1
|
Pignataro MF, Noguera ME, Herrera MG, Roman EA, Santos J. Frataxin: from the sequence to the biological role. Biophys Rev 2025; 17:449-465. [PMID: 40376404 PMCID: PMC12075029 DOI: 10.1007/s12551-025-01311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/25/2025] [Indexed: 05/18/2025] Open
Abstract
Frataxin is a small protein involved in the rare disease Friedreich's ataxia. During the last few years, significant knowledge has been gained concerning frataxin folding, structure, dynamics, and function. In eukaryotic organisms, it is located in the mitochondrial matrix, and recently, its macromolecular context was revealed. This protein is part of a decameric supercomplex consisting of six subunits required for iron-sulfur cluster assembly, where two of them alternate in a mutually exclusive manner. Regarding Frataxin, pathogenic variants were studied, and while some exhibited reduced conformational stability, others presented an altered function. In this review, we focused on different aspects concerning the biophysics and the biochemistry of frataxin and its partners, as well as on the current knowledge regarding proteostasis and post-translational modifications. The involvement of frataxin and its partners in diseases will also be addressed, including the current therapeutic approaches. Finally, a section is dedicated to understanding the phylogenetic distribution of frataxin.
Collapse
Affiliation(s)
- María Florencia Pignataro
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Autonomous City of Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Autonomous City of Buenos Aires, Argentina
| | - Martín Ezequiel Noguera
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Autonomous City of Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Autonomous City of Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas, CONICET-Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C113AAD Autonomous City of Buenos Aires, Argentina
| | - María Georgina Herrera
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Autonomous City of Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Autonomous City of Buenos Aires, Argentina
- Molecular Cell Biology, Faculty of Medicine, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Ernesto Andrés Roman
- Laboratorio de Ingeniería Enzimática y Nanobiotecnología, Facultad de Ciencias Exactas y Naturales, Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, CP1428 Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Autonomous City of Buenos Aires, Argentina
| | - Javier Santos
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Autonomous City of Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Autonomous City of Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Autonomous City of Buenos Aires, Argentina
| |
Collapse
|
2
|
Bellenberg S, Huynh D, Poetsch A, Sand W, Vera M. Proteomics Reveal Enhanced Oxidative Stress Responses and Metabolic Adaptation in Acidithiobacillus ferrooxidans Biofilm Cells on Pyrite. Front Microbiol 2019; 10:592. [PMID: 30984136 PMCID: PMC6450195 DOI: 10.3389/fmicb.2019.00592] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/08/2019] [Indexed: 01/22/2023] Open
Abstract
Reactive oxygen species (ROS) cause oxidative stress and growth inhibition by inactivation of essential enzymes, DNA and lipid damage in microbial cells. Acid mine drainage (AMD) ecosystems are characterized by low pH values, enhanced levels of metal ions and low species abundance. Furthermore, metal sulfides, such as pyrite and chalcopyrite, generate extracellular ROS upon exposure to acidic water. Consequently, oxidative stress management is especially important in acidophilic leaching microorganisms present in industrial biomining operations, especially when forming biofilms on metal sulfides. Several adaptive mechanisms have been described, but the molecular repertoire of responses upon exposure to pyrite and the presence of ROS are not thoroughly understood in acidophiles. In this study the impact of the addition of H2O2 on iron oxidation activity in Acidithiobacillus ferrooxidans DSM 14882T was investigated. Iron(II)- or sulfur-grown cells showed a higher sensitivity toward H2O2 than pyrite-grown ones. In order to elucidate which molecular responses may be involved, we used shot-gun proteomics and compared proteomes of cells grown with iron(II)-ions against biofilm cells, grown for 5 days in presence of pyrite as sole energy source. In total 1157 proteins were identified. 213 and 207 ones were found to have increased levels in iron(II) ion-grown or pyrite-biofilm cells, respectively. Proteins associated with inorganic sulfur compound (ISC) oxidation were among the latter. In total, 80 proteins involved in ROS degradation, thiol redox regulation, macromolecule repair mechanisms, biosynthesis of antioxidants, as well as metal and oxygen homeostasis were found. 42 of these proteins had no significant changes in abundance, while 30 proteins had increased levels in pyrite-biofilm cells. New insights in ROS mitigation strategies, such as importance of globins for oxygen homeostasis and prevention of unspecific reactions of free oxygen that generate ROS are presented for A. ferrooxidans biofilm cells. Furthermore, proteomic analyses provide insights in adaptations of carbon fixation and oxidative phosphorylation pathways under these two growth conditions.
Collapse
Affiliation(s)
- Sören Bellenberg
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden.,Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen, Essen, Germany
| | - Dieu Huynh
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr-University Bochum, Bochum, Germany.,School of Biomedical and Healthcare Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Wolfgang Sand
- Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen, Essen, Germany.,Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany.,College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Mario Vera
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Hydraulic and Environmental Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
3
|
Uchida T, Kobayashi N, Muneta S, Ishimori K. The Iron Chaperone Protein CyaY from Vibrio cholerae Is a Heme-Binding Protein. Biochemistry 2017; 56:2425-2434. [DOI: 10.1021/acs.biochem.6b01304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Takeshi Uchida
- Department
of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Noriyuki Kobayashi
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Souichiro Muneta
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Koichiro Ishimori
- Department
of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
4
|
Albrecht AG, Landmann H, Nette D, Burghaus O, Peuckert F, Seubert A, Miethke M, Marahiel MA. The frataxin homologue Fra plays a key role in intracellular iron channeling in Bacillus subtilis. Chembiochem 2011; 12:2052-61. [PMID: 21744456 DOI: 10.1002/cbic.201100190] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Indexed: 12/16/2023]
Abstract
Frataxin homologues are important iron chaperones in eukarya and prokarya. Using a native proteomics approach we were able to identify the structural frataxin homologue Fra (formerly YdhG) of Bacillus subtilis and to quantify its native iron-binding stoichiometry. Using recombinant proteins we could show in vitro that Fra is able to transfer iron onto the B. subtilis SUF system for iron-sulfur cluster biosynthesis. In a four-constituents reconstitution system (including SufU, SufS, Fra and CitB) we observed a Fra-dependent formation of a [4 Fe-4 S] cluster on SufU that could be efficiently transferred onto the target apo-aconitase (CitB). A Δfra deletion mutant showed a severe growth phenotype associated with a broadly disturbed iron homeostasis; this indicates that Fra is a central component of intracellular iron channeling in B. subtilis.
Collapse
Affiliation(s)
- Alexander G Albrecht
- Fachbereich Chemie/Biochemie der Philipps Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|