1
|
Yi Z, Zhang Y, Gao X, Li S, Li K, Xiong C, Huang G, Zhang J. Sensitive electrochemical immunosensor for rapid detection of Salmonella in milk using polydopamine/CoFe-MOFs@Nafion modified gold electrode. Int J Food Microbiol 2024; 425:110870. [PMID: 39151230 DOI: 10.1016/j.ijfoodmicro.2024.110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Food contaminated by pathogenic bacteria poses a serious threat to human health. Consequently, we used Salmonella as a model and developed an electrochemical immunosensor based on a polydopamine/CoFe-MOFs@Nafion nanocomposite for the detection of Salmonella in milk. The CoFe-MOFs exhibit good stability, large specific surface area, and high porosity. However, after modification on the electrode surface, they were prone to detachment. This issue was effectively mitigated by incorporating Nafion into the nanocomposite. A polydopamine (PDA) film was deposited onto the surface of CoFe-MOFs@Nafion through cyclic voltammetry (CV), accompanied by an investigation into the polymerization mechanism of the PDA film. PDA contains a substantial number of quinone functional groups, which can covalently bind to amino or sulfhydryl groups via Michael addition reaction or Schiff base reaction, thereby immobilizing anti-Salmonella antibodies onto the modified electrode surface. Under the optimal experimental conditions, the Salmonella concentration exhibited a good linear relationship within the range of 1.38 × 102 to 1.38 × 108 CFU mL-1, with a detection limit of 1.38 × 102 CFU mL-1. Furthermore, the constructed immunosensor demonstrated good specificity, stability, and reproducibility, offering a novel approach for the rapid detection of foodborne pathogens.
Collapse
Affiliation(s)
- Zhibin Yi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yu Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiaoyu Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Shuang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Kexin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Chunhong Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Ganhui Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Jinsheng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
2
|
Savas S, Altintas Z. Graphene Quantum Dots as Nanozymes for Electrochemical Sensing of Yersinia enterocolitica in Milk and Human Serum. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2189. [PMID: 31288382 PMCID: PMC6651715 DOI: 10.3390/ma12132189] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/23/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023]
Abstract
The genus Yersinia contains three well-recognized human pathogens, including Y. enterocolitica, Y. pestis, and Y. pseudotuberculosis. Various domesticated and wild animals carry Yersinia in their intestines. Spread to individuals arises from eating food or water contaminated by infected human or animal faeces. Interaction with infected pets and domestic stock may also lead to infection. Yersinia is able to multiply at temperatures found in normal refrigerators; hence, a large number of the bacteria may be present if meat is kept without freezing. Yersinia is also rarely transmitted by blood transfusion, because it is able to multiply in stored blood products. Infection with Yersinia can cause yersiniosis, a serious bacterial infection associated with fever, abdominal pain and cramps, diarrhea, joint pain, and symptoms similar to appendicitis in older children and adults. This paper describes a novel immunosensor approach using graphene quantum dots (GQDs) as enzyme mimics in an electrochemical sensor set up to provide an efficient diagnostic method for Y. enterecolitica. The optimum assay conditions were initially determined and the developed immunosensor was subsequently used for the detection of the bacterium in milk and human serum. The GQD-immunosensor enabled the quantification of Y. enterocolitica in a wide concentration range with a high sensitivity (LODmilk = 5 cfu mL-1 and LODserum = 30 cfu mL-1) and specificity. The developed method can be used for any pathogenic bacteria detection for clinical and food samples without pre-sample treatment. Offering a very rapid, specific and sensitive detection with a label-free system, the GQD-based immunosensor can be coupled with many electrochemical biosensors.
Collapse
Affiliation(s)
- Sumeyra Savas
- National Research Institute of Electronics and Cryptology, The Scientific and Technological Research Council of Turkey (TUBITAK), Kocaeli 41470, Turkey
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, Berlin 10623, Germany.
| |
Collapse
|
3
|
Prevalence, characterization and antimicrobial susceptibility of Yersinia enterocolitica and other Yersinia species found in fruits and vegetables from the European Union. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.08.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Thomas MC, Janzen TW, Huscyzynsky G, Mathews A, Amoako KK. Development of a novel multiplexed qPCR and Pyrosequencing method for the detection of human pathogenic yersiniae. Int J Food Microbiol 2017; 257:247-253. [PMID: 28704728 DOI: 10.1016/j.ijfoodmicro.2017.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to develop a novel and robust molecular assay for the detection of human pathogenic yersiniae (i.e. Yersinia enterocolitica, Y. pseudotuberculosis and Y. pestis) in complex food samples. The assay combines multiplexed real-time PCR (qPCR) and Pyrosequencing for detecting and differentiating human pathogenic yersiniae with high confidence through sequence based confirmation. The assay demonstrated 100% specificity and inclusivity when tested against a panel of 14 Y. enterocolitica, 22 Y. pestis, 24 Y. pseudotuberculosis and a diverse selection of 17 other non-Yersinia bacteria. Pyrosequencing reads ranged from 28 to 40bp in length and had 94-100% sequence identity to the correct species in the GenBank nr database. Microbial enrichments of 48 ready-to-eat foods collected in the Greater Toronto Area from March 2014 to May 2014, including 46 fresh sprout and 2 salad products, were then tested using the assay. All samples were negative for Y. pestis and Y. pseudotuberculosis. Both salads (n=2) and 35% of sprout products (n=46) including 7.1% of alfalfa sprouts (n=14), 81% of bean sprouts (n=16), 12% of mixed sprouts (n=8) tested positive for Y. enterocolitica which was not detected in broccoli sprouts (n=5), onion sprouts (n=1), and pea sprouts (n=2). Cycle thresholds (Ct) of positive samples for Y. enterocolitica were between 23.0 and 37.9 suggesting post enrichment concentrations of approximately 1×102 to 1×106Y. enterocolitica per 1mL of enriched broth. An internal amplification control which was coamplified with targets revealed PCR inhibition in five samples which was resolved following a one in ten dilution. Pyrosequencing of qPCR amplicons suggests monoclonality and revealed a single nucleotide polymorphism that is present in Y. enterocolitica biotype 1A suggesting low pathogenicity of the detected strains. This study is the first to combine Pyrosequencing and qPCR for the detection of human pathogenic yersiniae and is applicable to a broad range of complex samples including ready-to-eat food samples.
Collapse
Affiliation(s)
- M C Thomas
- Canadian Food Inspection Agency, Lethbridge Laboratory, Township Rd 9-1, Lethbridge, Alberta T1J 3Z4, Canada
| | - T W Janzen
- Canadian Food Inspection Agency, Lethbridge Laboratory, Township Rd 9-1, Lethbridge, Alberta T1J 3Z4, Canada
| | - G Huscyzynsky
- Canadian Food Inspection Agency, Greater Toronto Area Laboratory, 2301 Midland Ave., Scarborough, Ontario M1P 4R7, Canada
| | - A Mathews
- Canadian Food Inspection Agency, Greater Toronto Area Laboratory, 2301 Midland Ave., Scarborough, Ontario M1P 4R7, Canada
| | - K K Amoako
- Canadian Food Inspection Agency, Lethbridge Laboratory, Township Rd 9-1, Lethbridge, Alberta T1J 3Z4, Canada.
| |
Collapse
|
5
|
Angmo K, Kumari A, . M, . S, Chand Bhalla T. Antagonistic activities of lactic acid bacteria from fermented foods and beverage of Ladakh against Yersinia enterocolitica in refrigerated meat. FOOD BIOSCI 2016. [DOI: 10.1016/j.fbio.2015.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Fluorescence-based bioassays for the detection and evaluation of food materials. SENSORS 2015; 15:25831-67. [PMID: 26473869 PMCID: PMC4634490 DOI: 10.3390/s151025831] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 12/12/2022]
Abstract
We summarize here the recent progress in fluorescence-based bioassays for the detection and evaluation of food materials by focusing on fluorescent dyes used in bioassays and applications of these assays for food safety, quality and efficacy. Fluorescent dyes have been used in various bioassays, such as biosensing, cell assay, energy transfer-based assay, probing, protein/immunological assay and microarray/biochip assay. Among the arrays used in microarray/biochip assay, fluorescence-based microarrays/biochips, such as antibody/protein microarrays, bead/suspension arrays, capillary/sensor arrays, DNA microarrays/polymerase chain reaction (PCR)-based arrays, glycan/lectin arrays, immunoassay/enzyme-linked immunosorbent assay (ELISA)-based arrays, microfluidic chips and tissue arrays, have been developed and used for the assessment of allergy/poisoning/toxicity, contamination and efficacy/mechanism, and quality control/safety. DNA microarray assays have been used widely for food safety and quality as well as searches for active components. DNA microarray-based gene expression profiling may be useful for such purposes due to its advantages in the evaluation of pathway-based intracellular signaling in response to food materials.
Collapse
|
7
|
Schoen B, Mossoba MM, Chizhikov V, Rashid A, Martinez-Diaz K, Al-Khaldi SF. Enhanced mid-infrared chemical imaging (IRCI) detection of DNA microarrays. APPLIED SPECTROSCOPY 2012; 66:1480-1486. [PMID: 23231912 DOI: 10.1366/12-06772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report on the optimization of a recently proposed mid-infrared chemical imaging (IRCI) detection method for the analysis of DNA microarrays. The improved protocol allowed for a ten-fold reduction in the time needed to generate a mosaic image of an entire microarray and the production of IR images with high contrast that would facilitate data analysis and interpretation. Advantages of using this protocol were evaluated by applying it to the analysis of four virulence genes in the genomes of 19 strains of the food bacterial pathogen Yersinia enterocolitica.
Collapse
Affiliation(s)
- Brianna Schoen
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740-3835, USA
| | | | | | | | | | | |
Collapse
|
8
|
Lucero Estrada CS, Velázquez LDC, Favier GI, Di Genaro MS, Escudero ME. Detection of Yersinia spp. in meat products by enrichment culture, immunomagnetic separation and nested PCR. Food Microbiol 2012; 30:157-63. [DOI: 10.1016/j.fm.2011.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 11/27/2022]
|
9
|
Dwivedi HP, Jaykus LA. Detection of pathogens in foods: the current state-of-the-art and future directions. Crit Rev Microbiol 2010; 37:40-63. [PMID: 20925593 DOI: 10.3109/1040841x.2010.506430] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Over the last fifty years, microbiologists have developed reliable culture-based techniques to detect food borne pathogens. Although these are considered to be the "gold-standard," they remain cumbersome and time consuming. Despite the advent of rapid detection methods such as ELISA and PCR, it is clear that reduction and/or elimination of cultural enrichment will be essential in the quest for truly real-time detection methods. As such, there is an important role for bacterial concentration and purification from the sample matrix as a step preceding detection, so-called pre-analytical sample processing. This article reviews recent advancements in food borne pathogen detection and discusses future methods with a focus on pre-analytical sample processing, culture independent methods, and biosensors.
Collapse
Affiliation(s)
- Hari P Dwivedi
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC-27695-7624, USA.
| | | |
Collapse
|