for development of collagen-induced arthritis (CIA), but how and where the B-cell response to CII is initiated is not fully known. We show here that naive DBA/1 mice display naturally reactive IgM and IgG anti-CII producing B cells prior to immunization. The CII-reactive B cells were observed in the spleen and recognized as marginal zone (MZ) B cells. After CII immunization, CII-specific B cells expanded rapidly in the spleen, in contrast to the lymph nodes, with the initial response derived from MZ B cells and later by follicular (FO) B cells. This was evident despite that the MZ B cells were subject to stringent tolerance mechanisms by having a greater Fc gamma receptor IIb expression than the FO B cells. Further, the MZ B cells migrated to the FO areas upon immunization, possibly providing antigen and activating FO T cells and subsequently FO B cells. Thus, around CIA onset increased numbers of IgG anti-CII producing FO B cells was seen in the spleen, which was dominated by IgG2a- and IgG2b-positive cells. These data demonstrate that CII-reactive MZ B cells are present before and expand after CII immunization, suggesting an initiating role of MZ B cells in the development of CIA.
Collapse
|
24
|
Abstract
Superantigens (SAgs) are derived from diverse sources, including bacteria, viruses, and human hepatic tissue. SAgs initially cause lymphocyte activation but then result in clonal deletion and anergy, leading to immune tolerance. They can also act as superallergens by stimulating a broad spectrum of mast cells and basophils in patients with allergic conditions. The newly described staphylococcal SAg-like proteins subvert innate immune function by several mechanisms, which are distinct from SAgs' effects on lymphocytes and other acquired immune processes. There is mounting evidence to suggest that SAgs play a role in the pathophysiology of inflammatory airway disease. The pathophysiologic role of SAg-like proteins awaits clarification.
Collapse
Affiliation(s)
- Nicholas W Stow
- Department of Otorhinolaryngology-Head and Neck Surgery, North Shore Hospital, Private Bag 93-503 Takapuna, North Shore City 0740, Auckland, New Zealand.
| | | | | | | |
Collapse
|
25
|
Vaughan AT, Brackenbury LS, Massari P, Davenport V, Gorringe A, Heyderman RS, Williams NA. Neisseria lactamicaSelectively Induces Mitogenic Proliferation of the Naive B Cell Pool via Cell Surface Ig. THE JOURNAL OF IMMUNOLOGY 2010; 185:3652-60. [DOI: 10.4049/jimmunol.0902468] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Verkoczy L, Moody MA, Holl TM, Bouton-Verville H, Scearce RM, Hutchinson J, Alam SM, Kelsoe G, Haynes BF. Functional, non-clonal IgMa-restricted B cell receptor interactions with the HIV-1 envelope gp41 membrane proximal external region. PLoS One 2009; 4:e7215. [PMID: 19806186 PMCID: PMC2751816 DOI: 10.1371/journal.pone.0007215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 08/24/2009] [Indexed: 11/24/2022] Open
Abstract
The membrane proximal external region (MPER) of HIV-1 gp41 has several features that make it an attractive antibody-based vaccine target, but eliciting an effective gp41 MPER-specific protective antibody response remains elusive. One fundamental issue is whether the failure to make gp41 MPER-specific broadly neutralizing antibodies like 2F5 and 4E10 is due to structural constraints with the gp41 MPER, or alternatively, if gp41 MPER epitope-specific B cells are lost to immunological tolerance. An equally important question is how B cells interact with, and respond to, the gp41 MPER epitope, including whether they engage this epitope in a non-canonical manner i.e., by non-paratopic recognition via B cell receptors (BCR). To begin understanding how B cells engage the gp41 MPER, we characterized B cell-gp41 MPER interactions in BALB/c and C57BL/6 mice. Surprisingly, we found that a significant (∼7%) fraction of splenic B cells from BALB/c, but not C57BL/6 mice, bound the gp41 MPER via their BCRs. This strain-specific binding was concentrated in IgMhi subsets, including marginal zone and peritoneal B1 B cells, and correlated with enriched fractions (∼15%) of gp41 MPER-specific IgM secreted by in vitro-activated splenic B cells. Analysis of Igha (BALB/c) and Ighb (C57BL/6) congenic mice demonstrated that gp41 MPER binding was controlled by determinants of the Igha locus. Mapping of MPER gp41 interactions with IgMa identified MPER residues distinct from those to which mAb 2F5 binds and demonstrated the requirement of Fc CH regions. Importantly, gp41 MPER ligation produced detectable BCR-proximal signaling events, suggesting that interactions between gp41 MPER and IgMa determinants may elicit partial B cell activation. These data suggest that low avidity, non-paratopic interactions between the gp41 MPER and membrane Ig on naïve B cells may interfere with or divert bnAb responses.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jiang SH, Wang JF, Xu R, Liu YJ, Wang XN, Cao J, Zhao P, Shen YJ, Yang T, Yang H, Jia JA, Chen QL, Pan W. Alternate arrangement of PpL B3 domain and SpA D domain creates synergistic double-site binding to VH3 and Vkappa regions of fab. DNA Cell Biol 2008; 27:423-431. [PMID: 18694300 DOI: 10.1089/dna.2007.0708] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In our previous study, a kind of novel hybrid immunoglobulin (Ig)-binding proteins (IBPs) was obtained with the characteristic structure of alternately arranged Finegoldia magna (formerly Peptostreptococcus magnus) protein L (P. magnus protein L, PpL) B3 domain (B3) and Staphylococcal protein A (SpA) D domain (D). In this study, two representative molecules of these novel proteins, LD3 (B3-D-B3) and LD5 (B3-D-B3-D-B3) (LD3/5), showed substantially higher affinity for IgG-F(ab')2, IgM, and IgA than 4L (B3-B3-B3-B3) or SpA, which were also demonstrated by surface plasmon resonance detection. Further, LD5 showed much stronger binding to single-chain Fv (scFv) KM38 (V(H)3-V(kappa)I) than to KM41 (V(H)1-V(kappa)III) or KM36 (V(H)3-V(kappa)III). Competitive inhibition studies showed that 4L alone or in combination with SpA (4L + SpA) was a weaker inhibitor than LD3/5 in inhibiting LD3/5's binding to IgG-F(ab')2, IgM, or IgA. The computer modeling suggested that the B3-D arrangement in LD3/5 could simultaneously bind to V(H)3 and V(kappa). Thus, our results indicated for the first time that alternate arrangement of B3 and D domains creates synergistic double-site binding to V(H)3 and V(kappa) regions of fragment of antigen binding. The different competitive inhibition pattern of binding of LD5 to scFv KM38 by 4L + SpA suggested strict use of antibody conformation for this simultaneous double-site binding. The demonstration of this novel binding property would promote to achieve the designed hybrid IBPs for useful immunological applications.
Collapse
Affiliation(s)
- Shaohua H Jiang
- Department of Microbiology, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rich RR. The human immune response. Clin Immunol 2008. [DOI: 10.1016/b978-0-323-04404-2.10001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Butler JE, Lemke CD, Weber P, Sinkora M, Lager KM. Antibody repertoire development in fetal and neonatal piglets: XIX. Undiversified B cells with hydrophobic HCDR3s preferentially proliferate in the porcine reproductive and respiratory syndrome. THE JOURNAL OF IMMUNOLOGY 2007; 178:6320-31. [PMID: 17475861 DOI: 10.4049/jimmunol.178.10.6320] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Porcine respiratory and reproductive syndrome virus (PRRSV) causes an extraordinary increase in the proportion of B cells resulting in lymphoid hyperplasia, hypergammaglobulinemia, and autoimmunity in neonatal piglets. Spectratypic analysis of B cells from neonatal isolator piglets show a non-Gaussian pattern with preferential expansion of clones bearing certain H chain third complementary region (HCDR3) lengths. However, only in PRRSV-infected isolator piglets was nearly the identical spectratype observed for all lymphoid tissues. This result suggests dissemination of the same dominant B cell clones throughout the body. B cell expansion in PRRS was not associated with preferential VH gene usage or repertoire diversification and these cells appeared to bear a naive phenotype. The B cell population observed during infection comprised those with hydrophobic HCDR3s, especially sequences encoded by reading frame 3 of DHA that generates the AMVLV motif. Thus, the hydropathicity profile of B cells after infection was skewed to favor those with hydrophobic binding sites, whereas the normally dominant region of the hydropathicity profile containing neutral HCDR3s was absent. We believe that the hypergammaglobulinemia results from the products of these cells. We speculate that PRRSV infection generates a product that engages the BCR of naive B cells, displaying the AMVLV and similar motifs in HCDR3 and resulting in their T-independent proliferation without repertoire diversification.
Collapse
Affiliation(s)
- John E Butler
- Department of Microbiology and Interdisciplinary Immunology Program, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
30
|
Transplantation of the highly human leukocyte antigen–sensitized patient: long-term outcomes and future directions. Transplant Rev (Orlando) 2006. [DOI: 10.1016/j.trre.2006.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Silverman GJ, Goodyear CS. Confounding B-cell defences: lessons from a staphylococcal superantigen. Nat Rev Immunol 2006; 6:465-75. [PMID: 16724100 DOI: 10.1038/nri1853] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Studies of microbial superantigens that target large clonal sets of B cells through conserved antigen-receptor-variable-region sites are providing new insights into the mechanisms of B-cell activation-induced cell death. These investigations have shown differences between the clonal regulation of follicular B cells (B2 cells) and the innate-like marginal-zone B cells and B1 cells, and have also shown how B-cell superantigens can affect specialized host defences against infection. Agents designed to emulate the properties of B-cell superantigens might also provide new approaches for the treatment of B-cell-mediated autoimmune and neoplastic diseases.
Collapse
Affiliation(s)
- Gregg J Silverman
- Rheumatic Disease Core Center, Department of Medicine, University of California, San Diego, La Jolla, California 92093-0663, USA.
| | | |
Collapse
|
32
|
Abstract
Rituximab, chimeric anti-human CD20, is approved for treatment of B-cell lymphoma in adults. It is being used experimentally in other various immune-related diseases such as immune thrombocytopenic purpura, systemic lupus erythematosus, myasthenia gravis and rheumatoid arthritis. In transplant recipients, it is used for treatment of post-transplant lymphoproliferative disease, to anecdotally reduce pre-formed anti-HLA and anti-ABO antibodies and for the prevention and treatment of acute rejection. This article primarily reviews the science behind rituximab: its history, pharmacokinetics and potential mechanism of action. A need for controlled clinical trials is clearly indicated before the widespread use of this drug in transplant.
Collapse
Affiliation(s)
- M D Pescovitz
- Department of Surgery, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
33
|
Abstract
Much attention has been placed recently on transplantation in highly HLA-sensitized patients. In attempts to remove these antibodies and enable successful transplantation, several novel approaches have been developed. These include intravenous Ig (IVIg), mycophenolate mofetil, sirolimus, alemtuzumab, protein A immunoabsorption, and rituximab. IVIg has emerged as a very effective agent when used alone in high dose or when used in low dose and combined with plasmapheresis. Although alemtuzumab has been used to eliminated B cells, it fails to prevent antibody-mediated rejection and therefore probably is not suitable for desensitization. Rituximab, a B cell-specific antibody, seems to be safe and to have some efficacy as a sole agent in elimination of alloantibodies but most likely will require combination therapy with IVIg or other agents. Newer agents, such as humanized anti-CD20, are being developed. Despite the great interest in the problem of allosensitization, with one notable exception, there is a major deficiency in controlled clinical trials, the conduct of which should be a focus for the near future.
Collapse
Affiliation(s)
- Stanley C Jordan
- Transplant Immunology Laboratory, Cedars-Sinai Medical Center, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90048, USA.
| | | |
Collapse
|
34
|
|