1
|
Shi H, Zhu Y, Shang K, Tian T, Yin Z, Shi J, He Y, Ding J, Zhang F. The role of notch signaling in regulating myeloid-derived suppressor cells: Implications in Cancer and autoimmune diseases. Int Immunopharmacol 2025; 157:114693. [PMID: 40306114 DOI: 10.1016/j.intimp.2025.114693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/26/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
Myeloid-derived suppressor cells (MDSCs) encompass monocytes and granulocytes, which are innate immune cells capable of suppressing T cells and NK cells. MDSCs exert numerous detrimental effects, as they facilitate tumor initiation, promote tumor growth and metastasis, suppress host immune responses, and evade immune surveillance, thereby hindering anticancer responses. Conversely, in autoimmune diseases, MDSCs exhibit dysfunctional immunosuppressive functions and often display pro-inflammatory effects, which can exacerbate immune disorders. We postulate that this discrepancy is attributable to the involvement of the Notch signaling pathway. The Notch signaling pathway is an evolutionarily conserved mechanism that plays a crucial role in maintaining normal mammalian physiological functions. The Notch receptor undergoes three cleavage events before being transported into the nucleus, where it regulates the transcription of target genes. The role of Notch or MDSCs in different diseases has been fully reported, but the regulatory role of Notch signaling pathway on MDSCs in different diseases has been rarely reported.In this review, we characterize the activation, expansion, and immune suppression mechanisms of MDSCs. We then introduce the Notch signaling pathway and finally discuss its role in colorectal cancer, breast cancer, lung cancer, as well as T-cell acute lymphoblastic leukemia, systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis. The Notch signaling pathway regulates MDSCs through distinct mechanisms in these contexts. We hope this review will aid both beginners and experts in systematically understanding the regulation of MDSCs by the Notch signaling pathway in cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Huidong Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yuejie Zhu
- Reproductive Medicine Center,The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kaiyu Shang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tingting Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhengwei Yin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Juan Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yueyue He
- Department of Immunology,School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Jianbing Ding
- School of Public Health, Xinjiang Medical University, Urumqi, China.
| | - Fengbo Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China..
| |
Collapse
|
2
|
Bareke H, Juanes-Velasco P, Landeira-Viñuela A, Hernandez AP, Cruz JJ, Bellido L, Fonseca E, Niebla-Cárdenas A, Montalvillo E, Góngora R, Fuentes M. Autoimmune Responses in Oncology: Causes and Significance. Int J Mol Sci 2021; 22:ijms22158030. [PMID: 34360795 PMCID: PMC8347170 DOI: 10.3390/ijms22158030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022] Open
Abstract
Specific anti-tumor immune responses have proven to be pivotal in shaping tumorigenesis and tumor progression in solid cancers. These responses can also be of an autoimmune nature, and autoantibodies can sometimes be present even before the onset of clinically overt disease. Autoantibodies can be generated due to mutated gene products, aberrant expression and post-transcriptional modification of proteins, a pro-immunogenic milieu, anti-cancer treatments, cross-reactivity of tumor-specific lymphocytes, epitope spreading, and microbiota-related and genetic factors. Understanding these responses has implications for both basic and clinical immunology. Autoantibodies in solid cancers can be used for early detection of cancer as well as for biomarkers of prognosis and treatment response. High-throughput techniques such as protein microarrays make parallel detection of multiple autoantibodies for increased specificity and sensitivity feasible, affordable, and quick. Cancer immunotherapy has revolutionized cancer treatments and has made a considerable impact on reducing cancer-associated morbidity and mortality. However, immunotherapeutic interventions such as immune checkpoint inhibition can induce immune-related toxicities, which can even be life-threatening. Uncovering the reasons for treatment-induced autoimmunity can lead to fine-tuning of cancer immunotherapy approaches to evade toxic events while inducing an effective anti-tumor immune response.
Collapse
Affiliation(s)
- Halin Bareke
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Institute of Health Sciences, Marmara University, Istanbul 34722, Turkey;
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (P.J.-V.); (A.L.-V.); (A.-P.H.); (E.M.); (R.G.)
| | - Pablo Juanes-Velasco
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (P.J.-V.); (A.L.-V.); (A.-P.H.); (E.M.); (R.G.)
| | - Alicia Landeira-Viñuela
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (P.J.-V.); (A.L.-V.); (A.-P.H.); (E.M.); (R.G.)
| | - Angela-Patricia Hernandez
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (P.J.-V.); (A.L.-V.); (A.-P.H.); (E.M.); (R.G.)
| | - Juan Jesús Cruz
- Medical Oncology Service, Hospital Universitario de Salamanca-IBSAL, 37007 Salamanca, Spain; (J.J.C.); (L.B.); (E.F.)
| | - Lorena Bellido
- Medical Oncology Service, Hospital Universitario de Salamanca-IBSAL, 37007 Salamanca, Spain; (J.J.C.); (L.B.); (E.F.)
| | - Emilio Fonseca
- Medical Oncology Service, Hospital Universitario de Salamanca-IBSAL, 37007 Salamanca, Spain; (J.J.C.); (L.B.); (E.F.)
| | - Alfonssina Niebla-Cárdenas
- Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Salamanca, 37007 Salamanca, Spain;
| | - Enrique Montalvillo
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (P.J.-V.); (A.L.-V.); (A.-P.H.); (E.M.); (R.G.)
| | - Rafael Góngora
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (P.J.-V.); (A.L.-V.); (A.-P.H.); (E.M.); (R.G.)
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (P.J.-V.); (A.L.-V.); (A.-P.H.); (E.M.); (R.G.)
- Proteomics Unit, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-923-294-811
| |
Collapse
|
3
|
Schifferli A, Cavalli F, Godeau B, Liebman HA, Recher M, Imbach P, Kühne T. Understanding Immune Thrombocytopenia: Looking Out of the Box. Front Med (Lausanne) 2021; 8:613192. [PMID: 34249957 PMCID: PMC8266194 DOI: 10.3389/fmed.2021.613192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/28/2021] [Indexed: 01/15/2023] Open
Abstract
The pathogenesis of immune thrombocytopenia (ITP) is increasingly being elucidated, and its etiology is becoming more frequently identified, leading to a diagnostic shift from primary to secondary ITP. The overlap between autoimmunity, immunodeficiency, and cancer is evident, implying more interdisciplinarity in daily care. This mini-review is based on an expert meeting on ITP organized by the Intercontinental Cooperative ITP Study Group and presents the challenges of hematologists in understanding and investigating "out of the box" concepts associated with ITP.
Collapse
Affiliation(s)
- Alexandra Schifferli
- Department of Hematology/Oncology, University Children's Hospital Basel, Basel, Switzerland
- Intercontinental Cooperative Immune thrombocytopenia (ITP) Study Group, Basel, Switzerland
| | - Franco Cavalli
- Lymphoma Unit, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Bertrand Godeau
- Centre de Référence des Cytopénies Auto-Immunes de l'Adulte, Service de Médecine Interne, CHU Henri Mondor, AP-HP, Université Paris-Est Créteil, Créteil, France
| | - Howard A. Liebman
- Jane Anne Nohl Division of Hematology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Mike Recher
- Medical Outpatient Clinic and Immunodeficiency Laboratory, Department of Biomedicine, University Hospital and University Basel, Basel, Switzerland
| | - Paul Imbach
- Intercontinental Cooperative Immune thrombocytopenia (ITP) Study Group, Basel, Switzerland
| | - Thomas Kühne
- Department of Hematology/Oncology, University Children's Hospital Basel, Basel, Switzerland
- Intercontinental Cooperative Immune thrombocytopenia (ITP) Study Group, Basel, Switzerland
| |
Collapse
|
4
|
Verwijst J, Westerberg E, Punga AR. Cancer in myasthenia gravis subtypes in relation to immunosuppressive treatment and acetylcholine receptor antibodies: A Swedish nationwide register study. Eur J Neurol 2021; 28:1706-1715. [PMID: 33427389 DOI: 10.1111/ene.14730] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/07/2021] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE The potentially increased risk of extrathymic cancers in myasthenia gravis (MG) remains uncertain. We present the occurrence of extrathymic cancer diagnoses in different MG subgroups. METHODS We conducted a nationwide Swedish register-based cohort study, including patients who had their first MG diagnosis or first prescription of acetylcholine esterase inhibitors between the years 2006 and 2018. Timing and subtypes of cancer diagnosis in relation to MG as well as corticosteroid-sparing immunosuppressants (CSISs) were identified from national patient, cancer and drug registers. RESULTS In the study population of 2812 MG patients, 92 had juvenile MG (3%), 632 had early-onset MG (23%), 1968 had late-onset MG (LOMG; 70%) and 120 patients had thymoma-associated MG (TAMG; 4%). Extrathymic cancers were observed in 630 patients (22.4%). Skin cancer and cancer in the male genital organs were most common (N = 138, respectively), followed by cancers in the female genital organs (N = 103), digestive organs (N = 90) and breast (N = 80). Patients with TAMG (29.2%) and LOMG (28.4%) had the highest occurrence of extrathymic cancer. Cancer frequency was comparable between acetylcholine receptor antibody seropositive and seronegative patients. Two or more CSIS prescriptions significantly increased the frequency of cancer, especially cancers in the digestive organs (p = 0.0026), male genital organs (p = 0.0037) and skin (p < 0.0001). CONCLUSIONS Most extrathymic cancer types in MG were observed in TAMG and LOMG patients, and there was a clear correlation between CSIS exposure and cancer risk. This study sheds light on extrathymic cancers also in non-thymoma MG.
Collapse
Affiliation(s)
- Johanna Verwijst
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Elisabet Westerberg
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Anna Rostedt Punga
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Medical comorbidity in polycystic ovary syndrome with special focus on cardiometabolic, autoimmune, hepatic and cancer diseases: an updated review. Curr Opin Obstet Gynecol 2018; 29:390-396. [PMID: 28901968 DOI: 10.1097/gco.0000000000000410] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Polycystic ovary syndrome (PCOS) is defined by hyperandrogenism, irregular menses and polycystic ovaries when other causes are excluded. The possible implication of increased morbidity in PCOS for screening and follow-up is uncertain and is reviewed in this article. RECENT FINDINGS The increased risk of type 2 diabetes and cardiovascular disease in PCOS is closely associated with BMI. Women with PCOS should be screened for the elements of the metabolic syndrome upon diagnosis. Measurement of HbA1c and the lipid accumulation product could be important tools to differentiate women with high metabolic risk. The immune function in PCOS is impaired with increased secretion of autoantibodies and increased risk of type 1 diabetes, asthma and thyroid disease. The occurrence of thyroid disease could be modified by BMI and D-vitamin status. Screening for diabetes and thyroid disease is part of routine evaluation for endocrine diseases at baseline in PCOS, whereas the necessity of prospective screening for thyroid disease awaits future studies. Especially obese women with PCOS are at an increased risk of nonalcoholic fatty liver disease, gall bladder disease and endometrial cancer. SUMMARY Recent data support that screening and follow-up in patients with PCOS should be stratified according to BMI.
Collapse
|
6
|
Sica A, Massarotti M. Myeloid suppressor cells in cancer and autoimmunity. J Autoimmun 2017; 85:117-125. [PMID: 28728794 DOI: 10.1016/j.jaut.2017.07.010] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/18/2022]
Abstract
A bottleneck for immunotherapy of cancer is the immunosuppressive microenvironment in which the tumor cells proliferate. Cancers harness the immune regulatory mechanism that prevents autoimmunity from evading immunosurveillance and promoting immune destruction. Regulatory T cells, myeloid suppressor cells, inhibitory cytokines and immune checkpoint receptors are the major components of the immune system acting in concert with cancer cells and causing the subversion of anti-tumor immunity. This redundant immunosuppressive network poses an impediment to efficacious immunotherapy by facilitating tumor progression. Tumor-associated myeloid cells comprise heterogeneous populations acting systemically (myeloid-derived suppressor cells/MDSCs) and/or locally in the tumor microenvironment (MDSCs and tumor-associated macrophages/TAMs). Both populations promote cancer cell proliferation and survival, angiogenesis and lymphangiogenesis and elicit immunosuppression through different pathways, including the expression of immunosuppressive cytokines and checkpoint inhibitors. Several evidences have demonstrated that myeloid cells can express different functional programs in response to different microenvironmental signals, a property defined as functional plasticity. The opposed extremes of this functional flexibility are generally represented by the classical macrophage activation, which identifies inflammatory and cytotoxic M1 polarized macrophages, and the alternative state of macrophage activation, which identifies M2 polarized anti-inflammatory and immunosuppressive macrophages. Functional skewing of myeloid cells occurs in vivo under physiological and pathological conditions, including cancer and autoimmunity. Here we discuss how myeloid suppressor cells can on one hand support tumor growth and, on the other, limit autoimmune responses, indicating that their therapeutic reprogramming can generate opportunities in relieving immunosuppression in the tumor microenvironment or reinstating tolerance in autoimmune conditions.
Collapse
Affiliation(s)
- Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", via Bovio 6, Novara, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, CAAD, Novara, Italy.
| | - Marco Massarotti
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Rheumatology, University Hospitals of Morecambe Bay NHS Foundation Trust, Royal Lancaster Infirmary, Ashton Road, LA1 4RP Lancaster, United Kingdom
| |
Collapse
|