1
|
Karacosta LG, Pancirer D, Preiss JS, Benson JA, Trope W, Shrager JB, Sung AW, Neal JW, Bendall SC, Wakelee H, Plevritis SK. Phenotyping EMT and MET cellular states in lung cancer patient liquid biopsies at a personalized level using mass cytometry. Sci Rep 2023; 13:21781. [PMID: 38065965 PMCID: PMC10709404 DOI: 10.1038/s41598-023-46458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Malignant pleural effusions (MPEs) can be utilized as liquid biopsy for phenotyping malignant cells and for precision immunotherapy, yet MPEs are inadequately studied at the single-cell proteomic level. Here we leverage mass cytometry to interrogate immune and epithelial cellular profiles of primary tumors and pleural effusions (PEs) from early and late-stage non-small cell lung cancer (NSCLC) patients, with the goal of assessing epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) states in patient specimens. By using the EMT-MET reference map PHENOSTAMP, we observe a variety of EMT states in cytokeratin positive (CK+) cells, and report for the first time MET-enriched CK+ cells in MPEs. We show that these states may be relevant to disease stage and therapy response. Furthermore, we found that the fraction of CD33+ myeloid cells in PEs was positively correlated to the fraction of CK+ cells. Longitudinal analysis of MPEs drawn 2 months apart from a patient undergoing therapy, revealed that CK+ cells acquired heterogeneous EMT features during treatment. We present this work as a feasibility study that justifies deeper characterization of EMT and MET states in malignant cells found in PEs as a promising clinical platform to better evaluate disease progression and treatment response at a personalized level.
Collapse
Affiliation(s)
- Loukia G Karacosta
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Danny Pancirer
- Stanford Cancer Institute - Clinical Trials Office, Stanford University, Stanford, CA, 94305, USA
| | - Jordan S Preiss
- Stanford Cancer Institute - Clinical Trials Office, Stanford University, Stanford, CA, 94305, USA
| | - Jalen A Benson
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
| | - Winston Trope
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
| | - Joseph B Shrager
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
- Palo Alto VA Health Care System, Palo Alto, USA
| | - Arthur Wai Sung
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Joel W Neal
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Sean C Bendall
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Heather Wakelee
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Sylvia K Plevritis
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA.
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
2
|
Tang R, Wang H, Tang M. Roles of tissue-resident immune cells in immunotherapy of non-small cell lung cancer. Front Immunol 2023; 14:1332814. [PMID: 38130725 PMCID: PMC10733439 DOI: 10.3389/fimmu.2023.1332814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common and lethal type of lung cancer, with limited treatment options and poor prognosis. Immunotherapy offers hope for improving the survival and quality of life of NSCLC patients, but its efficacy depends on the tumor immune microenvironment (TME). Tissue-resident immune cells are a subset of immune cells that reside in various tissues and organs, and play an important role in fighting tumors. In NSCLC, tissue-resident immune cells are heterogeneous in their distribution, phenotype, and function, and can either promote or inhibit tumor progression and response to immunotherapy. In this review, we summarize the current understanding on the characteristics, interactions, and roles of tissue-resident immune cells in NSCLC. We also discuss the potential applications of tissue-resident immune cells in NSCLC immunotherapy, including immune checkpoint inhibitors (ICIs), other immunomodulatory agents, and personalized cell-based therapies. We highlight the challenges and opportunities for developing targeted therapies for tissue-resident immune cells and optimizing existing immunotherapeutic approaches for NSCLC patients. We propose that tissue-resident immune cells are a key determinant of NSCLC outcome and immunotherapy response, and warrant further investigation in future research.
Collapse
Affiliation(s)
- Rui Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Haitao Wang
- The School of Clinical Medical Sciences, Southwest Medical University, Sichuan, Luzhou, China
| | - Mingxi Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathology, Yaan People’s Hospital (Yaan Hospital of West China Hospital of Sichuan University), Yaan, Sichuan, China
| |
Collapse
|
3
|
Gaudilliere D, Gaudilliere B. Harnessing the n+1 dimensions of single-cell omics data for the prediction and prevention of human diseases. Semin Immunopathol 2023; 45:1-2. [PMID: 36853420 PMCID: PMC10047610 DOI: 10.1007/s00281-023-00985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Dyani Gaudilliere
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|