1
|
Zhang R, Zhou L, Xie L, Lu L, Zhou H, Yang Y, Hu J. Metabolite profiling and adaptation mechanisms of Aspergillus cristatus under pH stress. Front Microbiol 2025; 16:1576132. [PMID: 40236484 PMCID: PMC11998282 DOI: 10.3389/fmicb.2025.1576132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/11/2025] [Indexed: 04/17/2025] Open
Abstract
Introduction pH is an important environmental factor affecting the survival of fungi, and Aspergillus cristatus, which can grow and reproduce over a wide range of pH, is suitable for studying their adaptation mechanism to pH stress. Methods In this study, A. cristatus was cultured on plates of different initial pH (pH 3.8-8.0), with the results revealing distinct morphologies at pH 3.0-5.0, pH 6.0-7.0 and pH 8.0. Liquid chromatography-mass spectrometry (LC-MS) and multivariate analysis subsequently were used to analyze the changes of substance metabolism of A. cristatus at different pH. Results and discussion LC-MS and multivariate analyses showed that A. cristatus's growth at different pH involved significantly different metabolites. In particular, comparing pH 4.0 vs pH 6.0, pH 6.0 vs pH 8.0 and pH 4.0 vs pH 8.0 revealed a total of 317, 171 and 404 significantly different substances, respectively. Finally, as the pH changed from 4.0 to 6.0 to 8.0, eight changes in the patterns of differential substances were identified. At low pH, A. cristatus accumulated large amounts of energy substances (e.g., adenosine), active antioxidants (e.g., glutathione) and osmo-protective substances (e.g., raffinose). In contrast, at high pH, large amounts of phosphatidylcholine (PC), lysophosphatidyl ethanolamine (LPE), lysophosphatidyl choline (LPC), lysophosphatidyl serine (LPS) related to biofilms were synthesized, alongside antioxidants (e.g., formononetin) and acidic substances. The aforementioned results indicate that A. cristatus adapts to changes in pH by adjusting their metabolite synthesis. Therefore, under unsuitable pH environments, A. cristatus synthesizes specific sets of metabolites that play key roles to cope with the stress.
Collapse
Affiliation(s)
- Rongrong Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Lihong Zhou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Luyi Xie
- PingBa No.1 Senior High School in Anshun City, Anshun, China
| | - Lingqing Lu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Hang Zhou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Yi Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Jiuping Hu
- Ya’an Xunkang Pharmaceutical Co., Ltd., Ya’an, China
| |
Collapse
|
2
|
Peralta FT, Shi C, Widanagamage GW, Speight RE, O'Hara I, Zhang Z, Navone L, Behrendorff JB. Pretreated sugarcane bagasse matches performance of synthetic media for lipid production with Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2024; 413:131558. [PMID: 39362341 DOI: 10.1016/j.biortech.2024.131558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/25/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Engineered strains of Yarrowia lipolytica with modified lipid profiles and other desirable properties for microbial oil production are widely reported but are almost exclusively characterized in synthetic laboratory-grade media. Ensuring translatable performance between synthetic media and industrially scalable lignocellulosic feedstocks is a critical challenge. Yarrowia lipolytica growth and lipid production were characterized in media derived from two-step acid-catalyzed glycerol pretreatment of sugarcane bagasse. Fermentation performance was benchmarked against laboratory-grade synthetic growth media, including detailed characterization of media composition, nitrogen utilization, biomass and lipid production, and fatty acid product profile. A Yarrowia lipolytica strain modified to enable xylose consumption consumed all sugars, glycerol, and acetic acid, accumulating lipids to 34-44 % of cell dry weight. Growth and lipid content when grown in sugarcane bagasse-derived media were equivalent to or better than that observed with synthetic media. These sugarcane bagasse-derived media are suitable for transferable development of Yarrowia lipolytica fermentations from synthetic media.
Collapse
Affiliation(s)
- Francisco T Peralta
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School for Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Changrong Shi
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Gevindu Wathsala Widanagamage
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Robert E Speight
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School for Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Advanced Engineering Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD 4102, Australia.
| | - Ian O'Hara
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Industrial Transformation Training Centre for Bioplastics and Biocomposites, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Zhanying Zhang
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Laura Navone
- ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School for Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - James B Behrendorff
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School for Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| |
Collapse
|
3
|
Timoumi A, Nguyen TC, Le T, Kraiem H, Cescut J, Anne-Archard D, Gorret N, Molina-Jouve C, To KA, Fillaudeau L. Comparison of methods to explore the morphology and granulometry of biological particles with complex shapes: Interpretation and limitations. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.118067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
4
|
Lesage J, Timoumi A, Cenard S, Lombard E, Lee HLT, Guillouet SE, Gorret N. Accelerostat study in conventional and microfluidic bioreactors to assess the key role of residual glucose in the dimorphic transition of Yarrowia lipolytica in response to environmental stimuli. N Biotechnol 2021; 64:37-45. [PMID: 34058397 DOI: 10.1016/j.nbt.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 11/19/2022]
Abstract
Yarrowia lipolytica, with a diverse array of biotechnological applications, is able to grow as ovoid yeasts or filamentous hyphae depending on environmental conditions. This study has explored the relationship between residual glucose levels and dimorphism in Y. lipolytica. Under pH stress conditions, the morphological and physiological characteristics of the yeast were examined during well-controlled accelerostat cultures using both a 1 L-laboratory scale and a 1 mL-microfluidic bioreactor. The accelerostat mode, via a smooth increase of dilution rate (D), enabled the cell growth rate to increase gradually up to the cell wash-out (D ≥μmax of the strain), which was accompanied by a progressive increase in residual glucose concentration. The results showed that Y. lipolytica maintained an ovoid morphology when residual glucose concentration was below a threshold value of around 0.35-0.37 mg L-1. Transitions towards more elongated forms were triggered at this threshold and progressively intensified with the increase in residual glucose levels. The effect of cAMP on the dimorphic transition was assessed by the exogenous addition of cAMP and the quantification of its intracellular levels during the accelerostat. cAMP has been reported to be an important mediator of environmental stimuli that inhibit filamentous growth in Y. lipolytica by activating the cAMP-PKA regulatory pathway. It was confirmed that the exogenous addition of cAMP inhibited the mycelial morphology of Y. lipolytica, even with glucose concentrations exceeding the threshold level. The results suggest that dimorphic responses in Y. lipolytica are regulated by sugar signaling pathways, most likely via the cAMP-PKA dependent pathway.
Collapse
Affiliation(s)
- Julie Lesage
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil. 35077, Toulouse Cedex, France
| | - Asma Timoumi
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil. 35077, Toulouse Cedex, France
| | - Stéphanie Cenard
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil. 35077, Toulouse Cedex, France
| | - Eric Lombard
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil. 35077, Toulouse Cedex, France
| | - Harry L T Lee
- Erbi Bio, Inc, 325 New Boston Stress, Unit 6, Woburn, MA, 01801, USA
| | - Stéphane E Guillouet
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil. 35077, Toulouse Cedex, France
| | - Nathalie Gorret
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil. 35077, Toulouse Cedex, France.
| |
Collapse
|
5
|
The pH-Responsive Transcription Factors YlRim101 and Mhy1 Regulate Alkaline pH-Induced Filamentation in the Dimorphic Yeast Yarrowia lipolytica. mSphere 2021; 6:6/3/e00179-21. [PMID: 34011684 PMCID: PMC8265631 DOI: 10.1128/msphere.00179-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Environmental pH influences cell growth and differentiation. In the dimorphic yeast Yarrowia lipolytica, neutral-alkaline pH strongly induces the yeast-to-filament transition. However, the regulatory mechanism that governs alkaline pH-induced filamentation has been unclear. Here, we show that the pH-responsive transcription factor Y. lipolytica Rim101 (YlRim101) is a major regulator of alkaline-induced filamentation, since the deletion of YlRIM101 severely impaired filamentation at alkaline pH, whereas the constitutively active YlRIM1011-330 mutant mildly induced filamentation at acidic pH. YlRim101 controls the expression of the majority of alkaline-regulated cell wall protein genes. One of these, the cell surface glycosidase gene YlPHR1, plays a critical role in growth, cell wall function, and filamentation at alkaline pH. This finding suggests that YlRim101 promotes filamentation at alkaline pH via controlling the expression of these genes. We also show that, in addition to YlRim101, the Msn2/Msn4-like transcription factor Mhy1 is highly upregulated at alkaline pH and is essential for filamentation. However, unlike YlRim101, which specifically regulates alkaline-induced filamentation, Mhy1 regulates both alkaline- and glucose-induced filamentation, since the deletion of MHY1 abolished them both, whereas the overexpression of MHY1 induced strong filamentation irrespective of the pH or the presence of glucose. Finally, we show that YlRim101 and Mhy1 positively coregulate seven cell wall protein genes at alkaline pH, including YlPHR1 and five cell surface adhesin-like genes, three of which appear to promote filamentation. Together, these results reveal a conserved role of YlRim101 and a novel role of Mhy1 in the regulation of alkaline-induced filamentation in Y. lipolytica IMPORTANCE The regulatory mechanism that governs pH-regulated filamentation is not clear in dimorphic fungi except in Candida albicans Here, we investigated the regulation of alkaline pH-induced filamentation in Yarrowia lipolytica, a dimorphic yeast distantly related to C. albicans Our results show that the transcription factor YlRim101 and the Msn2/Msn4-like transcription factor Mhy1 are the major regulators that promote filamentation at alkaline pH. They control the expression of a number of cell wall protein genes important for cell wall organization and filamentation. Our results suggest that the Rim101/PacC homologs play a conserved role in pH-regulated filamentation in dimorphic fungi.
Collapse
|
6
|
Cervantes-Montelongo JA, Ruiz-Herrera J. Identification of a novel member of the pH responsive pathway Pal/Rim in Ustilago maydis. J Basic Microbiol 2018; 59:14-23. [PMID: 30357888 DOI: 10.1002/jobm.201800180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/25/2018] [Accepted: 09/29/2018] [Indexed: 11/05/2022]
Abstract
The most important signal transduction mechanism related to environmental pH responses in fungi is the Pal/Rim pathway. Our knowledge of this pathway came initially from studies on Ascomycota species where it is made by seven members divided into two complexes, one located at the plasma membrane, and other at the endosomal membrane. In Basidiomycota sepecies only the homologs of the endosomal membrane complex (genes PalA/Rim20, PalB/ Rim13, and PalC/ Rim23), plus the transcription factor PacC/Rim101 have been identified. In this study, we describe the identification in Ustilago maydis of a gene encoding a Rho-like protein (tentatively named RHO4) as a novel member of this pathway. The RHO4 gene possibly plays, among other functions, a role in the second proteolytic cleavage that leads to the activation of the transcription factor PacC/Rim101. Mutants in this gene showed a pleiotropic phenotype, displaying similar characteristics to the Pal/Rim mutants, such as a lower growth rate at alkaline pH, high sensitivity to ionic and osmotic stresses, and impairment in protease secretion, but no alteration of the yeast-to-mycelium dimorphic transition induced by acid pH whereas it has a function in the dimorphic transition induced by fatty acids.
Collapse
Affiliation(s)
- Juan A Cervantes-Montelongo
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato Gto., México
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato Gto., México
| |
Collapse
|
7
|
Yarrowia lipolytica morphological mutant enables lasting in situ immobilization in bioreactor. Appl Microbiol Biotechnol 2018; 102:5473-5482. [DOI: 10.1007/s00253-018-9006-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/29/2018] [Accepted: 04/15/2018] [Indexed: 10/17/2022]
|
8
|
Timoumi A, Guillouet SE, Molina-Jouve C, Fillaudeau L, Gorret N. Impacts of environmental conditions on product formation and morphology of Yarrowia lipolytica. Appl Microbiol Biotechnol 2018. [DOI: 10.1007/s00253-018-8870-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Zhu LB, Wang Y, Zhang ZB, Yang HL, Yan RM, Zhu D. Influence of environmental and nutritional conditions on yeast–mycelial dimorphic transition in Trichosporon cutaneum. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1292149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Li Bin Zhu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Ya Wang
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of life sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Bin Zhang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Hui Lin Yang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Ri Ming Yan
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Du Zhu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of life sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
10
|
Dynamic behavior of Yarrowia lipolytica in response to pH perturbations: dependence of the stress response on the culture mode. Appl Microbiol Biotechnol 2016; 101:351-366. [DOI: 10.1007/s00253-016-7856-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/12/2016] [Accepted: 09/13/2016] [Indexed: 10/20/2022]
|
11
|
Campos-Góngora E, Andaluz E, Bellido A, Ruiz-Herrera J, Larriba G. The RAD52 ortholog of Yarrowia lipolytica is essential for nuclear integrity and DNA repair. FEMS Yeast Res 2013; 13:441-52. [PMID: 23566019 DOI: 10.1111/1567-1364.12047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/22/2013] [Accepted: 04/02/2013] [Indexed: 11/27/2022] Open
Abstract
Yarrowia lipolytica (Yl) is a dimorphic fungus that has become a well-established model for a number of biological processes, including secretion of heterologous and chimerical proteins. However, little is known on the recombination machinery responsible for the integration in the genome of the exogenous DNA encoding for those proteins. We have carried out a phenotypic analysis of rad52 deletants of Y. lipolytica. YlRad52 exhibited 20-30% identity with Rad52 homologues of other eukaryotes, including Saccharomyces cerevisiae and Candida albicans. Ylrad52-Δ strains formed colonies on YPD-agar plates which were spinier and smaller than those from wild type, whereas in YPD liquid cultures they exhibited a decreased grow rate and contained cells with aberrant morphology and fragmented chromatin, supporting a role for homologous recombination (HR) in genome stability under nondamaging conditions. In addition, Ylrad52 mutants showed moderate to high sensitivity to UV light, oxidizing agents and compounds that cause single- (SSB) and double-strand breaks (DSB), indicating an important role for Rad52 in DNA repair. These findings extend to Yl previous observations indicating that RAD52 is a crucial gene for DNA repair in other fungi, including S. cerevisiae, C. albicans and Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Eduardo Campos-Góngora
- Centro de Investigación en Nutrición y Salud Pública, Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | | | | | | | | |
Collapse
|
12
|
PalI domain proteins of Saccharomyces cerevisiae and Candida albicans. Microbiol Res 2012; 167:422-32. [DOI: 10.1016/j.micres.2011.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 12/19/2011] [Accepted: 12/30/2011] [Indexed: 12/23/2022]
|
13
|
Blanchin-Roland S, Da Costa G, Gaillardin C. Ambient pH signalling in the yeast Yarrowia lipolytica involves YlRim23p/PalC, which interacts with Snf7p/Vps32p, but does not require the long C terminus of YlRim9p/PalI. MICROBIOLOGY-SGM 2008; 154:1668-1676. [PMID: 18524921 DOI: 10.1099/mic.0.2008/017046-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A conserved ambient pH signal transduction pathway has been evidenced in both ascomycetous yeasts and filamentous fungi, called the Rim or Pal pathway, respectively. However, closely related PalC orthologues are found only in Yarrowia lipolytica and in filamentous fungi, where the Rim9p/PalI factor has a much longer C-terminal tail than in other yeasts. We show here that, like Aspergillus nidulans palI mutants, a Ylrim9Delta mutant has a less extreme phenotype than other mutants of the pathway, whereas rim9 mutants in Saccharomyces cerevisiae and Candida albicans reportedly exhibit a tight Rim phenotype. Deletion of the long C-terminal tail of YlRim9p/PalI had no phenotypic effect on ambient pH signalling. We also show that the Y. lipolytica PalC orthologue, named YlRim23p, is absolutely required for the alkaline pH response. Its only interactant identified in a genome-wide two-hybrid screen is YlSnf7/Vps32p, confirming the link between the Rim and the Vps pathways. YlRim13p and YlRim20p both interact with YlSnf7/Vps32p but not with YlRim23p. The long C-terminal tail of YlRim9p/PalI interacts neither with YlRim23p nor with YlSnf7/Vps32p. These results show that YlRim23p is a bona fide component of the Rim pathway in Y. lipolytica and that it participates in the complexes linking pH signalling and endocytosis.
Collapse
Affiliation(s)
- Sylvie Blanchin-Roland
- Laboratoire de Microbiologie et Génétique Moléculaire, AgroParisTech, INRA, UMR1238, CNRS, UMR2585, F-78850 Thiverval-Grignon, France
| | - Grégory Da Costa
- Laboratoire de Microbiologie et Génétique Moléculaire, AgroParisTech, INRA, UMR1238, CNRS, UMR2585, F-78850 Thiverval-Grignon, France
| | - Claude Gaillardin
- Laboratoire de Microbiologie et Génétique Moléculaire, AgroParisTech, INRA, UMR1238, CNRS, UMR2585, F-78850 Thiverval-Grignon, France
| |
Collapse
|
14
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|