1
|
Cavanagh M, Amabebe E, Kulkarni NS, Papageorgiou MD, Walker H, Wyles MD, Anumba DO. Vaginal host immune-microbiome-metabolite interactions associated with spontaneous preterm birth in a predominantly white cohort. NPJ Biofilms Microbiomes 2025; 11:52. [PMID: 40140683 PMCID: PMC11947164 DOI: 10.1038/s41522-025-00671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/23/2025] [Indexed: 03/28/2025] Open
Abstract
In order to improve spontaneous preterm birth (sPTB) risk stratification in a predominantly white cohort of non-labouring pregnant women, we analysed their vaginal microbiota, metabolite, cytokine and foetal fibronectin (FFN) concentrations at two gestational time points (GTPs): GTP1 (20+0-22+6 weeks, preterm = 17; term = 32); and GTP2 (26+0-28+6 weeks, preterm = 14; term = 31). At GTP1, the preterm-delivered women showed abundant G. vaginalis (AUC = 0.77) over L. crispatus and L. iners, and upregulation of 10 metabolites. At GTP2, the same women had more lactobacilli- and mixed anaerobes-dominated microbiota, upregulation of five metabolites, and decreased TNFR1, distinguishing them from their term counterparts (AUC = 0.88). From GTP1 to GTP2, sPTB was associated with increased microbiota α-diversity, and upregulation of pantothenate and urate. CXCL10 declined in the term-delivered women by ~3-fold, but increased in the preterm-delivered women (AUC = 0.68), enhanced by FFN (AUC = 0.74). Characterising the complex dynamic interactions between cervicovaginal microbial metabolites and host immune responses could enhance sPTB risk stratification.
Collapse
Affiliation(s)
- Megan Cavanagh
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| | - Emmanuel Amabebe
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| | - Neha S Kulkarni
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| | | | - Heather Walker
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Matthew D Wyles
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Dilly O Anumba
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK.
| |
Collapse
|
2
|
Ling LJ, Li MD, Lu JW, Zhang F, Pan F, Su Y, Myatt L, Wang WS, Sun K, Ying H. Induction of epithelial cell senescence by SERPINE1 derived from fibroblasts in the amnion at parturition. Mech Ageing Dev 2025; 225:112053. [PMID: 40132749 DOI: 10.1016/j.mad.2025.112053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/28/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
Senescence of amnion epithelial cells not only disrupts the fetal membrane structure, but also becomes a source of proinflammatory signals contributing to membrane inflammation at parturition. However, the trigger initiating their senescence awaits identification. In this study, we found that SERPINE1 abundance was significantly increased in the amnion at parturition, where SERPINE1 was found predominantly expressed in amnion fibroblasts. SERPINE1 from amnion fibroblasts induced amnion epithelial cell senescence by causing vitronectin shedding from the cells thereby interrupting the association of vitronectin with integrin subunit αV, which led to the inhibition of the cell survival-associated focal adhesion pathway. In turn, proinflammatory cytokines such as interleukin-1β from senescent amnion epithelial cells enhanced SERPINE1 expression in amnion fibroblasts, thus forming a feed-forward loop between SERPINE1 production in amnion fibroblasts and epithelial cell senescence at parturition. Studies in the pregnant mice showed that intra-amniotic injection of SERPINE1 induced preterm birth with increased cellular senescence in the fetal membranes, which could be reversed by co-administration of vitronectin. Our findings indicate that SERPINE1 derived from amnion fibroblasts participates in the induction of amnion epithelial cell senescence at parturition. Intervening in the interaction of SERPINE1 with vitronectin may have therapeutic benefit in the treatment of preterm birth.
Collapse
Affiliation(s)
- Li-Jun Ling
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, PR China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Yao Su
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, PR China
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| | - Hao Ying
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, PR China.
| |
Collapse
|
3
|
Choudhury J, Richardson LS, Urrabaz-Garza R, Jacob J, Kammala AK, Menon R. Chorionic trophoblast cells demonstrate functionally different phenotypes from placental trophoblasts†. Biol Reprod 2025; 112:530-539. [PMID: 39756436 DOI: 10.1093/biolre/ioaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/09/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025] Open
Abstract
Chorionic trophoblast cells are one of the principal components of the fetal membrane and join with the decidua to form a feto-maternal interface. Recent success in isolating chorionic trophoblast cells dealt with two separate questions: (i) the necessity of highly enriched and defined media with inhibitors of oxidative stress and cell transition and their impact on growth and trophoblast phenotype, (ii) the functional differences between chorionic trophoblast cells and other placental trophoblast lineages of cells (placental cytotrophoblast cells, and extravillous trophoblast). Chorionic trophoblast cells were cultured either in defined media with various inhibitors or in media from which inhibitors were removed individually. Cellular morphology and growth (microscopy and crystal violet staining) and cellular and molecular biological features (immunofluorescence staining for GATA-binding protein 3, cytokeratin 7, and vimentin) were assessed. Syncytialization of cells (forskolin treatment) and invasive properties of chorionic trophoblast cells (cell invasion assay) were tested and compared with placental cytotrophoblast cells and extravillous trophoblasts (HTR8/SVneo), respectively. Removal of various growth-supporting agents from the media delayed cell growth and inclined towards cellular transition (increase in vimentin compared to cytokeratin 7 or GATA-binding protein 3) compared to chorionic trophoblast cells grown in complete and enriched media. The chorionic trophoblast cells failed to syncytialize, contrasting with the high levels of membrane fusion observed in placental cytotrophoblast cells. Although chorionic trophoblast cells express human leukocyte antigen G like extravillous trophoblasts, they do not invade. Chorionic trophoblast cells require several specific constituents for in vitro growth and phenotype maintenance. Chorionic trophoblast cells are trophoblast lineage cells that barricade immune cell-enriched decidua without invading them. These properties support their location and function, which are distinct from placental cytotrophoblast cells and extravillous trophoblasts.
Collapse
Affiliation(s)
- Jaganmoy Choudhury
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States of America
| | - Lauren S Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States of America
| | - Rheanna Urrabaz-Garza
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States of America
| | - Jeena Jacob
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States of America
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States of America
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States of America
| |
Collapse
|
4
|
Goncharov DDA, Lintao RCV, Urrabaz-Garza R, Radnaa E, Kammala AK, Richardson LS, Menon R. Determining Sex-Specific Gene Expression Differences in Human Chorion Trophoblast Cells. Int J Mol Sci 2025; 26:2239. [PMID: 40076861 PMCID: PMC11900912 DOI: 10.3390/ijms26052239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Differences in male (M) and female (F) neonates' premature birth outcomes and placental trophoblast inflammation have been observed but are unknown to occur within the fetal membrane trophoblast layer (chorion trophoblasts [CTC]). This study examined whether sex-based differences in gene expression and inflammatory marker expression can be observed in CTCs under control or infectious inflammatory conditions modeling preterm birth. CTCs from six different patient-derived fetal membrane samples (3M/3F) were cultured and divided into experimental (Lipopolysaccharide [LPS]) and control groups for 6, 12, or 24 h. RNA from CTCs was subjected to RNA-seq, while cytokine multiplex or ELISA detected pro-/anti-inflammatory cytokines, progesterone, and soluble HLA-G in cell supernatants. CTC-M and CTC-F showed sex, time, and stimulant-dependent differential gene expression profiles. Cytokine analysis demonstrated a significantly lower IL-6 production in control CTC-M than in CTC-F. No sex-dependent responses were observed after LPS treatment regarding cytokines. CTC-M produced significantly lower progesterone than CTC-F. The theories of sexual dimorphism linked to placental inflammation may not extend to CTCs. This study supports that the chorion acts as a "great wall" protecting the fetus by being refractory to insults. Further examination into the weaknesses of the chorion barrier and sex-dependent responses of fetal membranes is needed.
Collapse
Affiliation(s)
- Daphne D. Arena Goncharov
- Division of Basic Science and Translational Research, The University of Texas Medical Branch, Galveston, TX 77555, USA (R.C.V.L.)
| | - Ryan C. V. Lintao
- Division of Basic Science and Translational Research, The University of Texas Medical Branch, Galveston, TX 77555, USA (R.C.V.L.)
- Institute of Reproductive Health, National Institutes of Health, University of the Philippines Manila, 623 Pedro Gil Street, Ermita, Manila 1000, Philippines
| | - Rheanna Urrabaz-Garza
- Division of Basic Science and Translational Research, The University of Texas Medical Branch, Galveston, TX 77555, USA (R.C.V.L.)
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, The University of Texas Medical Branch, Galveston, TX 77555, USA (R.C.V.L.)
| | - Ananth K. Kammala
- Division of Basic Science and Translational Research, The University of Texas Medical Branch, Galveston, TX 77555, USA (R.C.V.L.)
| | - Lauren S. Richardson
- Division of Basic Science and Translational Research, The University of Texas Medical Branch, Galveston, TX 77555, USA (R.C.V.L.)
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, The University of Texas Medical Branch, Galveston, TX 77555, USA (R.C.V.L.)
| |
Collapse
|
5
|
Ghareeb AA, Kachikis A, Nguyen V, Roman A. Management of cervical cerclage after preterm premature rupture of membranes: an argument for retention. Am J Obstet Gynecol MFM 2025; 7:101569. [PMID: 39586469 DOI: 10.1016/j.ajogmf.2024.101569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/10/2024] [Accepted: 11/05/2024] [Indexed: 11/27/2024]
Abstract
Preterm birth remains the leading cause of infant morbidity and mortality worldwide. Efforts aimed at reducing preterm birth rates have largely focused on mitigating risks in those who have already experienced a preterm delivery. Of note, 1 intervention, the placement of a cervical cerclage, has been shown to reduce the risk of subsequent preterm delivery in appropriate candidates. However, a cerclage does not mitigate the risk of preterm premature rupture of membranes. Preterm premature rupture of membranes is a significant contributor to the incidence of preterm births and can occur with a cerclage in place. Many studies have examined the outcomes associated with immediate vs delayed cerclage removal after preterm premature rupture of membranes with inconsistent results. This expert review summarized the characteristics of the studies examining the timing of cerclage removal after preterm premature rupture of membranes (Table 1) and current international guidelines (Table 2). In the absence of labor, infection, cervical laceration, or vaginal bleeding, it is recommended that cervical cerclage remains in situ after preterm premature rupture of membranes until 32 to 34 weeks of gestation.
Collapse
Affiliation(s)
- Allen A Ghareeb
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington Medical Center, Seattle, WA (Drs Ghareeb and Kachikis).
| | - Alisa Kachikis
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington Medical Center, Seattle, WA (Drs Ghareeb and Kachikis)
| | - Vy Nguyen
- Department of Obstetrics and Gynecology, University of Washington Medical Center, Seattle, WA (Ms Nguyen)
| | - Amanda Roman
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, PA (Dr Roman)
| |
Collapse
|
6
|
Bush B, Richardson LS, Radnaa E, Behnia F, Jacob J, Lintao RCV, Menon R. Do progesterone receptor membrane components (PGRMC)s play a role in the chorions refractoriness to epithelial-to-mesenchymal transition (EMT)? J Reprod Immunol 2025; 169:104463. [PMID: 39999661 DOI: 10.1016/j.jri.2025.104463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Fetal membrane inflammation is one of the drivers of adverse pregnancy outcomes. One of the reported pathways of inflammation is epithelial-mesenchymal transition (EMT) of amniotic epithelial cells. EMT is resisted during gestation via signaling initiated by the binding of progesterone (P4) to progesterone receptor membrane components (PGRMC1/PGRMC2). The vulnerability of chorionic trophoblast cells (CTCs) to transition has not been studied. Here, we examined CTCs EMT in response to the stressors and the role of PGRMC1/PGRMC2. CTCs were treated with the autophagy inhibitor bafilomycin (Baf), transforming growth factor beta (TGF-β, EMT-inducer), and lipopolysaccharide (LPS) to simulate cellular stressors associated with an adverse pregnancy environment. The primary endpoints included morphological evidence of EMT, N-cadherin-to-E-cadherin ratio, vimentin/cytokeratin staining, pro-inflammatory cytokine and P4 production. PGRMC1/PGRMC2 knock-out (KO) CTCs were prepared using CRISPR/Cas9, and experiments were repeated to test the influence of the P4-PGRMC axis. Wild-type CTCs were resistant to cellular transitions, changes in P4 production, and shifts in the inflammatory status under normal, LPS, or TGF-β conditions. Autophagy inhibition tended to cause CTCs to transition (morphological changes; high N-cadherin-to-E-cadherin ratio [p < 0.05], no change in vimentin/cytokeratin), though a complete transition was not evident. Further, neither PGRMC1/PGRMC2 played a role in CTC cellular transitions, as their KO did not cause any major changes. Chorion cells resist EMT to minimize inflammation and to maintain their barrier functions regardless of the presence of PGRMC1/ PGRMC2. Cellular stressors or infectious antigens are likely to impact the amnion, where membrane weakening can be initiated.
Collapse
Affiliation(s)
- B Bush
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA; Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA
| | - L S Richardson
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA; Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA
| | - E Radnaa
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA; Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA
| | - F Behnia
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA
| | - J Jacob
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA; Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA
| | - R C V Lintao
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA; Institute of Reproductive Health, National Institutes of Health, University of the c Manila, Philippines
| | - R Menon
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA; Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA.
| |
Collapse
|
7
|
Lialios P, Alimperti S. Role of E-cadherin in epithelial barrier dysfunction: implications for bacterial infection, inflammation, and disease pathogenesis. Front Cell Infect Microbiol 2025; 15:1506636. [PMID: 40007608 PMCID: PMC11850337 DOI: 10.3389/fcimb.2025.1506636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Epithelial barriers serve as critical defense lines against microbial infiltration and maintain tissue homeostasis. E-cadherin, an essential component of adherens junctions, has emerged as a pivotal molecule that secures epithelial homeostasis. Lately, its pleiotropic role beyond barrier function, including its involvement in immune responses, has become more evident. Herein, we delve into the intricate relationship between (dys)regulation of epithelial homeostasis and the versatile functionality of E-cadherin, describing complex mechanisms that underlie barrier integrity and disruption in disease pathogenesis such as bacterial infection and inflammation, among others. Clinical implications of E-cadherin perturbations in host pathophysiology are emphasized; downregulation, proteolytic phenomena, abnormal localization/signaling and aberrant immune reactions are linked with a broad spectrum of pathology beyond infectious diseases. Finally, potential therapeutic interventions that may harness E-cadherin to mitigate barrier-associated tissue damage are explored. Overall, this review highlights the crucial role of E-cadherin in systemic health, offering insights that could pave the way for strategies to reinforce/restore barrier integrity and treat related diseases.
Collapse
Affiliation(s)
- Peter Lialios
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, United States
| | - Stella Alimperti
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, United States
| |
Collapse
|
8
|
Robinson JF, Das S, Khan W, Khanam R, Price JT, Rahman A, Ahmed S, Ali SM, Deb S, Deveale B, Dutta A, Gormley M, Hall SC, Hasan ASMT, Hotwani A, Juma MH, Kasaro MP, Khalid J, Kshetrapal P, McMaster MT, Mehmood U, Nisar I, Pervin J, Rahman S, Raqib R, San A, Sarker P, Tuomivaara ST, Zhang G, Zhou Y, Aktar S, Baqui AH, Jehan F, Sazawal S, Stringer JSA, Fisher SJ. High rates of placental inflammation among samples collected by the Multi-Omics for Mothers and Infants consortium. Am J Obstet Gynecol 2025; 232:230.e1-230.e19. [PMID: 38697337 PMCID: PMC11790342 DOI: 10.1016/j.ajog.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND The Multi-Omics for Mothers and Infants consortium aims to improve birth outcomes. Preterm birth is a major obstetrical complication globally and causes significant infant and childhood morbidity and mortality. OBJECTIVE We analyzed placental samples (basal plate, placenta or chorionic villi, and the chorionic plate) collected by the 5 Multi-Omics for Mothers and Infants sites, namely The Alliance for Maternal and Newborn Health Improvement Bangladesh, The Alliance for Maternal and Newborn Health Improvement Pakistan, The Alliance for Maternal and Newborn Health Improvement Tanzania, The Global Alliance to Prevent Prematurity and Stillbirth Bangladesh, and The Global Alliance to Prevent Prematurity and Stillbirth Zambia. The goal was to analyze the morphology and gene expression of samples collected from preterm and uncomplicated term births. STUDY DESIGN The teams provided biopsies from 166 singleton preterm (<37 weeks' gestation) and 175 term (≥37 weeks' gestation) deliveries. The samples were fixed in formalin and paraffin embedded. Tissue sections from these samples were stained with hematoxylin and eosin and subjected to morphologic analyses. Other placental biopsies (n=35 preterm, 21 term) were flash frozen, which enabled RNA purification for bulk transcriptomics. RESULTS The morphologic analyses revealed a surprisingly high rate of inflammation that involved the basal plate, placenta or chorionic villi, and the chorionic plate. The rate of inflammation in chorionic villus samples, likely attributable to chronic villitis, ranged from 25% (Pakistan site) to 60% (Zambia site) of cases. Leukocyte infiltration in this location vs in the basal plate or chorionic plate correlated with preterm birth. Our transcriptomic analyses identified 267 genes that were differentially expressed between placentas from preterm vs those from term births (123 upregulated, 144 downregulated). Mapping the differentially expressed genes onto single-cell RNA sequencing data from human placentas suggested that all the component cell types, either singly or in subsets, contributed to the observed dysregulation. Consistent with the histopathologic findings, gene ontology analyses highlighted the presence of leukocyte infiltration or activation and inflammatory responses in both the fetal and maternal compartments. CONCLUSION The relationship between placental inflammation and preterm birth is appreciated in developed countries. In this study, we showed that this link also exists in developing geographies. In addition, among the participating sites, we found geographic- and population-based differences in placental inflammation and preterm birth, suggesting the importance of local factors.
Collapse
Affiliation(s)
- Joshua F Robinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, CA
| | - Sayan Das
- Public Health Laboratory Ivo de Carneri, Wawi, Chake, Pemba, Zanzibar, Tanzania
| | - Waqasuddin Khan
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Stadium Road, Karachi, Pakistan; Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Stadium Road, Karachi, Pakistan
| | - Rasheda Khanam
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Joan T Price
- UNC Global Projects - Zambia, Lusaka, Zambia; Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Anisur Rahman
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | | | - Said Mohammed Ali
- Public Health Laboratory Ivo de Carneri, Wawi, Chake, Pemba, Zanzibar, Tanzania
| | - Saikat Deb
- Public Health Laboratory Ivo de Carneri, Wawi, Chake, Pemba, Zanzibar, Tanzania; Center for Public Health Kinetics, Vinoba Puri, Lajpatnagar II, New Delhi, India
| | - Brian Deveale
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, CA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA; Department of Urology, University of California, San Francisco, San Francisco, CA
| | - Arup Dutta
- Center for Public Health Kinetics, Vinoba Puri, Lajpatnagar II, New Delhi, India
| | - Matthew Gormley
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, CA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA; Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, CA
| | - Steven C Hall
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, CA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA; Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, CA
| | - A S M Tarik Hasan
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Aneeta Hotwani
- Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Stadium Road, Karachi, Pakistan
| | - Mohamed Hamid Juma
- Public Health Laboratory Ivo de Carneri, Wawi, Chake, Pemba, Zanzibar, Tanzania
| | - Margaret P Kasaro
- UNC Global Projects - Zambia, Lusaka, Zambia; Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, Chapel Hill, NC; Department of Gynaecology and Obstetrics, University of Zambia School of Medicine, Lusaka, Zambia
| | - Javairia Khalid
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Stadium Road, Karachi, Pakistan; Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Stadium Road, Karachi, Pakistan
| | - Pallavi Kshetrapal
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - Michael T McMaster
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, CA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
| | - Usma Mehmood
- Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Stadium Road, Karachi, Pakistan
| | - Imran Nisar
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Stadium Road, Karachi, Pakistan; Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Stadium Road, Karachi, Pakistan
| | - Jesmin Pervin
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Sayedur Rahman
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh; Projahnmo Research Foundation, Dhaka, Bangladesh
| | - Rubhana Raqib
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Ali San
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, CA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA
| | - Protim Sarker
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Sami T Tuomivaara
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, CA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA; Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, CA
| | - Ge Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH; Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Yan Zhou
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, CA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA
| | - Shaki Aktar
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Abdullah H Baqui
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Fyezah Jehan
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Stadium Road, Karachi, Pakistan; Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Stadium Road, Karachi, Pakistan
| | - Sunil Sazawal
- Center for Public Health Kinetics, Vinoba Puri, Lajpatnagar II, New Delhi, India
| | - Jeffrey S A Stringer
- Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Susan J Fisher
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, CA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA; Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, CA.
| |
Collapse
|
9
|
Georges HM, Norwitz ER, Abrahams VM. Predictors of Inflammation-Mediated Preterm Birth. Physiology (Bethesda) 2025; 40:0. [PMID: 39106300 DOI: 10.1152/physiol.00022.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/09/2024] Open
Abstract
Preterm birth remains a worldwide health concern because of ongoing challenges in prediction and prevention. Current predictors are limited by poor performance, need for invasive sampling, and an inability to identify patients in a timely fashion to allow for effective intervention. The multiple etiologies of preterm birth often have an inflammatory component. Thus, a deeper understanding of the inflammatory mechanisms involved in preterm birth may provide opportunities to identify new predictors of preterm birth. This review discusses the multiple etiologies of preterm birth, their links to inflammation, current predictors available, and new directions for the field.
Collapse
Affiliation(s)
- Hanah M Georges
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| | - Errol R Norwitz
- Department of Obstetrics and Gynecology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
10
|
Li X, Huang Z, Bai J, Che A, Zhou J, Yang H. Molecular profiling unveils pyroptosis markers in preterm birth. FASEB J 2024; 38:e70112. [PMID: 39673596 DOI: 10.1096/fj.202302716rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 08/29/2024] [Accepted: 10/04/2024] [Indexed: 12/16/2024]
Abstract
Through a comprehensive examination of pyroptosis-related differential expressed genes (PRDEGs), this work investigates the molecular complexities of spontaneous preterm birth (SPTB), also known as premature delivery, before the due date. Through the process of merging and correcting batch effects in the GSE120480 and GSE73714 datasets, we were able to identify 36 PRDEGs that exhibited significant expression differentiation in SPTB. Through functional enrichment and pathway analysis, their importance in amino acid transport and cytokine receptor interaction has been highlighted. Among the genes that have emerged as crucial, CEBPA, APOA1, and CEP55 have been identified. The relevance of these molecules was demonstrated using experimental knockdowns, which also suggested that they could be used as molecular biomarkers and therapeutic targets for SPTB.
Collapse
Affiliation(s)
- Xiaoyun Li
- Department of Ultrasound Medicine, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| | - Zhulan Huang
- Department of Ultrasound Medicine, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| | - Jiangtao Bai
- Central Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| | - Aiwen Che
- Department of Pathology, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| | - Jinhua Zhou
- Department of Obstetrics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| | - Hongmei Yang
- Department of Clinical Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| |
Collapse
|
11
|
Jing D, Liu Q, Zhang H, Li Y, Jiang X, Cai Y, Wang X, Li L. miR-548az-5p induces amniotic epithelial cell senescence by regulating KATNAL1 expression in labor. Sci Rep 2024; 14:30380. [PMID: 39638877 PMCID: PMC11621115 DOI: 10.1038/s41598-024-82390-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024] Open
Abstract
Amniotic fluid exosomes (AF-Exos) from term labor (TL) cause amniotic membrane senescence and induce labor. However, the intrinsic mechanism through which this occurs remains unknown. Therefore, we performed microRNA (miRNA) microarray chip screening of AF-Exos obtained from TL and terms not in labor and discovered that the expression of miR-548az-5p was significantly upregulated in TL. This study aimed to explore the role of miR-548az-5p in AF-Exos-induced human amniotic epithelial cells (hAECs) senescence for labor initiation. Bioinformatics analysis revealed that Katanin catalytic subunit A1 like 1 (KATNAL1) is a potential miR-548az-5p target. In hAECs, the upregulation of miR-548az-5p suppressed KATNAL1 expression, disorganized microtubules, increased senescence-associated secretory phenotype-related biomarkers, and inhibited cell proliferation by cyclin D1 and cyclin-dependent kinase 6 (CDK6). This study identified that miR-548az-5p is involved in the senescence of amniotic epithelial cells by targeting KATNAL1 to induce labor. Notably, this study offers new perspectives on the mediation of cellular senescence using AF-Exos miRNAs, which results in labor.
Collapse
Affiliation(s)
- Die Jing
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, 250117, Shandong, China
| | - Qian Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Department of Obstetrics and Gynecology, Feixian County People's Hospital, Linyi, 273400, Shandong, China
| | - Hongyuan Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yuchen Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, 250117, Shandong, China
| | - Xiaotong Jiang
- The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, 250117, Shandong, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Yanjun Cai
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, 250117, Shandong, China
| | - Xietong Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, 250117, Shandong, China.
- The Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, 250014, Shandong, China.
| | - Lei Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, 250117, Shandong, China.
| |
Collapse
|
12
|
Libra A, Bolehovska R, Kukla R, Musilova I, Menon R, Jacobsson B, Kacerovsky M. Characterization of Amniotic Fluid Ureaplasma Species from Pregnancies Complicated by Preterm Prelabor Rupture of Membranes. Reprod Sci 2024; 31:3440-3451. [PMID: 39317888 DOI: 10.1007/s43032-024-01697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
The main aim of this study was to determine expanded sequence types (eSTs) of Ureaplasma species (U. spp.). DNA isolated from the amniotic fluid of pregnancies complicated by preterm prelabor rupture of membranes (PPROM) using an expanded multilocus sequence typing scheme. Additionally, the study sought to examine whether phylogenetic subgroups of U. spp. DNA differ with respect to maternal demographic and clinical parameters and selected aspects of short-term neonatal morbidity. This retrospective cohort study was focused on singleton pregnancies complicated by PPROM occurring between the gestational ages of 24+0 and 36+6 weeks, where amniocentesis was conducted to assess the intra-amniotic environment and the presence of U. spp. DNA in the amniotic fluid samples was confirmed. The stored aliquots of U. spp. DNA were used to assess differences in nucleotide sequences in six U. spp. genes (ftsH, rpL22, valS, thrS,ureG, and mba-np1) using the eMLST scheme. The expanded multilocus sequence typing scheme was performed in 73 samples of U. spp. DNA isolated from pregnancies complicated by PPROM. In total, 33 different U. spp. DNA eSTs were revealed, 21 (#20, 233-244, 248-251, 253, 255, 259, and 262) of which were novel. The most frequently identified eST was #41, identified in 18% (13/73) of the aliquots. Based on their genetic relationships, the U. spp. DNA was divided into two clusters and four subgroups [cluster I (U. parvum): A, 43% (n = 31); B, 15% (n = 11); and C, 26% (n = 19); cluster II (U. urealyticum): 1; 16% (n = 12)]. Cluster II had a higher rate of polymicrobial findings than cluster I (58% vs 16%; p = 0.005), while subgroup A had the highest rate of concomitant Mycoplasma hominis in the amniotic fluid samples (66%; p = 0.04). In conclusion, Ureaplasma spp. DNA obtained from PPROM consisted of 33 different eSTs of U. spp. DNA. No differences in maternal and neonatal characteristics were found among the phylogenetical subgroups of U. spp. DNA, except for a higher rate of polymicrobial amniotic fluid findings in those with U. urealyticumand the concomitant presence of M. hominis in the amniotic fluid in those with the presence of U. parvum.
Collapse
Affiliation(s)
- Antonin Libra
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove, 500 05, Czech Republic
- Generi Biotech, Hradec Kralove, Czech Republic
| | - Radka Bolehovska
- Institute of Clinical Microbiology, University Hospital, Hradec Kralove, Czech Republic
- Institute of Clinical Microbiology, Charles University, Medical faculty in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rudolf Kukla
- Institute of Clinical Microbiology, University Hospital, Hradec Kralove, Czech Republic
- Institute of Clinical Microbiology, Charles University, Medical faculty in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ivana Musilova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove, 500 05, Czech Republic
- Institute of Clinical Microbiology, Charles University, Medical faculty in Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Obstetrics and Gynecology, Hospital Most, Krajska Zdravotni a.s, Most, Czech Republic
| | - Ramkumar Menon
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, Medical Branch, The University of Texas, Galveston, TX, USA
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Genetics and Bioinformatics, Domain of Health Data and Digitalisation, Institute of Public Health, Oslo, Norway
| | - Marian Kacerovsky
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove, 500 05, Czech Republic.
- Institute of Clinical Microbiology, Charles University, Medical faculty in Hradec Kralove, Hradec Kralove, Czech Republic.
- Department of Obstetrics and Gynecology, Hospital Most, Krajska Zdravotni a.s, Most, Czech Republic.
| |
Collapse
|
13
|
Hernández-Rodríguez J, Pérez-Hernández J, Flores-Espinosa P, Olmos-Ortiz A, Velazquez P, Zamora-Escudero R, Islas-López M, Helguera-Repetto AC, Hernández-Bones K, Rodríguez-Flores S, Jiménez-Escutia R, Fortanel-Fonseca A, Flores-Pliego A, Lopez-Vancell R, Zaga-Clavellina V. Galectin-1 Elicits a Tissue-Specific Anti-Inflammatory and Anti-Degradative Effect Upon LPS-Induced Response in an Ex Vivo Model of Human Fetal Membranes Modeling an Intraamniotic Inflammation. Am J Reprod Immunol 2024; 92:e70016. [PMID: 39575516 PMCID: PMC11582940 DOI: 10.1111/aji.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
PROBLEM Intrauterine infection is one of the most jeopardizing conditions associated with adverse outcomes, including preterm birth; however, multiple tolerance mechanisms operate at the maternal-fetal interface to avoid the rejection of the fetus. Among the factors that maintain the uterus as an immunoprivileged site, Galectin-1 (Gal-1), an immunomodulatory glycan-binding protein secreted by the maternal-fetal unit, is pivotal in promoting immune cell homeostasis. This work aimed to evaluate the role of Gal-1 during a lipopolysaccharide (LPS)-induced-inflammatory milieu. METHOD OF STUDY Using an ex vivo culture with two independent compartments, human fetal membranes at term were pretreated with 40 and 80 ng/mL of Gal-1, then to reproduce an intraamniotic inflammation, the fetal side of membranes was stimulated with 500 ng/mL of LPS for 24 h. The concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, monocyte chemoattractant protein (MCP1), macrophage inflammatory protein (MIP1) α, regulated upon activation normal T cell expressed and secreted (RANTES), and matrix metalloproteinase (MMP)-9 were measured in both amnion and choriodecidua compartments. RESULTS In a tissue-specific fashion profile, pretreatment with the physiologic concentration of Gal-1 significantly diminished the LPS-dependent secretion of TNF-α, IL-1β, Il-6, MCP1, MIP1α, RANTES, and MMP-9. CONCLUSION Gal-1 elicits an anti-inflammatory effect on the human fetal membranes stimulated with LPS, which supports the hypothesis that Gal-1 is part of the immunomodulatory mechanisms intended to stop the harmful effect of inflammation of the maternal-fetal interface.
Collapse
Affiliation(s)
- Jazmin Hernández-Rodríguez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
- Laboratorio de Patología Experimental UME, Unidad de Medicina Experimental, Facultad de Medicina UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | - Jesús Pérez-Hernández
- Laboratorio de Patología Experimental UME, Unidad de Medicina Experimental, Facultad de Medicina UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | - Pilar Flores-Espinosa
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Pilar Velazquez
- Departamento de Ginecología y Obstetricia, Hospital Ángeles México, Ciudad de México, Mexico
| | | | - Marcela Islas-López
- Ginecología y Obstetricia, Hospital Ángeles Lomas-UNAM, Huixquilucan, Mexico
| | | | - Karla Hernández-Bones
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
- Posgrado en Ciencias Médicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Samara Rodríguez-Flores
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
- Posgrado en Ciencias Médicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Rodrigo Jiménez-Escutia
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Arturo Flores-Pliego
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Rosario Lopez-Vancell
- Laboratorio de Patología Experimental UME, Unidad de Medicina Experimental, Facultad de Medicina UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | | |
Collapse
|
14
|
Lei WJ, Zhang F, Li MD, Pan F, Ling LJ, Lu JW, Myatt L, Sun K, Wang WS. C/EBPδ deficiency delays infection-induced preterm birth. BMC Med 2024; 22:432. [PMID: 39379940 PMCID: PMC11462803 DOI: 10.1186/s12916-024-03650-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Parturition is an inflammation process. Exaggerated inflammatory reactions in infection lead to preterm birth. Although nuclear factor kappa B (NF-κB) has been recognized as a classical transcription factor mediating inflammatory reactions, those mediated by NF-κB per se are relatively short-lived. Therefore, there may be other transcription factors involved to sustain NF-κB-initiated inflammatory reactions in gestational tissues in infection-induced preterm birth. METHODS Cebpd-deficient mice were generated to investigate the role of CCAAT enhancer-binding protein δ (C/EBPδ) in lipopolysaccharide (LPS)-induced preterm birth, and the contribution of fetal and maternal C/EBPδ was further dissected by transferring Cebpd-/- or WT embryos to Cebpd-/- or WT dams. The effects of C/EBPδ pertinent to parturition were investigated in mouse and human myometrial and amnion cells. The interplay between C/EBPδ and NF-κB was examined in cultured human amnion fibroblasts. RESULTS The mouse study showed that LPS-induced preterm birth was delayed by Cebpd deficiency in either the fetus or the dam, with further delay being observed in conceptions where both the dam and the fetus were deficient in Cebpd. Mouse and human studies showed that the abundance of C/EBPδ was significantly increased in the myometrium and fetal membranes in infection-induced preterm birth. Furthermore, C/EBPδ participated in LPS-induced upregulation of pro-inflammatory cytokines as well as genes pertinent to myometrial contractility and fetal membrane activation in the myometrium and amnion respectively. A mechanistic study in human amnion fibroblasts showed that C/EBPδ, upon induction by NF-κB, could serve as a supplementary transcription factor to NF-κB to sustain the expression of genes pertinent to parturition. CONCLUSIONS C/EBPδ is a transcription factor to sustain the expression of gene initiated by NF-κB in the myometrium and fetal membranes in infection-induced preterm birth. Targeting C/EBPδ may be of therapeutic value in the treatment of infection-induced preterm birth.
Collapse
Affiliation(s)
- Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Li-Jun Ling
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| |
Collapse
|
15
|
Liu Q, Jing D, Li Y, Yao B, Zhang H, Wang L, Wu C, Wang X, Li L. Hsa-miR-3928-3p targets the CCL3/CCR5 axis to induce amniotic epithelial cell senescence involved in labor initiation. Placenta 2024; 156:98-107. [PMID: 39299215 DOI: 10.1016/j.placenta.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
INTRODUCTION Senescence in human amniotic epithelial cells (hAECs) and increased sterile inflammation in the amniotic cavity can lead to the initiation of term labor (TL). We investigated the possible roles of hsa-miR-3928-3p and chemokine ligand 3 (CCL3) in labor initiation and the underlying molecular mechanisms. METHODS Microarray chip screening was used to analyse the differential expression of miRNAs in amniotic fluid exosomes from women in TL and term not-in-labor. The GEO and miRWalk databases were used to identify differential genes, and a dual luciferase assay was used to verify the relationship. Reverse transcription quantitative PCR (RT-qPCR) and immunofluorescence were used to determine the expression and localization of CCL3/CCR5 in fetal membranes. RT-qPCR and western blotting were used to detect the expression of CCL3/CCR5 in hAECs with hsa-miR-3928-3p knockdown/overexpression. Cell counting kit 8, flow cytometry, EdU proliferation, senescence-associated β-galactosidase, and enzyme-linked immunosorbent assays were performed to detect the impact of hsa-miR-3928-3p on hAEC function. RESULTS hsa-miR-3928-3p expression was downregulated in TL. CCL3 (macrophage inflammatory protein-1α) was identified as a differentially expressed target gene. hsa-miR-3928-3p targeted the 3' UTR of CCL3. Downregulation of hsa-miR-3928-3p expression increased CCL3 expression. CCL3, via its CCR5 receptor, decreased the proliferation, but increased the senescence, apoptosis rate, secretion of inflammatory factors (IL-8, TNF-α, and IL-6), and expression of senescence-associated protein p21 in hAECs. DISCUSSION hsa-miR-3928-3p negatively regulates CCL3, promoting hAEC senescence through the CCL3-CCR5 axis and inducing signals for labor initiation. These findings provide novel insights for labor initiation in clinical settings.
Collapse
Affiliation(s)
- Qian Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Department of Obstetrics and Gynecology, Feixian County People's Hospital, Linyi, Shandong, 273400, China
| | - Die Jing
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yuchen Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Bingshuai Yao
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Hongyuan Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Lequn Wang
- Department of Obstetrics and Gynecology, Feixian County People's Hospital, Linyi, Shandong, 273400, China
| | - Chenghua Wu
- Department of Obstetrics and Gynecology, Feixian County People's Hospital, Linyi, Shandong, 273400, China.
| | - Xietong Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Department of Obstetrics and Gynecology, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, Shandong, 250014, China; The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, 250117, Shandong, China.
| | - Lei Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, 250117, Shandong, China.
| |
Collapse
|
16
|
Ling LJ, Zhou Q, Zhang F, Lei WJ, Li MD, Lu JW, Wang WS, Sun K, Ying H. The dual role of glucocorticoid regeneration in inflammation at parturition. Front Immunol 2024; 15:1459489. [PMID: 39290694 PMCID: PMC11405189 DOI: 10.3389/fimmu.2024.1459489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Fetal membrane inflammation is an integral event of parturition. However, excessive pro-inflammatory cytokines can impose threats to the fetus. Coincidentally, the fetal membranes express abundant 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), which generates biologically active cortisol to promote labor through induction of prostaglandin synthesis. Given the well-recognized anti-inflammatory actions of glucocorticoids, we hypothesized that cortisol regenerated in the fetal membranes might be engaged in restraining fetus-hazardous pro-inflammatory cytokine production for the safety of the fetus, while reserving pro-labor effect on prostaglandin synthesis to ensure safe delivery of the fetus. Methods The hypothesis was examined in human amnion tissue and cultured primary human amnion fibroblasts as well as a mouse model. Results 11β-HSD1 was significantly increased in the human amnion in infection-induced preterm birth. Studies in human amnion fibroblasts showed that lipopolysaccharide (LPS) induced 11β-HSD1 expression synergistically with cortisol. Cortisol completely blocked NF-κB-mediated pro-inflammatory cytokine expression by LPS, but STAT3-mediated cyclooxygenase 2 expression, a crucial prostaglandin synthetic enzyme, remained. Further studies in pregnant mice showed that corticosterone did not delay LPS-induced preterm birth, but alleviated LPS-induced fetal organ damages, along with increased 11β-HSD1, cyclooxygenase 2, and decreased pro-inflammatory cytokine in the fetal membranes. Discussion There is a feed-forward cortisol regeneration in the fetal membranes in infection, and cortisol regenerated restrains pro-inflammatory cytokine expression, while reserves pro-labor effect on prostaglandin synthesis. This dual role of cortisol regeneration can prevent excessive pro-inflammatory cytokine production, while ensure in-time delivery for the safety of the fetus.
Collapse
Affiliation(s)
- Li-Jun Ling
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
| | - Qiong Zhou
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Hao Ying
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
| |
Collapse
|
17
|
Cheng J, Jia X, Yang L, Zhang S, Chen Z, Gui Q, Li T, Pu Z, Qi H, Zhang J. New therapeutic target NCF1-directed multi-bioactive conjugate therapies prevent preterm birth and adverse pregnancy outcomes. Sci Bull (Beijing) 2024; 69:2604-2621. [PMID: 39030102 DOI: 10.1016/j.scib.2024.03.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 07/21/2024]
Abstract
Preterm birth (PTB) is a leading cause of neonatal morbidity and mortality worldwide, yet the cellular and molecular mechanisms driving this condition remain undeciphered, thus limiting discovery of new therapies. In-depth analyses of human and mouse tissues associated with PTB, in combination with cellular studies, indicated that aberrantly high-expressed neutrophil cytoplasmic factor (NCF) 1 leads to oxidative distress, recruitment, and pro-inflammatory activation of neutrophils and macrophages, while sequentially overexpressed pro-inflammatory mediators induce contractions of uterine smooth muscle cells (USMCs) as well as apoptosis of USMCs and amniotic epithelial cells, thereby causing PTB. According to these new findings, we rationally engineered an amphiphilic macromolecular conjugate LPA by covalently integrating low-molecular-weight heparin, a reactive oxygen species-responsive/scavenging component, and an anti-inflammatory peptide. This bioengineered macromolecular conjugate can self-assemble into multi-bioactive nanoparticles (LPA NP). In a mouse model of PTB, LPA NP effectively delayed PTB and inhibited adverse pregnancy outcomes, by regulating NCF1-mediated oxidative-inflammatory cascades, i.e., attenuating oxidative stress, inhibiting inflammatory cell activation, reducing local inflammation, and decreasing contraction/apoptosis of myometrial cells. Packaging LPA NP into temperature-responsive, self-healing, and bioadhesive hydrogel further potentiated its in vivo efficacies after intravaginal delivery, by prolonging retention time, sustaining nanotherapy release, and increasing bioavailability in the placenta/uterus. Importantly, both the conjugate/nanotherapy and hydrogel formulations exhibited excellent safety profiles in pregnant mice, with negligible side effects on the mother and offspring.
Collapse
Affiliation(s)
- Juan Cheng
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaoyan Jia
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Limei Yang
- Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Siqi Zhang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhiyu Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qian Gui
- Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Ting Li
- Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Zedan Pu
- Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Hongbo Qi
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China.
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China; Yu-Yue Pathology Scientific Research Center, Chongqing 400039, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
18
|
Lintao RCV, Richardson LS, Kammala AK, Chapa J, Yunque-Yap DA, Khanipov K, Golovko G, Dalmacio LMM, Menon R. PGRMC2 and HLA-G regulate immune homeostasis in a microphysiological model of human maternal-fetal membrane interface. Commun Biol 2024; 7:1041. [PMID: 39179795 PMCID: PMC11344061 DOI: 10.1038/s42003-024-06740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
Chorion trophoblasts (CTCs) and immune cell-enriched decidua (DECs) comprise the maternal-fetal membrane interface called the chorio-decidual interface (CDi) which constantly gets exposed to maternal stressors without leading to labor activation. This study explored how CTCs act as a barrier at CDi. The roles of human leukocyte antigen (HLA)-G and progesterone receptor membrane component 2 (PGRMC2) in mediating immune homeostasis were also investigated. The CDi was recreated in a two-chamber microfluidic device (CDi-on-chip) with an outer chamber of primary DECs and immune cell line-derived innate immune cells and an inner chamber of wild-type or PGRMC2 or HLA-G knockout immortalized CTCs. To mimic maternal insults, DECs were treated with lipopolysaccharide, poly(I:C), or oxidative stress inducer cigarette smoke extract. Expression levels of inflammation and immunity genes via targeted RNA sequencing, production of soluble mediators, and immune cell migration into CTCs were determined. In CDi-on-chip, decidua and immune cells became inflammatory in response to insults while CTCs were refractory, highlighting their barrier function. HLA-G and PGRMC2 are found to be vital to immune homeostasis at the CDi, with PGRMC2 serving as an upstream regulator of inflammation, HLA-G expression, and mesenchymal-epithelial transition, and HLA-G serving as a frontline immunomodulatory molecule, thus preventing fetal membrane compromise.
Collapse
Affiliation(s)
- Ryan C V Lintao
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Institute of Reproductive Health, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Lauren S Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jenieve Chapa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Dianne Aster Yunque-Yap
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Microbiome and Bioinformatics Analysis Core, The Institute for Translational Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- National Aeronautics and Space Administration Johnson Space Center, Houston, TX, USA
- KBR, Houston, TX, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Microbiome and Bioinformatics Analysis Core, The Institute for Translational Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - George Golovko
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Microbiome and Bioinformatics Analysis Core, The Institute for Translational Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Leslie Michelle M Dalmacio
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
19
|
Cherukuri R, Kammala AK, Thomas TJ, Saylor L, Richardson L, Kim S, Ferrer M, Acedo C, Song MJ, Gaharwar AK, Menon R, Han A. High-Throughput 3D-Printed Model of the Feto-Maternal Interface for the Discovery and Development of Preterm Birth Therapies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41892-41906. [PMID: 39078878 PMCID: PMC11604266 DOI: 10.1021/acsami.4c08731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Spontaneous preterm birth (PTB) affects around 11% of births, posing significant risks to neonatal health due to the inflammation at the fetal-maternal interface (FMi). This inflammation disrupts immune tolerance during pregnancy, often leading to PTB. While organ-on-a-chip (OOC) devices effectively mimic the physiology, pathophysiology, and responses of FMi, their relatively low throughput limits their utility in high-throughput testing applications. To overcome this, we developed a three-dimensional (3D)-printed model that fits in a well of a 96-well plate and can be mass-produced while also accurately replicating FMi, enabling efficient screening of drugs targeting FMi inflammation. Our model features two cell culture chambers (maternal and fetal cells) interlinked via an array of microfluidic channels. It was thoroughly validated, ensuring cell viability, metabolic activity, and cell-specific markers. The maternal chamber was exposed to lipopolysaccharides (LPS) to induce an inflammatory state, and proinflammatory cytokines in the culture supernatant were quantified. Furthermore, the efficacy of anti-inflammatory inhibitors in mitigating LPS-induced inflammation was investigated. Results demonstrated that our model supports robust cell growth, maintains viability, and accurately mimics PTB-associated inflammation. This high-throughput 3D-printed model offers a versatile platform for drug screening, promising advancements in drug discovery and PTB prevention.
Collapse
Affiliation(s)
- Rahul Cherukuri
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, 77555, USA
| | - Tilu Jain Thomas
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, 77555, USA
| | - Leah Saylor
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, 77555, USA
| | - Lauren Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, 77555, USA
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Marc Ferrer
- 3D Tissue Bioprinting Laboratory, National Centre for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, 20892, USA
| | - Cristina Acedo
- 3D Tissue Bioprinting Laboratory, National Centre for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, 20892, USA
| | - Min Jae Song
- 3D Tissue Bioprinting Laboratory, National Centre for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, 20892, USA
| | - Akhilesh K. Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, 77555, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77840, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77840, USA
- Department of Chemical Engineering, Texas A&M University, College Station, TX, 77840, USA
| |
Collapse
|
20
|
Masserdotti A, Gasik M, Grillari-Voglauer R, Grillari J, Cargnoni A, Chiodelli P, Papait A, Magatti M, Romoli J, Ficai S, Di Pietro L, Lattanzi W, Silini AR, Parolini O. Unveiling the human fetal-maternal interface during the first trimester: biophysical knowledge and gaps. Front Cell Dev Biol 2024; 12:1411582. [PMID: 39144254 PMCID: PMC11322133 DOI: 10.3389/fcell.2024.1411582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/11/2024] [Indexed: 08/16/2024] Open
Abstract
The intricate interplay between the developing placenta and fetal-maternal interactions is critical for pregnancy outcomes. Despite advancements, gaps persist in understanding biomechanics, transport processes, and blood circulation parameters, all of which are crucial for safe pregnancies. Moreover, the complexity of fetal-maternal interactions led to conflicting data and methodological variations. This review presents a comprehensive overview of current knowledge on fetal-maternal interface structures, with a particular focus on the first trimester. More in detail, the embryological development, structural characteristics, and physiological functions of placental chorionic plate and villi, fetal membranes and umbilical cord are discussed. Furthermore, a description of the main structures and features of maternal and fetal fluid dynamic exchanges is provided. However, ethical constraints and technological limitations pose still challenges to studying early placental development directly, which calls for sophisticated in vitro, microfluidic organotypic models for advancing our understanding. For this, knowledge about key in vivo parameters are necessary for their design. In this scenario, the integration of data from later gestational stages and mathematical/computational simulations have proven to be useful tools. Notwithstanding, further research into cellular and molecular mechanisms at the fetal-maternal interface is essential for enhancing prenatal care and improving maternal and fetal health outcomes.
Collapse
Affiliation(s)
- Alice Masserdotti
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU University, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Austria
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Paola Chiodelli
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Papait
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Jacopo Romoli
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sara Ficai
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorena Di Pietro
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Wanda Lattanzi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| |
Collapse
|
21
|
Kong D, Cho H, Hwang S, Lee A, Lee U, Kim YB, Geum DH, Kim BS, Jung YM, Kim HY, Cho GJ, Ahn K, Oh MJ, Kim HJ, Cho HY, Park JS, Hong S. The Role of Prolactin in Amniotic Membrane Regeneration: Therapeutic Potential for Premature Rupture of Membranes. Endocrinology 2024; 165:bqae095. [PMID: 39082703 DOI: 10.1210/endocr/bqae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Indexed: 08/20/2024]
Abstract
Premature rupture of membranes (PROM) is defined as rupture of fetal membranes before the onset of labor. Prolactin (PRL) is secreted by decidual membranes and accumulated significantly in the amniotic fluid during pregnancy. PRL could ameliorate inflammation and collagen degradation in fetal membranes. However, the role of PRL in amniotic membrane is not well characterized. We isolated human amniotic epithelial stem cells (hAESCs) from human fetal membranes to study the effect of PRL on proliferation, migration, and antioxidative stress. Amniotic pore culture technique (APCT) model was constructed to evaluate the tissue regeneration effect in vitro. The potential targets and pathways of PRL acting in amnion via integrated bioinformatic methods. PRL had a dose-dependent effect on hAESCs in vitro. PRL (500 ng/mL) significantly improved the viability of hAESCs and inhibited cell apoptosis, related to the upregulation of CCN2 expression and downregulation of Bax, Caspase 3, and Caspase 8. PRL accelerated migration process in hAESCs via downregulation of MMP2, MMP3, and MMP9. PRL attenuated the cellular damage and mitochondrial dysfunction induced by hydrogen peroxide in hAESCs. PRL accelerated the healing process in the APCT model significantly. The top 10 specific targets (IGF1R, SIRT1, MAP2K1, CASP8, MAPK14, MCL1, NFKB1, HIF1A, MTOR, and HSP90AA1) and signaling pathways (such as HIF signaling pathway) were selected using an integrated bioinformatics approach. PRL improves the viability and antioxidative stress function of hAESCs and the regeneration of ruptured amniotic membranes in vitro. Thus, PRL has great therapeutic potential for prevention and treatment of ruptured membranes.
Collapse
Affiliation(s)
- Deqi Kong
- Biomedical Sciences Department, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Heeryun Cho
- Biomedical Sciences Department, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Soowon Hwang
- Biomedical Sciences Department, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Ahyoung Lee
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Korea
| | - Uk Lee
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Korea
| | - Yun-Bae Kim
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Korea
| | - Dong Ho Geum
- Biomedical Sciences Department, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Byung-Soo Kim
- Biomedical Sciences Department, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Young Mi Jung
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Ho Yeon Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Geum Joon Cho
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kihoon Ahn
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Min-Jeong Oh
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hai-Joong Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hee Young Cho
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Joong Shin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - SoonCheol Hong
- Biomedical Sciences Department, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
22
|
Wahid HH, Anahar FN, Isahak NH, Mohd Zoharodzi J, Mohammad Khoiri SNL, Mohamad Zainal NH, Kamarudin N, Ismail H, Mustafa Mahmud MIA. Role of Platelet Activating Factor as a Mediator of Inflammatory Diseases and Preterm Delivery. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:862-878. [PMID: 38403163 DOI: 10.1016/j.ajpath.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
Nearly 70% of preterm deliveries occur spontaneously, and the clinical pathways involved include preterm labor and preterm premature rupture of membranes. Prediction of preterm delivery is considered crucial due to the significant effects of preterm birth on health and the economy at both the personal and community levels. Although similar inflammatory processes occur in both term and preterm delivery, the premature activation of these processes or exaggerated inflammatory response triggered by infection or sterile factors leads to preterm delivery. Platelet activating factor (PAF) is a phosphoglycerylether lipid mediator of inflammation that is implicated in infections, cancers, and various chronic diseases and disorders including cardiovascular, renal, cerebrovascular, and central nervous system diseases. In gestational tissues, PAF mediates the inflammatory pathways that stimulate the effector mechanisms of labor, including myometrial contraction, cervical dilation, and fetal membrane rupture. Women with preterm labor and preterm premature rupture of membranes have increased levels of PAF in their amniotic fluid. In mice, the intrauterine or intraperitoneal administration of carbamyl PAF activates inflammation in gestational tissues, thereby eliciting preterm delivery. This review summarizes recent research on PAF as an important inflammatory mediator in preterm delivery and in other inflammatory disorders, highlighting its potential value for prediction, intervention, and prevention of these diseases.
Collapse
Affiliation(s)
- Hanan H Wahid
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia.
| | - Fatin N Anahar
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Nurul H Isahak
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Juwairiyah Mohd Zoharodzi
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Siti N L Mohammad Khoiri
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Nurul H Mohamad Zainal
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University of Putra Malaysia, Selangor, Malaysia
| | - Norhidayah Kamarudin
- Department of Pathology, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Hamizah Ismail
- Department of Obstetrics & Gynaecology, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Mohammed I A Mustafa Mahmud
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| |
Collapse
|
23
|
Kacerovsky M, Hornychova H, Jaiman S, Pavlikova L, Holeckova M, Jacobsson B, Tsiartas P, Musilova I. Angiogenic imbalance in pregnancies with preterm prelabor rupture of membranes between 34 and 37 weeks of gestation. Acta Obstet Gynecol Scand 2024; 103:1120-1131. [PMID: 38511515 PMCID: PMC11103135 DOI: 10.1111/aogs.14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION This study aimed to identify whether microbial invasion of the amniotic cavity and/or intra-amniotic inflammation in women with late preterm prelabor rupture of membranes (PPROM) was associated with changes in concentrations of soluble fms-like tyrosine kinase-1 (sFlt-1), placental growth factor (PlGF) and its ratio in maternal serum, and whether placental features consistent with maternal vascular malperfusion further affect their concentrations. MATERIAL AND METHODS This historical study included 154 women with singleton pregnancies complicated by PPROM between gestational ages 34+0 and 36+6 weeks. Transabdominal amniocentesis was performed as part of standard clinical management to evaluate the intra-amniotic environment. Women were categorized into two subgroups based on the presence of microorganisms and/or their nucleic acids in amniotic fluid (determined by culturing and molecular biology method) and intra-amniotic inflammation (by amniotic fluid interleukin-6 concentration evaluation): (1) those with the presence of microorganisms and/or inflammation (at least one present) and (2) those with negative amniotic fluid for infection/inflammation (absence of both). Concentrations of sFlt-1 and PlGF were assessed using the Elecsys® sFlt-1 and Elecsys® PlGF immunoassays and converted into multiples of medians. RESULTS Women with the presence of microorganisms and/or inflammation in amniotic fluid had lower serum concentrations of sFlt-1 and sFlt-1/PlGF ratios and higher concentrations of PlGF compared with those with negative amniotic fluid. (sFlt-1: presence: median 1.0 multiples of the median (MoM), vs negative: median: 1.5 MoM, P = 0.003; PlGF: presence: median 0.7 MoM, vs negative: median 0.4 MoM, P = 0.02; sFlt-1/PlGF: presence: median 8.9 vs negative 25.0, P = 0.001). Higher serum concentrations of sFlt-1 and sFlt-1/PlGF ratios as well as lower concentrations of PlGF were found in the subsets of women with maternal vascular malperfusion than in those without maternal vascular malperfusion. CONCLUSIONS Among women experiencing late PPROM, angiogenic imbalance in maternal serum is primarily observed in those without both microbial invasion of the amniotic cavity and intra-amniotic inflammation. Additionally, there is an association between angiogenic imbalance and the presence of maternal vascular malperfusion.
Collapse
Affiliation(s)
- Marian Kacerovsky
- Biomedical Research CenterUniversity Hospital Hradec KraloveHradec KraloveCzech Republic
- Department of Obstetrics and GynecologyHospital MostUsti nad LabemCzech Republic
| | - Helena Hornychova
- Fingerland Institute of PathologyUniversity Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec KraloveHradec KraloveCzech Republic
| | - Sunil Jaiman
- Department of Pathology, School of Medicine DetroitWayne State UniversityDetroitMichiganUSA
| | - Ladislava Pavlikova
- Institute of Clinical Biochemistry and DiagnosticsUniversity Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec KraloveHradec KraloveCzech Republic
| | - Magdalena Holeckova
- Institute of Clinical Biochemistry and DiagnosticsUniversity Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec KraloveHradec KraloveCzech Republic
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Science, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Obstetrics and Gynecology, Region Västra GötalandSahlgrenska University HospitalGothenburgSweden
- Department of Genetics and Bioinformatics, Domain of Health Data and DigitalizationInstitute of Public HealthOsloNorway
| | - Panagiotis Tsiartas
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Obstetrics and GynecologyKarolinska InstituteStockholmSweden
- Nordic IVF, Eugin groupSolnaSweden
| | - Ivana Musilova
- Biomedical Research CenterUniversity Hospital Hradec KraloveHradec KraloveCzech Republic
- Department of Obstetrics and GynecologyHospital MostUsti nad LabemCzech Republic
| |
Collapse
|
24
|
Yang X, Xu F, Ma G, Pu F. Maternal Exposure to Environmental Air Pollution and Premature Rupture of Membranes: Evidence from Southern China. Med Sci Monit 2024; 30:e943601. [PMID: 38812259 PMCID: PMC11149469 DOI: 10.12659/msm.943601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/03/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Exposure to air pollution (AP) during pregnancy is associated with pre-labor rupture of membranes (PROM). However, there is limited research on this topic, and the sensitive exposure windows remain unclear. The present study assessed the association between AP exposure and the risk of PROM, as well as seeking to identify the sensitive time windows. MATERIAL AND METHODS This retrospective study analyzed 4276 pregnant women's data from Tongling Maternal and Child Health Hospital from 2020 to 2022. We obtained air pollution data, including particulate matter (PM) with an aerodynamic diameter of ≤2.5 μm (PM₂․₅), particulate matter with an aerodynamic diameter of ≤10 μm (PM₁₀), nitrogen dioxide (NO₂), and ozone (O₃), from the Tongling Ecology and Environment Bureau. Demographic information was extracted from medical records. We employed a distributed lag model to identify the sensitive exposure windows of prenatal AP affecting the risk of PROM. We conducted a sensitivity analysis based on pre-pregnancy BMI. RESULTS We found a significant association between prenatal exposure to AP and increased PROM risk after adjusting for confounders, and the critical exposure windows of AP were the 6th to 7th months of pregnancy. In the underweight group, an increase of 10 µg/m³ in PM₂․₅ was associated with a risk of PROM, with an odds ratio (OR) of 1.48 (95% CI: 1.16, 1.89). Similarly, a 10 µg/m³ increase in PM₁₀ was associated with a risk of PROM, with an OR of 1.45 (95% CI: 1.05, 1.77). CONCLUSIONS Prenatal exposure to AP, particularly during months 6-7 of pregnancy, is associated with an increased risk of PROM. This study extends and strengthens the evidence on the association between prenatal exposure to AP and the risk of PROM, specifically identifying the critical exposure windows.
Collapse
Affiliation(s)
- Xiaowu Yang
- Department of Maternal Health Care, Maternal and Child Health Hospital of Tongling, Tongling, Anhui, PR China
| | - Fengsheng Xu
- Department of Diseases, The Public Health Service Center of Economic Development Zone of Hefei, Hefei, Anhui, PR China
| | - Gongyan Ma
- Department of AIDS Prevention and Control, Center for Disease Control of Liuan, Liuan, Anhui, PR China
| | - Feng Pu
- Department of Maternal Health Care, Maternal and Child Health Hospital of Tongling, Tongling, Anhui, PR China
| |
Collapse
|
25
|
Chien MC, Huang CY, Wang JH, Shih CL, Wu P. Effects of vitamin D in pregnancy on maternal and offspring health-related outcomes: An umbrella review of systematic review and meta-analyses. Nutr Diabetes 2024; 14:35. [PMID: 38816412 PMCID: PMC11139885 DOI: 10.1038/s41387-024-00296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Vitamin D deficiency has been linked with several adverse maternal and fetal outcomes. OBJECTIVE To summarize systematic reviews and meta-analyses evaluating the effects of vitamin D deficiency and of vitamin D supplementation in pregnancy on maternal and offspring health-related outcomes. METHODS Prior to conducting this umbrella review, we registered the protocol in PROSPERO (CRD42022368003). We conducted searches in PubMed, Embase, and Cochrane Library for systematic reviews and meta-analyses on vitamin D in pregnancy, from database inception to October 2, 2023. All outcomes related to vitamin D in pregnancy obtained from the systematic reviews and meta-analyses were extracted. DATA EXTRACTION Two reviewers independently chose studies and collected information on health outcomes. The quality of the included articles' methodology was assessed using AMSTAR 2 (A Measurement Tool to Assess Systematic Reviews-2). RESULTS We identified 16 eligible systematic reviews and meta-analyses, which included 250,569 women. Our results demonstrated that vitamin D deficiency in pregnancy is associated with increased risk of preterm birth, small-for gestational age/low birth weight infants, recurrent miscarriage, bacterial vaginosis and gestational diabetes mellitus. Vitamin D supplementation in pregnancy increases birth weight, and reduces the risk of maternal pre-eclampsia, miscarriage, and vitamin D deficiency, fetal or neonatal mortality, as well as attention-deficit hyperactivity disorder, and autism spectrum disorder in childhood. In women with gestational diabetes mellitus, vitamin D supplementation in pregnancy can reduce the risk of maternal hyperbilirubinemia, polyhydramnios, macrosomia, fetal distress, and neonatal hospitalization. CONCLUSION Due to the association with adverse maternal and offspring health outcomes, we recommend the vitamin D status in pregnancy should be monitored, particularly in women at high risk of vitamin D deficiency. It is suggested that pregnant women take a dose of >400 IU/day of vitamin D supplementation during pregnancy to prevent certain adverse outcomes.
Collapse
Affiliation(s)
- Mei-Chun Chien
- Department of Rehabilitation, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi City, Taiwan
| | - Chueh-Yi Huang
- Department of Obstetrics and Gynecology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi City, Taiwan
| | - Jie-Huei Wang
- Department of Mathematics, National Chung Cheng University, Chia-Yi, Taiwan.
| | - Chia-Lung Shih
- Clinical Research Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi City, Taiwan.
| | - Pensee Wu
- School of Medicine, Keele University, Staffordshire, UK
- Academic Department of Obstetrics and Gynaecology, University Hospital of North Midlands, Stoke-on-Trent, UK
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
26
|
Cortes-Sandoval S, Seco-Rovira V, Beltrán-Frutos E, Serrano-Sánchez MI, Martínez-Hernández J, Ferrer C, Delgado JL, Insausti CL, Blanquer M, Pastor LM. Heterogeneity of mesenchymal cells in human amniotic membrane at term. Histol Histopathol 2024; 39:573-593. [PMID: 37721417 DOI: 10.14670/hh-18-660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
There is increasing interest in understanding the tissue biology of human amniotic membrane (hAM) given its applications in medicine. One cellular component is mesenchymal cells, which can be extracted, cultured and differentiated "in vitro" into various cell types. These studies show that there is heterogeneity among mesenchymal cells. The aim of this work is to study the membrane in situ to determine whether this cellular heterogeneity exists. The hAMs were obtained from caesarean deliveries at term and analyzed by histological techniques. Types I-III mesenchymal cells and Hofbauer were distinguished by light microscopy. Histochemically, mesenchymal cell types showed successively increasing positivity to: PAS, vimentin, fibronectin, and Concanavalin-A; VGEF, TGF-β2, PDGF-C, FGF-2. By the semiquantitative point of view, the percentage of Type II cells was 60%, significantly higher than the other types. With transmission electron microscopy, an intermediate cell type between II-III was observed. Strong vesiculation of the rough endoplasmic reticulum (RER) with exocytosis was observed. In addition, an accumulation of a similar material to the extracellular matrix in the RER caused its dilation especially in type IIITEM cells. Some of this material acquired a globular structure. These structures were also found free in the extracellular matrix. In conclusion, the mesenchymal cells of the fibroblastic layer of the hAMs studied are heterogeneous, with some undifferentiated and others with a probably senescent fibroblastic phenotype with accumulation in their RER of fibronectin. These results may be of interest to extract mesenchymal cells from hAMs for use in regenerative medicine and to better understand the mechanisms of fetal membrane rupture.
Collapse
Affiliation(s)
- Salvador Cortes-Sandoval
- Department of Obstetrics and Gynecology, Virgen de la Arrixaca Hospital, IMIB, Murcia, Spain
- Department of Cell Biology and Histology, IMIB, School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Vicente Seco-Rovira
- Department of Cell Biology and Histology, IMIB, School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Ester Beltrán-Frutos
- Department of Cell Biology and Histology, IMIB, School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - María I Serrano-Sánchez
- Department of Cell Biology and Histology, IMIB, School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Jesús Martínez-Hernández
- Department of Cell Biology and Histology, IMIB, School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Concepción Ferrer
- Department of Cell Biology and Histology, IMIB, School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Juan L Delgado
- Department of Obstetrics and Gynecology, Virgen de la Arrixaca Hospital, IMIB, Murcia, Spain
| | - Carmen L Insausti
- Hematology Service, Virgen de la Arrixaca University Hospital, IMIB, Murcia, Spain
| | - Miguel Blanquer
- Hematology Service, Virgen de la Arrixaca University Hospital, IMIB, Murcia, Spain
| | - Luis M Pastor
- Department of Cell Biology and Histology, IMIB, School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain.
| |
Collapse
|
27
|
Severino ME, Richardson LS, Kacerovsky M, Menon R. Histologic Evidence of Epithelial-Mesenchymal Transition and Autophagy in Human Fetal Membranes. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:684-692. [PMID: 38320630 DOI: 10.1016/j.ajpath.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/17/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024]
Abstract
Preterm, prelabor rupture of the human fetal membranes (pPROM) is involved in 40% of spontaneous preterm births worldwide. Cellular-level disturbances and inflammation are effectors of membrane degradation, weakening, and rupture. Maternal risk factors induce oxidative stress (OS), senescence, and senescence-associated inflammation of the fetal membranes as reported mechanisms related to pPROM. Inflammation can also arise in fetal membrane cells (amnion/chorion) due to OS-induced autophagy and epithelial-mesenchymal transition (EMT). Autophagy, EMT, and their correlation in pPROM, along with OS-induced autophagy-related changes in amnion and chorion cells in vitro, were investigated. Immunocytochemistry staining of cytokeratin-18 (epithelial marker)/vimentin (mesenchymal marker) and proautophagy-inducing factor LC3B were performed in fetal membranes from pPROM, term not in labor, and term labor. Ultrastructural changes associated with autophagy were verified by transmission electron microscopy of the fetal membranes and in cells exposed to cigarette smoke extract (an OS inducer). EMT and LC3B staining was compared in the chorion from pPROM versus term not in labor. Transmission electron microscopy confirmed autophagosome formation in pPROM amnion and chorion. In cell culture, autophagosomes were formed in the amnion with OS treatment, while autophagosomes were accumulated in both cell types with autophagy inhibition. This study documents the association between pPROMs and amniochorion autophagy and EMT, and supports a role for OS in inducing dysfunctional cells that increase inflammation, predisposing membranes to rupture.
Collapse
Affiliation(s)
- Mary E Severino
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas; College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Lauren S Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas.
| |
Collapse
|
28
|
Liang Y, Li M, Lyu Q, Li P, Lyu Y, Yu Y, Peng W. The relationship between maternal exposure to ambient air pollutants and premature rupture of membranes: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123611. [PMID: 38417606 DOI: 10.1016/j.envpol.2024.123611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/01/2024]
Abstract
Air pollution is an environmental stimulus that may predispose pregnant women to preterm rapture of membrane (PROM). However, the relationship of maternal exposure to air pollutants and PROM is still unclear. To investigate the relationship between the long-term and short-term maternal exposure to air pollution and PROM. We searched all studies published in PubMed, Embase and Web of Science up to February 2024. The studies provided quantitative effect estimates with 95% confidence intervals, for the impact of short-term (<30 days) or long-term (≥30 days) maternal exposure to air pollutants on PROM, preterm PROM (PPROM) or term PROM (TPROM). The odds ratio (OR), risk ratio (RR), or hazard ratio (HR), with 95% confidence intervals was extracted, and RR or HR were deemed as OR because of the low prevalence of PROM. Fixed- or random-effects meta-analyses performed. In total, 17 relevant studies were included. Maternal exposure to PM2.5 in the second trimester increases the risk of PROM (pooled OR = 1.15, 95%CI: 1.05-1.26). Maternal exposure to PM10, NO2, NO, CO and SO2 during pregnancy and short-term maternal exposure to PM2.5, NO2, SO2 and O3 also associate with PROM occurrence. The results of the study show that both long-term maternal exposure in the second or third trimester and short-term maternal exposure to ambient air pollution can increase the risk of PROM.
Collapse
Affiliation(s)
- Yaxin Liang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Min Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; Department of Obstetrics, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650500, China.
| | - Qiubo Lyu
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Pingping Li
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Hospital, Beijing 100730, China
| | - Yuhan Lyu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Hospital, Beijing 100730, China
| | - Yue Yu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Hospital, Beijing 100730, China
| | - Wuqiang Peng
- Maternal and Child Health Care Hospital of Mentougou District, Beijing, China
| |
Collapse
|
29
|
Xu L, Yang T, Wen M, Wen D, Jin C, An M, Wang L, Liu Y, Fan J. Frontiers in the Etiology and Treatment of Preterm Premature Rupture of Membrane: From Molecular Mechanisms to Innovative Therapeutic Strategies. Reprod Sci 2024; 31:917-931. [PMID: 37989803 DOI: 10.1007/s43032-023-01411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Preterm premature rupture of membranes (pPROM) poses a significant threat to fetal viability and increases the risk for newborn morbidities. The perinatal period of preterm infants affected by pPROM is often characterized by higher rates of mortality and morbidity, with associated risks of cerebral palsy, developmental delays, compromised immune function, respiratory diseases, and sensory impairments. pPROM is believed to result from a variety of causes, including but not limited to microbially induced infections, stretching of fetal membranes, oxidative stress, inflammatory responses, and age-related changes in the fetal-placental interface. Maternal stress, nutritional deficiencies, and medically induced procedures such as fetoscopy are also considered potential contributing factors to pPROM. This comprehensive review explores the potential etiologies leading to pPROM, delves into the intricate molecular mechanisms through which these etiologies cause membrane ruptures, and provides a concise overview of diagnostic and treatment approaches for pPROM. Based on available therapeutic options, this review proposes and explores the possibilities of utilizing a novel composite hydrogel composed of amniotic membrane particles for repairing ruptured fetal membranes, thereby holding promise for its clinical application.
Collapse
Affiliation(s)
- Ludan Xu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Tiantian Yang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Meiling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
- Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Dawei Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Chaoyang Jin
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Meiwen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China.
- Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China.
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Junmei Fan
- Department of Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
30
|
Lin Q, Cao J, Yu J, Zhu Y, Shen Y, Wang S, Wang Y, Liu Z, Chang Y. YAP-mediated trophoblast dysfunction: the common pathway underlying pregnancy complications. Cell Commun Signal 2023; 21:353. [PMID: 38098027 PMCID: PMC10722737 DOI: 10.1186/s12964-023-01371-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/29/2023] [Indexed: 12/17/2023] Open
Abstract
Yes-associated protein (YAP) is a pivotal regulator in cellular proliferation, survival, differentiation, and migration, with significant roles in embryonic development, tissue repair, and tumorigenesis. At the maternal-fetal interface, emerging evidence underscores the importance of precisely regulated YAP activity in ensuring successful pregnancy initiation and progression. However, despite the established association between YAP dysregulation and adverse pregnancy outcomes, insights into the impact of aberrant YAP levels in fetal-derived, particularly trophoblast cells, and the ensuing dysfunction at the maternal-fetal interface remain limited. This review comprehensively examines YAP expression and its regulatory mechanisms in trophoblast cells throughout pregnancy. We emphasize its integral role in placental development and maternal-fetal interactions and delve into the correlations between YAP dysregulation and pregnancy complications. A nuanced understanding of YAP's functions during pregnancy could illuminate intricate molecular mechanisms and pave the way for innovative prevention and treatment strategies for pregnancy complications. Video Abstract.
Collapse
Affiliation(s)
- Qimei Lin
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Jiasong Cao
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Jing Yu
- School of Clinical Medicine, Tianjin Medical University, Tianjin, 300070, China
| | - Yu Zhu
- School of Clinical Medicine, Tianjin Medical University, Tianjin, 300070, China
| | - Yongmei Shen
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Shuqi Wang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Yixin Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhen Liu
- Academy of Clinical Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China.
- Academy of Clinical Medicine, Medical College, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
31
|
Soucek O, Kacerovsky M, Kacerovska Musilova I, Stranik J, Kukla R, Bolehovska R, Andrys C. Amniotic fluid CD36 in pregnancies complicated by spontaneous preterm delivery: a retrospective cohort study. J Matern Fetal Neonatal Med 2023; 36:2214838. [PMID: 37217453 DOI: 10.1080/14767058.2023.2214838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate CD36 concentrations in amniotic fluid in pregnancies complicated by spontaneous delivery with intact fetal membranes (preterm labor, PTL) and preterm prelabor rupture of membranes (PPROM) with respect to the presence of the intra-amniotic infection. METHODS A total of 80 women with PPROM and 71 with PTL were included in the study. Amniotic fluid samples were obtained by transabdominal amniocentesis. Amniotic fluid CD36 concentrations were assessed by enzyme-linked immunosorbent assay. Microbial colonization of the amniotic cavity (MIAC) was determined by the cultivation and non-cultivation approach. Intra-amniotic inflammation (IAI) was defined as an amniotic fluid bedside interleukin-6 concentration ≥3000 pg/mL. Intra-amniotic infection was characterized by the presence of both MIAC and IAI. RESULTS Women with PPROM with intra-amniotic infection had higher amniotic fluid CD36 concentrations than women without infection (with infection: median 346 pg/mL, IQR 262-384 vs. without infection: median 242 pg/mL, IQR 199-304; p = .006) A positive correlation between amniotic fluid CD36 concentrations and interleukin-6 concentrations was found (rho = 0.48; p < .0001). In PTL pregnancies, no statistically significant difference was found in the amniotic fluid level of CD36 between intra-amniotic infection, sterile IAI, and negative amniotic fluid. CONCLUSIONS The presence of intra-amniotic infection is characterized by higher amniotic fluid CD36 concentrations in pregnancies complicated by PPROM. An amniotic fluid CD36 cutoff value of 252.5 pg/mL was found to be optimal for the prediction of intra-amniotic infection. In PTL pregnancies, no statistically significant change in CD36 concentration was found with respect to the presence of intra-amniotic infection.
Collapse
Affiliation(s)
- Ondrej Soucek
- Department of Immunology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ivana Kacerovska Musilova
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jaroslav Stranik
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rudolf Kukla
- Department of Microbiology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Radka Bolehovska
- Department of Microbiology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ctirad Andrys
- Department of Immunology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
32
|
Jiang W, Wang C, Zhang Q, Zeng X, Kan H, Zhang J. Residential greenspace counteracts PM 2.5 on the risks of preterm birth subtypes: A multicenter study. CHEMOSPHERE 2023; 340:139917. [PMID: 37611762 DOI: 10.1016/j.chemosphere.2023.139917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND The association between residential greenspace and preterm birth (PTB) risk remained inconclusive. The PTB subtypes have been ignored and the effect of co-exposure of PM2.5 on PTB risk is still unclear. OBJECTIVE To investigate the independent, interactive, and mixed effects of residential greenspace and PM2.5 on the risk of PTB subtypes. METHODS A total of 19,900 singleton births from 20 hospitals in Shanghai, China, from 2015 to 2017 were included. The Normalized Difference Vegetation Index (NDVI) within 500 m and 1000 m buffers of the maternal residence and a combined geoscience-statistical model-derived PM2.5 and its six components were used as the exposure measures. PTB (<37 completed weeks of gestation) were divided into early PTB (24-33 weeks) vs. late PTB (34-36 weeks) and into spontaneous PTB (sPTB), preterm premature rupture of the fetal membranes (PPROM), and iatrogenic PTB. Multivariable logistic regression models were applied to assess the independent and interactive effects of NDVI and PM2.5 on PTB in each trimester. The quantile g-computation approach was employed to explore the mixture effect of PM2.5 components and greenspace across the pregnancy and to determine the main contributors. RESULTS Levels of PM2.5 and greenspace were associated with increased [aOR (95%CI) ranging from 1.18 (1.07, 1.30) to 3.36 (2.45, 4.64)] and decreased risks [aORs (95%CI) ranging from 0.64 (0.53, 0.78) to 0.86 (0.73, 0.99)] of PTB subtypes, respectively. At the same PM2.5 level, higher residential greenspace was associated with lower risks, and vice versa. All these associations were more pronounced in late pregnancy. Early PTB and PPROM were the main affected subtypes, and the main drivers in PM2.5 were black carbon and ammonium. CONCLUSIONS Residential greenspace may mitigate the PTB risks due to PM2.5 exposure during pregnancy.
Collapse
Affiliation(s)
- Wen Jiang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cuiping Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Qingli Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Xiaojing Zeng
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
33
|
Sun H, Su X, Mao J, Du Q. Impact of pre-pregnancy weight on the risk of premature rupture of membranes in Chinese women. Heliyon 2023; 9:e21971. [PMID: 38027997 PMCID: PMC10661500 DOI: 10.1016/j.heliyon.2023.e21971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Objective The objective of this study was to investigate the influence of pre-pregnancy body mass index (BMI) on the incidence of premature rupture of membranes (PROM) among Chinese women. Methods This was a hospital-based retrospective cohort study of 75,760 Chinese women who had live singleton births between 2016 and 2020. In this study, we utilized logistic regression analysis to estimate the association between pre-pregnancy BMI and PROM based on gestational age. Results Prior to pregnancy, being overweight or obese was found to be significantly associated with an increased risk of preterm premature rupture of membranes (PPROM), as evidenced by adjusted odds ratios and 95 % confidence intervals of 1.336 (1.173-1.522) and 1.411 (1.064-1.872), respectively. Those with PPROM were divided into three groups according to gestational age: 22-27, 28-31, and 32-36 weeks. Women who were overweight or obese prior to pregnancy had a higher likelihood of experiencing PROM between 22 and 27 weeks of gestation. This finding remained consistent even after controlling for potential confounding factors, such as gestational diabetes mellitus (GDM), gestational hypertension, preeclampsia, hydramnios, cervical abnormalities, and a history of preterm birth. Conclusion Our research findings indicate that being overweight or obese before pregnancy is linked to a higher likelihood of experiencing PPROM. Therefore, achieving optimal weight before pregnancy is important to prevent PPROM and its associated complications.
Collapse
Affiliation(s)
- Hanxiang Sun
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiujuan Su
- Clinical Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Mao
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Qiaoling Du
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
34
|
Wang J, Xu J, Chao B, Liu H, Xie L, Qi H, Luo X. Hydrogen sulfide inhibits the rupture of fetal membranes throngh anti-aging pathways. Placenta 2023; 143:22-33. [PMID: 37793324 DOI: 10.1016/j.placenta.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION To investigate the relationship between hydrogen sulfide(H2S) and the senescence level of the fetal membranes, and to elucidate how H2S affects the integrity of the fetal membranes. METHODS The H2S and the senescence levels of fetal membranes, and the expressions of H2S synthase CBS and CSE were detected in the preterm (PT) group and the preterm premature ruptured membranes (pPROM) group. The effects of H2S donors and knockdown of CBS on the senescence level of amniotic epithelial cells, and the expression level of matrix metalloproteinases (MMPs) and epithelial-mesenchymal translation (EMT) were observed. RESULTS The level of H2S in the fetal membranes in the pPROM group is significantly lower than that in the PT group matched for gestational age. The level of H2S is negatively correlated with the senescence level of fetal membranes. Treatment with H2S donors reduced cell senescence and MMPs expression, but did not affect EMT. CBS siRNA transfection accelerated the senescence of amniotic epithelial cells, and promoted the expression of MMPs and EMT occurrence, but l-cysteine could reverse these effects. DISCUSSION Our study suggests that H2S, through its anti-aging effect, can influence the expression of MMPs and EMT, thereby contributing to the maintenance of fetal membrane integrity.
Collapse
Affiliation(s)
- Jie Wang
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Jiacheng Xu
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Bingdi Chao
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hongli Liu
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Lumei Xie
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hongbo Qi
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Xin Luo
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
35
|
Zhang X, He X, Wei L, He Y, Li Y, Wang Y, Li C. Nuclear erythroid 2-related factor 2 protects against reactive oxygen species -induced preterm premature rupture of membranes through regulation of mitochondria†. Biol Reprod 2023; 109:330-339. [PMID: 37427976 DOI: 10.1093/biolre/ioad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/08/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023] Open
Abstract
Preterm premature rupture of membranes (pPROM) is a major cause of preterm birth and neonatal mortality. Reactive oxygen species (ROS) have been identified as a critical factor in the development of pPROM. Mitochondria are known to be the primary source of ROS and play a vital role in maintaining cellular function. The Nuclear erythroid 2-related factor 2 (NRF2) has been demonstrated to play a crucial role in regulating mitochondrial function. However, research exploring the impact of NRF2-regulated mitochondria on pPROM is limited. Therefore, we collected fetal membrane tissues from pPROM and spontaneous preterm labor (sPTL) puerpera, measured the expression level of NRF2, and evaluated the degree of mitochondrial damage in both groups. In addition, we isolated human amniotic epithelial cells (hAECs) from the fetal membranes and used small interfering RNA (siRNA) to suppress NRF2 expression, enabling us to evaluate the impact of NRF2 on mitochondrial damage and ROS production. Our findings indicated that the expression level of NRF2 in pPROM fetal membranes was significantly lower than in sPTL fetal membranes, accompanied by increased mitochondrial damage. Furthermore, after the inhibition of NRF2 in hAECs, the degree of mitochondrial damage was significantly exacerbated, along with a marked increase in both cellular and mitochondrial ROS levels. The regulation of the mitochondrial metabolic process via NRF2 in fetal membranes has the potential to influence ROS production.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, 401147, China
| | - Xiao He
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, 401147, China
| | - Linna Wei
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, 401147, China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, 401147, China
| | - Yang He
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, 401147, China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, 401147, China
| | - Yunlong Li
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, 401147, China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, 401147, China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, 400016, China
| | - Chunli Li
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, 401147, China
| |
Collapse
|
36
|
Lei WJ, Zhang F, Lin YK, Li MD, Pan F, Sun K, Wang WS. IL-33/ST2 axis of human amnion fibroblasts participates in inflammatory reactions at parturition. Mol Med 2023; 29:88. [PMID: 37403020 DOI: 10.1186/s10020-023-00668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/19/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Inflammation of the fetal membranes is an indispensable event of labor onset at both term and preterm birth. Interleukin-33 (IL-33) is known to participate in inflammation via ST2 (suppression of tumorigenicity 2) receptor as an inflammatory cytokine. However, it remains unknown whether IL-33/ST2 axis exists in human fetal membranes to promote inflammatory reactions in parturition. METHODS The presence of IL-33 and ST2 and their changes at parturition were examined with transcriptomic sequencing, quantitative real-time polymerase chain reaction, Western blotting or immunohistochemistry in human amnion obtained from term and preterm birth with or without labor. Cultured primary human amnion fibroblasts were utilized to investigate the regulation and the role of IL-33/ST2 axis in the inflammation reactions. A mouse model was used to further study the role of IL-33 in parturition. RESULTS Although IL-33 and ST2 expression were detected in both epithelial and fibroblast cells of human amnion, they are more abundant in amnion fibroblasts. Their abundance increased significantly in the amnion at both term and preterm birth with labor. Lipopolysaccharide, serum amyloid A1 and IL-1β, the inflammatory mediators pertinent to labor onset, could all induce IL-33 expression through NF-κB activation in human amnion fibroblasts. In turn, via ST2 receptor, IL-33 induced the production of IL-1β, IL-6 and PGE2 in human amnion fibroblasts via the MAPKs-NF-κB pathway. Moreover, IL-33 administration induced preterm birth in mice. CONCLUSION IL-33/ST2 axis is present in human amnion fibroblasts, which is activated in both term and preterm labor. Activation of this axis leads to increased production of inflammatory factors pertinent to parturition, and results in preterm birth. Targeting the IL-33/ST2 axis may have potential value in the treatment of preterm birth.
Collapse
Affiliation(s)
- Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China
| | - Yi-Kai Lin
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China.
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China.
| |
Collapse
|
37
|
Zhang F, Lu JW, Lei WJ, Li MD, Pan F, Lin YK, Wang WS, Sun K. Paradoxical Induction of ALOX15/15B by Cortisol in Human Amnion Fibroblasts: Implications for Inflammatory Responses of the Fetal Membranes at Parturition. Int J Mol Sci 2023; 24:10881. [PMID: 37446059 DOI: 10.3390/ijms241310881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammation of the fetal membranes is an indispensable event of parturition, with increasing prostaglandin E2 (PGE2) synthesis as one of the ultimate products that prime labor onset. In addition to PGE2, the fetal membranes also boast a large capacity for cortisol regeneration. It is intriguing how increased PGE2 synthesis is achieved in the presence of increasing amounts of classical anti-inflammatory glucocorticoids in the fetal membranes at parturition. 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) synthesized by lipoxygenase 15/15B (ALOX15/15B) has been shown to enhance inflammation-induced PGE2 synthesis in amnion fibroblasts. Here, we examined whether glucocorticoids could induce ALOX15/15B expression and 15(S)-HETE production to promote PGE2 synthesis in amnion fibroblasts at parturition. We found that cortisol and 15(S)-HETE abundance increased parallelly in the amnion at parturition. Cortisol induced ALOX15/15B expression and 15(S)-HETE production paradoxically in amnion fibroblasts. Mechanism study revealed that this paradoxical induction was mediated by p300-mediated histone acetylation and interaction of glucocorticoid receptor with transcription factors CREB and STAT3. Conclusively, cortisol regenerated in the fetal membranes can paradoxically induce ALOX15/15B expression and 15(S)-HETE production in human amnion fibroblasts, which may further assist in the induction of PGE2 synthesis in the inflammatory responses of the fetal membranes for parturition.
Collapse
Affiliation(s)
- Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Yi-Kai Lin
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| |
Collapse
|
38
|
Gai S, Wu Q, Zhang H. The change of inflammatory status and vaginal flora in pregnant women with premature rupture of membranes. J Med Microbiol 2023; 72. [PMID: 37097838 DOI: 10.1099/jmm.0.001678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Introduction. Premature rupture of the membrane (PROM) can trigger significant maternal complications, even maternal and fetal morbidity or mortality.Hypothesis. Inflammatory status and vaginal flora might be utilized to predict the occurrence of PROM.Aim. To explore the association between the occurrence of PROM and vaginal flora and inflammatory status alteration.Methodology. A case-control cross-sectional study was carried out on 140 pregnant women with or without PROM. Socio-demographic characteristics, vaginal flora assessment, pregnant outcomes and Apgar score information were retrieved.Results. Pregnant women with PROM showed an increased incidence of vulvovaginal candidiasis (VVC), trichomonas vaginitis (TV) and bacterial vaginitis (BV) with dysregulated vaginal flora and diminished fetal tolerance of labour indicated by down-regulated Apgar score. The increased rate of prematurity, puerperal infection and neonatal infection could be detected in PROM patients with imbalanced vaginal flora compared with PROM patients with normal vaginal flora. ROC analysis suggested IL-6 and TNF-α yielded the best discrimination for the prediction of PROM.Conclusion. Altered vaginal and inflammatory status are associated with PROM, and IL-6 and TNF-α can predict the occurrence of PROM.
Collapse
Affiliation(s)
- Shukun Gai
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai 264000, Shandong, PR China
| | - Qian Wu
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai 264000, Shandong, PR China
| | - Huijie Zhang
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai 264000, Shandong, PR China
| |
Collapse
|
39
|
Amabebe E, Richardson LS, Bento GFC, Radnaa E, Kechichian T, Menon R, Anumba DOC. Ureaplasma parvum infection induces inflammatory changes in vaginal epithelial cells independent of sialidase. Mol Biol Rep 2023; 50:3035-3043. [PMID: 36662453 DOI: 10.1007/s11033-022-08183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/07/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Ureaplasma, a genus of the order Mycoplasmatales and commonly grouped with Mycoplasma as genital mycoplasma is one of the most common microbes isolated from women with infection/inflammation-associated preterm labor (PTL). Mycoplasma spp. produce sialidase that cleaves sialic acid from glycans of vaginal mucous membranes and facilitates adherence and invasion of the epithelium by pathobionts, and dysregulated immune response. However, whether Ureaplasma species can induce the production of sialidase is yet to be demonstrated. We examined U. parvum-infected vaginal epithelial cells (VECs) for the production of sialidase and pro-inflammatory cytokines. METHODS Immortalized VECs were cultured in appropriate media and treated with U. parvum in a concentration of 1 × 105 DNA copies/ml. After 24 h of treatment, cells and media were harvested. To confirm infection and cell uptake, immunocytochemistry for multi-banded antigen (MBA) was performed. Pro-inflammatory cytokine production and protein analysis for sialidase confirmed pro-labor pathways. RESULTS Infection of VECs was confirmed by the presence of intracellular MBA. Western blot analysis showed no significant increase in sialidase expression from U. parvum-treated VECs compared to uninfected cells. However, U. parvum infection induced 2-3-fold increased production of GM-CSF (p = 0.03), IL-6 (p = 0.01), and IL-8 (p = 0.01) in VECs compared to controls. CONCLUSION U. parvum infection of VECs induced inflammatory imbalance associated with vaginal dysbiosis but did not alter sialidase expression at the cellular level. These data suggest that U. parvum's pathogenic effect could be propagated by locally produced pro-inflammatory cytokines and, unlike other genital mycoplasmas, may be independent of sialidase.
Collapse
Affiliation(s)
- Emmanuel Amabebe
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Lauren S Richardson
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Giovana Fernanda Cosi Bento
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.,Department of Pathology, Universidade Estadual Paulista, Botucatu Medical School, Botucatu, Brazil
| | - Enkhtuya Radnaa
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Talar Kechichian
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA. .,Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd, 77555-1062, Galveston, TX, USA.
| | - Dilly O C Anumba
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK. .,Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, The University of Sheffield, 4th Floor, Jessop Wing, Tree Root Walk, S10 2SF, Sheffield, UK.
| |
Collapse
|
40
|
Kyathanahalli C, Snedden M, Hirsch E. Is human labor at term an inflammatory condition?†. Biol Reprod 2023; 108:23-40. [PMID: 36173900 PMCID: PMC10060716 DOI: 10.1093/biolre/ioac182] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 01/20/2023] Open
Abstract
Parturition at term in normal pregnancy follows a predictable sequence of events. There is some evidence that a state of inflammation prevails in the reproductive tissues during labor at term, but it is uncertain whether this phenomenon is the initiating signal for parturition. The absence of a clear temporal sequence of inflammatory events prior to labor casts doubt on the concept that normal human labor at term is primarily the result of an inflammatory cascade. This review examines evidence linking parturition and inflammation in order to address whether inflammation is a cause of labor, a consequence of labor, or a separate but related phenomenon. Finally, we identify and suggest ways to reconcile inconsistencies regarding definitions of labor onset in published research, which may contribute to the variability in conclusions regarding the genesis and maintenance of parturition. A more thorough understanding of the processes underlying normal parturition at term may lead to novel insights regarding abnormal labor, including spontaneous preterm labor, preterm premature rupture of the fetal membranes, and dysfunctional labor, and the role of inflammation in each.
Collapse
Affiliation(s)
- Chandrashekara Kyathanahalli
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois, USA
- Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Madeline Snedden
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Emmet Hirsch
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois, USA
- Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
41
|
Fasoulakis Z, Koutras A, Ntounis T, Antsaklis P, Theodora M, Valsamaki A, Daskalakis G, Kontomanolis EN. Inflammatory Molecules Responsible for Length Shortening and Preterm Birth. Cells 2023; 12:cells12020209. [PMID: 36672145 PMCID: PMC9856720 DOI: 10.3390/cells12020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
It is estimated that inflammation at the placental-maternal interface is directly responsible for or contributes to the development of 50% of all premature deliveries. Chorioamnionitis, also known as the premature rupture of the amniotic membrane in the mother, is the root cause of persistent inflammation that preterm newborns experience. Beyond contributing to the onset of early labor, inflammation is a critical element in advancing several conditions in neonates, including necrotizing enterocolitis, retinopathy of prematurity, bronchopulmonary dysplasia, intraventricular hemorrhage, retinopathy of prematurity and periventricular leukomalacia. Notably, the immune systems of preterm infants are not fully developed; immune defense mechanisms and immunosuppression (tolerance) have a delicate balance that is easily upset in this patient category. As a result, premature infants are exposed to different antigens from elements such as hospital-specific microbes, artificial devices, medications, food antigens and hypoxia/hyperoxia. This has detrimental implications for preterm deliveries of less than 28 weeks because they have not yet evolved the mechanisms to tolerate maternal and self-antigens.
Collapse
Affiliation(s)
- Zacharias Fasoulakis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, General Hospital Alexandra, 11528 Athens, Greece
- Correspondence:
| | - Antonios Koutras
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, General Hospital Alexandra, 11528 Athens, Greece
| | - Thomas Ntounis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, General Hospital Alexandra, 11528 Athens, Greece
| | - Panos Antsaklis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, General Hospital Alexandra, 11528 Athens, Greece
| | - Marianna Theodora
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, General Hospital Alexandra, 11528 Athens, Greece
| | - Asimina Valsamaki
- Department of Internal Medicine, Koutlimbaneio and Triantafylleio General Hospital of Larissa, 41221 Larissa, Greece
| | - George Daskalakis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, General Hospital Alexandra, 11528 Athens, Greece
| | - Emmanuel N. Kontomanolis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
42
|
Huang X, Liao J, Feng F, Chen S, Liao E, Li D, Dai X, Dong J, Shao Y. Combined Application of Exosomes and FPR2 Agonist LXA4 in Controlling Fetal Membrane Inflammation and Promoting Fetal Membrane Tissue Repair. Reprod Sci 2022; 30:1979-1993. [DOI: 10.1007/s43032-022-01148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
|
43
|
Wang C, Yu G, Menon R, Zhong N, Qiao C, Cai J, Wang W, Zhang H, Liu M, Sun K, Kan H, Zhang J. Acute and chronic maternal exposure to fine particulate matter and prelabor rupture of the fetal membranes: A nation-wide survey in China. ENVIRONMENT INTERNATIONAL 2022; 170:107561. [PMID: 36209598 DOI: 10.1016/j.envint.2022.107561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Prelabor rupture of the fetal membranes (PROM) is a major contributor to adverse perinatal outcomes. Some epidemiologic studies explored the association between maternal PM2.5 exposure and PROM but failed to treat the labor induction and prelabor cesarean section as censored observations. OBJECTIVE We aimed to evaluated whether acute and chronic maternal ambient PM2.5 exposure may increase the risk of PROM in China. METHODS This study was based on the China Labor and Delivery Survey, a nationwide multicenter investigation. Included in the current analysis were 45,879 singleton spontaneous births in 96 hospitals in mainland China from 2015 to 2017. Outcomes were PROM, preterm PROM (<37 weeks' gestation) and term PROM (≥37 weeks' gestation). Daily concentration of PM2.5 at 1 km spatial resolution was estimated by gap-filling model. Generalized linear mixed model and mixed effects Cox model were applied to assess the associations of acute (from 0 to 4 days before delivery) and chronic (average gestational and trimester-specific) ambient PM2.5 exposure with outcomes, respectively. RESULTS Significant associations were found between acute PM2.5 exposures (per interquartile range increase) and the risk of preterm PROM (OR = 1.11; 95 % CI: 1.03, 1.19 for PM2.5 on delivery day; OR = 1.10; 95 % CI: 1.02, 1.18 for PM2.5 1 day before delivery) but not for term PROM. An interquartile range increase in PM2.5 during the second trimester was associated with elevated risks of PROM (HR = 1.14; 95 % CI: 1.07, 1.22), preterm PROM (HR = 1.22; 95 % CI: 1.02, 1.45) and term PROM (HR = 1.13; 95 % CI: 1.06, 1.22), respectively. Women who were less educated, obese, or gave birth in a cold season appeared to be more sensitive to ambient PM2.5 exposure. CONCLUSION Our findings suggest that both acute and chronic maternal exposures to ambient PM2.5 during pregnancy are risk factors for PROM.
Collapse
Affiliation(s)
- Cuiping Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoqi Yu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology/Cell Biology at the University Texas Medical Branch at Galveston, TX, U.S.A
| | - Nanbert Zhong
- The New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, U.S.A
| | - Chong Qiao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing Cai
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Weidong Wang
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Huijuan Zhang
- Department of Pathology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Liu
- Department of Obstetrics, Shanghai Oriental Hospital, Tongji University, Shanghai, China
| | - Kang Sun
- Center for Reproductive Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haidong Kan
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
44
|
Richardson LS, K Kammala A, Costantine MM, Fortunato SJ, Radnaa E, Kim S, Taylor RN, Han A, Menon R. Testing of drugs using human feto-maternal interface organ-on-chips provide insights into pharmacokinetics and efficacy. LAB ON A CHIP 2022; 22:4574-4592. [PMID: 36322152 PMCID: PMC9682442 DOI: 10.1039/d2lc00691j] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/07/2022] [Indexed: 06/01/2023]
Abstract
Objectives: To improve preclinical drug testing during pregnancy, we developed multiple microfluidic organ-on-chip (OOC) devices that represent the structure, functions, and responses of the two feto-maternal interfaces (FMis) in humans (fetal membrane [FMi-OOC] and placenta [PLA-OOC]). This study utilized feto-maternal interface OOCs to test the kinetics and efficacy of drugs during pregnancy. Study design: The FMi-OOC contained amnion epithelial, mesenchymal, chorion trophoblast, and decidual cells. The PLA-OOC contained cytotrophoblasts (BeWo), syncytiotrophoblasts (BeWo + forskolin), and human umbilical vein endothelial cell lines. Therapeutic concentrations of either pravastatin or rosuvastatin (200 ng mL-1), a model drug for these experiments, were applied to either decidua (in FMi-OOC) and syncytiotrophoblasts (in PLA-OOC) chambers under normal and oxidative stress conditions (induced by cigarette smoke extract [CSE 1 : 25]) to evaluate maternal drug exposure during normal pregnancy or oxidative stress (OS) associated pathologies, respectively. We determined statin pharmacokinetics and metabolism (LC-MS/MS), drug-induced cytotoxicity (LDH assay), and efficacy to reduce OS-induced inflammation (multiplex cytokine assay). Results: Both OOCs mimicked two distinct human feto-maternal interfaces. The drugs tested permeated the maternal-fetal cell layers of the FMi-OOC and PLA-OOC within 4 hours and generated cell and time-specific statin metabolites from various cell types without causing any cytotoxicity. OS-induced pro-inflammatory cytokines were effectively reduced by statins by increasing anti-inflammatory cytokine response across the FMi-OOC and PLA-OOC. Conclusion: Two distinct feto-maternal interface OOCs were developed, tested, and validated for their utility to conduct preclinical trials during pregnancy. We demonstrated that the placenta and fetal membranes-decidual interface both are able to transport and metabolize drugs and that the safety and efficacy of a drug can be determined using the anatomical structures recreated on OOCs.
Collapse
Affiliation(s)
- Lauren S Richardson
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, Division of Basic Science and Translational Medicine, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, Texas, USA.
| | - Ananth K Kammala
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, Division of Basic Science and Translational Medicine, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, Texas, USA.
| | - Maged M Costantine
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Stephen J Fortunato
- Obstetrics and Gynecology, Maternal-Fetal Medicine, Ochsner Medical Center, New Orleans, LA, USA
| | - Enkhtuya Radnaa
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, Division of Basic Science and Translational Medicine, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, Texas, USA.
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, Division of Basic Science and Translational Medicine, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, Texas, USA.
| |
Collapse
|
45
|
Vidal MS, Lintao RCV, Severino MEL, Tantengco OAG, Menon R. Spontaneous preterm birth: Involvement of multiple feto-maternal tissues and organ systems, differing mechanisms, and pathways. Front Endocrinol (Lausanne) 2022; 13:1015622. [PMID: 36313741 PMCID: PMC9606232 DOI: 10.3389/fendo.2022.1015622] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Survivors of preterm birth struggle with multitudes of disabilities due to improper in utero programming of various tissues and organ systems contributing to adult-onset diseases at a very early stage of their lives. Therefore, the persistent rates of low birth weight (birth weight < 2,500 grams), as well as rates of neonatal and maternal morbidities and mortalities, need to be addressed. Active research throughout the years has provided us with multiple theories regarding the risk factors, initiators, biomarkers, and clinical manifestations of spontaneous preterm birth. Fetal organs, like the placenta and fetal membranes, and maternal tissues and organs, like the decidua, myometrium, and cervix, have all been shown to uniquely respond to specific exogenous or endogenous risk factors. These uniquely contribute to dynamic changes at the molecular and cellular levels to effect preterm labor pathways leading to delivery. Multiple intervention targets in these different tissues and organs have been successfully tested in preclinical trials to reduce the individual impacts on promoting preterm birth. However, these preclinical trial data have not been effectively translated into developing biomarkers of high-risk individuals for an early diagnosis of the disease. This becomes more evident when examining the current global rate of preterm birth, which remains staggeringly high despite years of research. We postulate that studying each tissue and organ in silos, as how the majority of research has been conducted in the past years, is unlikely to address the network interaction between various systems leading to a synchronized activity during either term or preterm labor and delivery. To address current limitations, this review proposes an integrated approach to studying various tissues and organs involved in the maintenance of normal pregnancy, promotion of normal parturition, and more importantly, contributions towards preterm birth. We also stress the need for biological models that allows for concomitant observation and analysis of interactions, rather than focusing on these tissues and organ in silos.
Collapse
Affiliation(s)
- Manuel S. Vidal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ryan C. V. Lintao
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mary Elise L. Severino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ourlad Alzeus G. Tantengco
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
46
|
Gurbuz O, Yorgancı A, Ozgu-Erdinc AS, Tasci Y. First trimester screening of serum advanced glycation end products levels of pregnant women who have risk factors for gestational diabetes and their obstetric outcomes: a preliminary case-control study. J OBSTET GYNAECOL 2022; 42:3048-3054. [PMID: 35653797 DOI: 10.1080/01443615.2022.2081796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Advanced glycation end-products (AGE) are complex compounds formed by nonenzymatic glycosylation of proteins, nucleic acids, and lipids with glucose in the blood. We aimed to investigate whether there was a difference in first-trimester serum AGE levels of pregnant women with and without risk factors for gestational diabetes mellitus (GDM) and their obstetric outcomes. There were 44 women in study group who have risk factors for GDM and 44 as controls. Demographic features, serum AGE levels, adverse perinatal and neonatal outcomes were compared between groups. Five patients (11.4%) in the study group and one patient (2.3%) in the control group were diagnosed as GDM (p = .2). The serum AGE values were not statistically different between the study and control groups. There were no statistical differences between groups in terms of adverse perinatal and neonatal outcomes. However, in the group with adverse perinatal outcome (n = 25), AGE values were higher than the control group. The results of our preliminary study suggested that high-risk women for GDM did not have increased serum levels of AGE in the first trimester. Nevertheless, a high first-trimester serum AGE level was found to be associated with adverse perinatal outcomes. IMPACT STATEMENTWhat is already known on this subject? Advanced glycation end products (AGE) are markers that are associated with diabetes and its complications. For pregnant women, a high third trimester serum AGEs levels were found in women who had gestational diabetes.What do the results of this study add? The results of our study revealed that first trimester screening of serum AGE levels of women who had risk factors for gestational diabetes was not discriminate. Nevertheless, a high first trimester serum AGE levels was associated with adverse perinatal outcome.What are the implications of these findings for clinical practice and/or further research? Whether reducing exogenous sources of AGE (western-style diet, smoking) before pregnancy will be associated with better pregnancy outcomes should be investigated in future studies.
Collapse
Affiliation(s)
- Ozge Gurbuz
- Clinics of Obstetrics and Gynecology, Ministry of Health, Gaziantep Şehitkamil State Hospital, Gaziantep, Turkey
| | - Ayçağ Yorgancı
- Department of Obstetrics and Gynecology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - A Seval Ozgu-Erdinc
- Department of Obstetrics and Gynecology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Yasemin Tasci
- School of Medicine, Department of Obstetrics and Gynecology, Kütahya Health Sciences University, Kütahya, Turkey
| |
Collapse
|
47
|
Menon R. Epithelial to mesenchymal transition (EMT) of feto-maternal reproductive tissues generates inflammation: a detrimental factor for preterm birth. BMB Rep 2022. [PMID: 35880430 PMCID: PMC9442346 DOI: 10.5483/bmbrep.2022.55.8.174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human pregnancy is a delicate and complex process where multiorgan interactions between two independent systems, the mother, and her fetus, maintain pregnancy. Intercellular interactions that can define homeostasis at the various cellular level between the two systems allow uninterrupted fetal growth and development until delivery. Interactions are needed for tissue remodeling during pregnancy at both fetal and maternal tissue layers. One of the mechanisms that help tissue remodeling is via cellular transitions where epithelial cells undergo a cyclic transition from epithelial to mesenchymal (EMT) and back from mesenchymal to epithelial (MET). Two major pregnancy-associated tissue systems that use EMT, and MET are the fetal membrane (amniochorion) amnion epithelial layer and cervical epithelial cells and will be reviewed here. EMT is often associated with localized inflammation, and it is a well-balanced process to facilitate tissue remodeling. Cyclic transition processes are important because a terminal state or the static state of EMT can cause accumulation of proinflammatory mesenchymal cells in the matrix regions of these tissues and increase localized inflammation that can cause tissue damage. Interactions that determine homeostasis are often controlled by both endocrine and paracrine mediators. Pregnancy maintenance hormone progesterone and its receptors are critical for maintaining the balance between EMT and MET. Increased intrauterine oxidative stress at term can force a static (terminal) EMT and increase inflammation that are physiologic processes that destabilize homeostasis that maintain pregnancy to promote labor and delivery of the fetus. However, conditions that can produce an untimely increase in EMT and inflammation can be pathologic. These tissue damages are often associated with adverse pregnancy complications such as preterm prelabor rupture of the membranes (pPROM) and spontaneous preterm birth (PTB). Therefore, an understanding of the biomolecular processes that maintain cyclic EMT-MET is critical to reducing the risk of pPROM and PTB. Extracellular vesicles (exosomes of 40-160 nm) that can carry various cargo are involved in cellular transitions as paracrine mediators. Exosomes can carry a variety of biomolecules as cargo. Studies specifically using exosomes from cells undergone EMT can carry a pro-inflammatory cargo and in a paracrine fashion can modify the neighboring tissue environment to cause enhancement of uterine inflammation.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston 77555-1062, TX, USA
| |
Collapse
|
48
|
Lin YK, Zhu P, Wang WS, Sun K. Serum amyloid A, a host-derived DAMP in pregnancy? Front Immunol 2022; 13:978929. [PMID: 35990700 PMCID: PMC9390978 DOI: 10.3389/fimmu.2022.978929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Serum amyloid A (SAA) is one of the acute phase proteins released primarily from the liver in response to infection, inflammation and trauma. Emerging evidence indicates that SAA may function as a host-derived damage-associated molecular pattern (DAMP) protein to sense danger signals in pregnancy. The plasma SAA levels in maternal circulation are significantly increased in normal parturition, particularly in postpartum, as well as in gestational disorders such as premature preterm rupture of membranes, pre-eclampsia, gestational diabetes, and recurrent spontaneous abortion. It is likely that SAA acts as a non-specific DAMP molecule in response to inflammation and trauma experienced under these conditions. Notably, SAA can also be synthesized locally in virtually all gestational tissues. Within these gestational tissues, under the induction by bacterial products, pro-inflammatory cytokines and stress hormone glucocorticoids, SAA may exert tissue-specific effects as a toll-like receptor 4 (TLR4)-sensed DAMP molecule. SAA may promote parturition through stimulation of inflammatory reactions via induction of pro-inflammatory cytokines, chemokines, adhesion molecules and prostaglandins in the uterus, fetal membranes and placenta. In the fetal membranes, SAA may also facilitate membrane rupture through induction of matrix metalloproteases (MMPs)- and autophagy-mediated collagen breakdown and attenuation of lysyl oxidase-mediated collagen cross-linking. SAA synthesized in extravillous trophoblasts may promote their invasiveness into the endometrium in placentation. Here, we summarized the current understanding of SAA in pregnancy with an aim to stimulate in-depth investigation of SAA in pregnancy, which may help better understand how inflammation is initiated in gestational tissues in both normal and abnormal pregnancies.
Collapse
Affiliation(s)
- Yi-kai Lin
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Ping Zhu
- Department of Obstetrics and Gynecology, No.971 Hospital of the PLA Navy, Qingdao, China
| | - Wang-sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- *Correspondence: Kang Sun,
| |
Collapse
|
49
|
Wan S, Chen P, Gu M, Liu J, Zhou Q, Zhang F, Lu Y, Li L, Wang X. Fetal Lung-Derived Exosomes in Term Labor Amniotic Fluid Induce Amniotic Membrane Senescence. Front Cell Dev Biol 2022; 10:889861. [PMID: 35859898 PMCID: PMC9289145 DOI: 10.3389/fcell.2022.889861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The mechanism of parturition is still unclear. Evidence has shown that delivery is associated with cellular senescence of the amniotic membrane. We isolated fetal lung-associated exosomes from the amniotic fluid from term labor (TL-exos) and verified that the exosomes can cause primary human amniotic epithelial cell (hAEC) senescence and apoptosis and can release higher levels of senescence-associated secretory phenotype (SASP)-related molecules and proinflammatory damage-associated molecular patterns (DAMPs) than exosomes isolated from the amniotic fluid from term not in labor (TNIL-exos). The human lung carcinoma cell lines (A549) can be used as an alternative to alveolar type 2 epithelial cells producing pulmonary surfactant. Therefore, we isolated A549 cell-derived exosomes (A549-exos) and found that they can trigger hAEC to undergo the same aging process. Finally, the animal experiments suggested that A549-exos induced vaginal bleeding and preterm labor in pregnant mice. Therefore, we conclude that exosomes derived from fetal lungs in term labor amniotic fluid induce amniotic membrane senescence, which may provide new insight into the mechanism of delivery.
Collapse
Affiliation(s)
- Shuting Wan
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated with Shandong University, Jinan, China
| | - Pengzheng Chen
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated with Shandong University, Jinan, China
| | - Mengqi Gu
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated with Shandong University, Jinan, China
| | - Jing Liu
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated with Shandong University, Jinan, China
| | - Qian Zhou
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated with Shandong University, Jinan, China
| | - Fengyuan Zhang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Yuan Lu
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated with Shandong University, Jinan, China
- *Correspondence: Lei Li, ; Yuan Lu, ; Xietong Wang,
| | - Lei Li
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated with Shandong University, Jinan, China
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated with Shandong First Medical University, Jinan, China
- The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, China
- *Correspondence: Lei Li, ; Yuan Lu, ; Xietong Wang,
| | - Xietong Wang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated with Shandong University, Jinan, China
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated with Shandong First Medical University, Jinan, China
- The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, China
- Department of Obstetrics and Gynaecology, Maternal and Child Health Care of Shandong Province, Jinan, China
- The Laboratory of Placenta-Related Diseases, Key Laboratory of Birth Regulation and Control Technology of the National Health and Family Planning Commission of China, Jinan, China
- *Correspondence: Lei Li, ; Yuan Lu, ; Xietong Wang,
| |
Collapse
|
50
|
Canada's Colonial Genocide of Indigenous Peoples: A Review of the Psychosocial and Neurobiological Processes Linking Trauma and Intergenerational Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116455. [PMID: 35682038 PMCID: PMC9179992 DOI: 10.3390/ijerph19116455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022]
Abstract
The policies and actions that were enacted to colonize Indigenous Peoples in Canada have been described as constituting cultural genocide. When one considers the long-term consequences from the perspective of the social and environmental determinants of health framework, the impacts of such policies on the physical and mental health of Indigenous Peoples go well beyond cultural loss. This paper addresses the impacts of key historical and current Canadian federal policies in relation to the health and well-being of Indigenous Peoples. Far from constituting a mere lesson in history, the connections between colonialist policies and actions on present-day outcomes are evaluated in terms of transgenerational and intergenerational transmission processes, including psychosocial, developmental, environmental, and neurobiological mechanisms and trauma responses. In addition, while colonialist policies have created adverse living conditions for Indigenous Peoples, resilience and the perseverance of many aspects of culture may be maintained through intergenerational processes.
Collapse
|