1
|
Jannus F, Sainz J, Reyes-Zurita FJ. Principal Bioactive Properties of Oleanolic Acid, Its Derivatives, and Analogues. Molecules 2024; 29:3291. [PMID: 39064870 PMCID: PMC11279785 DOI: 10.3390/molecules29143291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Natural products have always played an important role in pharmacotherapy, helping to control pathophysiological processes associated with human disease. Thus, natural products such as oleanolic acid (OA), a pentacyclic triterpene that has demonstrated important activities in several disease models, are in high demand. The relevant properties of this compound have motivated re-searchers to search for new analogues and derivatives using the OA as a scaffold to which new functional groups have been added or modifications have been realized. OA and its derivatives have been shown to be effective in the treatment of inflammatory processes, triggered by chronic diseases or bacterial and viral infections. OA and its derivatives have also been found to be effective in diabetic disorders, a group of common endocrine diseases characterized by hyperglycemia that can affect several organs, including the liver and brain. This group of compounds has been reported to exhibit significant bioactivity against cancer processes in vitro and in vivo. In this review, we summarize the bioactive properties of OA and its derivatives as anti-inflammatory, anti-bacterial, antiviral, anti-diabetic, hepatoprotective, neuroprotective, and anticancer agents.
Collapse
Affiliation(s)
- Fatin Jannus
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain;
| | - Juan Sainz
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain;
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Av. de la Ilustración, 114, PTS, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria IBs.Granada, 18010 Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), University of Barcelona, 08908 Barcelona, Spain
| | - Fernando J. Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria IBs.Granada, 18010 Granada, Spain
| |
Collapse
|
2
|
Liang J, Huang X, Ma G. Antimicrobial activities and mechanisms of extract and components of herbs in East Asia. RSC Adv 2022; 12:29197-29213. [PMID: 36320733 PMCID: PMC9554739 DOI: 10.1039/d2ra02389j] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
Antibacterial drugs face increasing challenges due to drug resistance and adverse reactions, which has created a pressing need for the discovery and development of novel antibacterial drugs. Herbs have played an important role in the treatment of infectious diseases. This review aims to summarize, analyze and evaluate the antibacterial activities and mechanisms of components from popular herbs in East Asia. In this review, we have searched and summarized the scientific papers published during the past twenty-year period from electronic databases such as PubMed, ScienceDirect, and Web of Science. These herbs and their components, including alkaloids, flavonoids, essential oils, terpenes, organic acids, coumarins and lignans, display potential antimicrobial effects. Herbal medicine formulas (HMFs) usually show stronger antibacterial activity than single herbs. Herbs and HMFs bring forth antibacterial activities by damaging cell membranes and walls, inhibiting nucleic acid and protein synthesis, and increasing intracellular osmotic pressure. These herbs and their components can be developed as potential and promising novel antibacterial herbal products.
Collapse
Affiliation(s)
- Jingru Liang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China +86-21-5198-0025
| | - Xuan Huang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China +86-21-5198-0025
| | - Guo Ma
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China +86-21-5198-0025
| |
Collapse
|
3
|
Wrońska N, Szlaur M, Zawadzka K, Lisowska K. The Synergistic Effect of Triterpenoids and Flavonoids-New Approaches for Treating Bacterial Infections? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030847. [PMID: 35164112 PMCID: PMC8838219 DOI: 10.3390/molecules27030847] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
Currently, the pharmaceutical industry is well-developed, and a large number of chemotherapeutics are being produced. These include antibacterial substances, which can be used in treating humans and animals suffering from bacterial infections, and as animal growth promoters in the agricultural industry. As a result of the excessive use of antibiotics and emerging resistance amongst bacteria, new antimicrobial drugs are needed. Due to the increasing trend of using natural, ecological, and safe products, there is a special need for novel phytocompounds. The compounds analysed in the present study include two triterpenoids ursolic acid (UA) and oleanolic acid (OA) and the flavonoid dihydromyricetin (DHM). All the compounds displayed antimicrobial activity against Gram-positive (Staphylococcus aureus ATCC 6538, Staphylococcus epidermidis ATCC 12228, and Listeria monocytogenes ATCC 19115) and Gram-negative bacteria (Escherichia coli ATCC 25922, Proteus hauseri ATCC 15442, and Campylobacter jejuni ATCC 33560) without adverse effects on eukaryotic cells. Both the triterpenoids showed the best antibacterial potential against the Gram-positive strains. They showed synergistic activity against all the tested microorganisms, and a bactericidal effect with the combination OA with UA against both Staphylococcus strains. In addition, the synergistic action of DHM, UA, and OA was reported for the first time in this study. Our results also showed that combination with triterpenoids enhanced the antimicrobial potential of DHM.
Collapse
|
4
|
Attenuation of Enterococcus faecalis biofilm formation by Rhodethrin: A combinatorial study with an antibiotic. Microb Pathog 2022; 163:105401. [PMID: 35032606 DOI: 10.1016/j.micpath.2022.105401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/22/2022]
Abstract
The nosocomial pathogen Enterococcus faecalis critically implicated in the hospital environment. Its major virulence attributes biofilm formation and antibiotic resistance. The novel therapeutics are required to inhibit E. faecalis biofilm formation and virulence. Thus combinatorial and drug repurposing has been promising approaches to tackling biofilm-associated infections. Here, we have used a bacterium that produced indole terpenoid Rhodethrin (Rdn) with a combination of known antibiotic chloramphenicol (Chpl) against E. faecalis (ATCC 19433). The fractional inhibitory concentration index (FICI) values showed between 0.25 and 0.33 synergistic activities. The exopolysaccharides (EPSs) production significant decrease with Rdn (34.6 ± 4.6%), Chpl (31.0 ± 5.2%), and combination (Rdn-Chpl) (76.0 ± 4.5%) (p > 0.05). However, the biofilm interruption can attenuate of total biofilm was shown with Rdn (39.7 ± 5.1%), Chpl (32.6 ± 4.7%), and Rdn-Chpl (69.0 ± 5.3%), (p > 0.05). The microscopic observations reveal that the gradually unstructured biofilm architecture in E. faecalis. Furthermore, in silico, studies on biofilm-associated proteins (GelE, LuxS), virulence regulating (SprE), and cell division (FtsZ) have resulted in high and reasonable binding affinity, respectively. Thus, our results suggested that the synergism of Rdn-Chpl has the potential to function as a combinatorial antibiotic accelerates in treating vancomycin-resistant Enterococcus faecalis infections.
Collapse
|
5
|
Mala L, Lalouckova K, Skrivanova E. Bacterial Skin Infections in Livestock and Plant-Based Alternatives to Their Antibiotic Treatment. Animals (Basel) 2021; 11:2473. [PMID: 34438930 PMCID: PMC8388705 DOI: 10.3390/ani11082473] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Due to its large surface area, the skin is susceptible to various injuries, possibly accompanied by the entrance of infective agents into the body. Commensal organisms that constitute the skin microbiota play important roles in the orchestration of cutaneous homeostasis and immune competence. The opportunistic pathogen Staphylococcus aureus is present as part of the normal biota of the skin and mucous membranes in both humans and animals, but can cause disease when it invades the body either due to trauma or because of the impaired immune response of the host. Colonization of livestock skin by S. aureus is a precursor for majority of bacterial skin infections, which range from boils to sepsis, with the best-characterized being bovine mastitis. Antibiotic treatment of these infections can contribute to the promotion of resistant bacterial strains and even to multidrug resistance. The development of antibiotic resistance to currently available antibiotics is a worldwide problem. Considering the increasing ability of bacteria to effectively resist antibacterial agents, it is important to reduce the livestock consumption of antibiotics to preserve antibiotic effectiveness in the future. Plants are recognized as sources of various bioactive substances, including antibacterial activity towards clinically important microorganisms. This review provides an overview of the current knowledge on the major groups of phytochemicals with antibacterial activity and their modes of action. It also provides a list of currently known and used plant species aimed at treating or preventing bacterial skin infections in livestock.
Collapse
Affiliation(s)
- Lucie Mala
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (L.M.); (K.L.)
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Pratelstvi 815, 104 00 Prague, Czech Republic
| | - Klara Lalouckova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (L.M.); (K.L.)
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Pratelstvi 815, 104 00 Prague, Czech Republic
| | - Eva Skrivanova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (L.M.); (K.L.)
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Pratelstvi 815, 104 00 Prague, Czech Republic
| |
Collapse
|
6
|
Khwaza V, Oyedeji OO, Aderibigbe BA, Morifi E, Fonkui YT, Ndinteh DT, Steenkamp V. Synthesis, antibacterial, and cytotoxicity evaluation of oleanolic acid-4-aminoquinoline based hybrid compounds. ACTA ACUST UNITED AC 2021; 16:122-136. [PMID: 33568035 DOI: 10.2174/1574891x16666210210165547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 11/22/2022]
Abstract
AIM To prepare a class of oleanolic-based compounds. BACKGROUND Conventional drugs used to treat infectious diseases suffer from limitations such as drug toxicity and drug resistance. The resistance of microbes to antimicrobial agents is a significant challenge in treating microbial infections. Combining two or more drugs with different modes of action to treat microbial infections results in a delay in developing drug resistance by the microbes. However, it is challenging to select the appropriate choice of drugs for combination therapy due to the differences in stability and pharmacokinetic profile of the drugs.Therefore, developing hybrid compounds using the existing drugs is a promising approach to design effective antimicrobial agents. OBJECTIVES To prepare oleanolic-based hybrid compounds followed by characterization, in vitro antibacterial, and cytotoxicity evaluation. METHODS Oleanolic acid-4-aminoquinoline-based hybrid compounds weresynthesized via esterification and amidation. The compounds werecharacterized using FTIR, NMR, and UHPLC-HRMS. Oleanolic acid was isolated from the flower buds of Syszygium aromaticum (L.) Merr. & L.M.Perry, a specie from Kingdom Plantae, order Mytales in Myrtaceae family. Their antibacterial and cytotoxicity activity was determined against selected strains of bacteria assessed using the microdilution assay and sulforhodamine B assay against selected cancer cell lines. RESULTS The synthesized hybrid compounds exhibited significant antibacterial activity against the Gram-positive bacteria Enterococcus faecalis (ATCC13047), Bacillus subtilis (ATCC19659), Staphylococcus aureus as well as Gram-negative bacteria,Klebsiella oxytoca (ATCC8724), Escherischia coli (ATCC25922), and Proteus vulgaris (ATCC6380)with minimum inhibitory concentrations of 1.25 mg/mLcompared to oleanolic acid (2.5 mg/mL). Compounds 13 and 14 displayed significant cytotoxic effectsin vitro against the cancer cell lines (MCF-7 and DU 145) compared to the oleanolic acid (IC50 ˃ 200 µM). CONCLUSION The present study revealed that the modification of C28 of OA enhanced its biological properties.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice, Eastern Cape. South Africa
| | - Opeoluwa O Oyedeji
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice, Eastern Cape. South Africa
| | - Blessing A Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice, Eastern Cape. South Africa
| | - Eric Morifi
- School of Chemistry, Mass Spectrometry division, University of Witwatersrand, Johannesburg. South Africa
| | - Y T Fonkui
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Johannesburg. South Africa
| | - D T Ndinteh
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg. South Africa
| | - V Steenkamp
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria. South Africa
| |
Collapse
|
7
|
Sun Q, He M, Zhang M, Zeng S, Chen L, Zhou L, Xu H. Ursolic acid: A systematic review of its pharmacology, toxicity and rethink on its pharmacokinetics based on PK-PD model. Fitoterapia 2020; 147:104735. [PMID: 33010369 DOI: 10.1016/j.fitote.2020.104735] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/29/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Ursolic acid (UA) is a natural pentacyclic triterpenoid compound existing in various traditional Chinese medicinal herbs, and it possesses diverse pharmacological actions and some undesirable adverse effects, even toxicological activities. Due to UA's low solubility and poor bioavailability, and its interaction with gut microbiota after oral administration, the pharmacokinetics of UA remain elusive, leading to obscurity in the pharmacokinetics-pharmacodynamics (PK-PD) profile and relationship for UA. Based on literatures from PubMed, Google Scholar, ResearchGate, Web of Science and Wiley Online Library, with keywords of "pharmacology", "toxicology", "pharmacokinetics", "PK-PD" and "ursolic acid", herein we systematically review the pharmacology and toxicity of UA, and rethink on its pharmacokinetics on the basis of PK-PD model, and seek to delineate the underlying mechanisms for the characteristics of pharmacology and toxicology of UA, and for the pharmacokinetic features of UA particularly from the organ tropism and the interactions between UA and gut microbiota, and lay a solid foundation for development of UA-derived therapeutic agents in clinical settings.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Man He
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meng Zhang
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lijuan Zhou
- Sichuan Academy of Chinese Medical Sciences, Chengdu 610041, China
| | - Haibo Xu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
8
|
AlSheikh HMA, Sultan I, Kumar V, Rather IA, Al-Sheikh H, Tasleem Jan A, Haq QMR. Plant-Based Phytochemicals as Possible Alternative to Antibiotics in Combating Bacterial Drug Resistance. Antibiotics (Basel) 2020; 9:E480. [PMID: 32759771 PMCID: PMC7460449 DOI: 10.3390/antibiotics9080480] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/26/2020] [Accepted: 08/01/2020] [Indexed: 12/30/2022] Open
Abstract
The unprecedented use of antibiotics that led to development of resistance affect human health worldwide. Prescription of antibiotics imprudently and irrationally in different diseases progressed with the acquisition and as such development of antibiotic resistant microbes that led to the resurgence of pathogenic strains harboring enhanced armors against existing therapeutics. Compromised the treatment regime of a broad range of antibiotics, rise in resistance has threatened human health and increased the treatment cost of diseases. Diverse on metabolic, genetic and physiological fronts, rapid progression of resistant microbes and the lack of a strategic management plan have led researchers to consider plant-derived substances (PDS) as alternative or in complementing antibiotics against the diseases. Considering the quantitative characteristics of plant constituents that attribute health beneficial effects, analytical procedures for their isolation, characterization and phytochemical testing for elucidating ethnopharmacological effects has being worked out for employment in the treatment of different diseases. With an immense potential to combat bacterial infections, PDSs such as polyphenols, alkaloids and tannins, present a great potential for use, either as antimicrobials or as antibiotic resistance modifiers. The present study focuses on the mechanisms by which PDSs help overcome the surge in resistance, approaches for screening different phytochemicals, methods employed in the identification of bioactive components and their testing and strategies that could be adopted for counteracting the lethal consequences of multidrug resistance.
Collapse
Affiliation(s)
- Hana Mohammed Al AlSheikh
- Department of Prosthetic Dental Sciences, College of Dentistry, Kind Saud University, Riyadh P.O. BOX 145111, Saudi Arabia;
| | - Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdul Aziz University, Jeddah P.O. BOX 80200, Saudi Arabia;
| | - Hashem Al-Sheikh
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | | |
Collapse
|
9
|
Blanco-Cabra N, Vega-Granados K, Moya-Andérico L, Vukomanovic M, Parra A, Álvarez de Cienfuegos L, Torrents E. Novel Oleanolic and Maslinic Acid Derivatives as a Promising Treatment against Bacterial Biofilm in Nosocomial Infections: An in Vitro and in Vivo Study. ACS Infect Dis 2019; 5:1581-1589. [PMID: 31268675 DOI: 10.1021/acsinfecdis.9b00125] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oleanolic acid (OA) and maslinic acid (MA) are pentacyclic triterpenic compounds that abound in industrial olive oil waste. These compounds have renowned antimicrobial properties and lack cytotoxicity in eukaryotic cells as well as resistance mechanisms in bacteria. Despite these advantages, their antimicrobial activity has only been tested in vitro, and derivatives improving this activity have not been reported. In this work, a set of 14 OA and MA C-28 amide derivatives have been synthesized. Two of these derivatives, MA-HDA and OA-HDA, increase the in vitro antimicrobial activity of the parent compounds while reducing their toxicity in most of the Gram-positive bacteria tested, including a methicillin-resistant Staphylococcus aureus-MRSA. MA-HDA also shows an enhanced in vivo efficacy in a Galleria mellonella invertebrate animal model of infection. A preliminary attempt to elucidate their mechanism of action revealed that these compounds are able to penetrate and damage the bacterial cell membrane. More significantly, their capacity to reduce antibiofilm formation in catheters has also been demonstrated in two sets of conditions: a static and a more challenged continuous-flow S. aureus biofilm.
Collapse
Affiliation(s)
- Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | - Karina Vega-Granados
- Department of Organic Chemistry, Faculty of Science, University of Granada, Campus Universitario
Fuentenueva s/n, 18071 Granada, Spain
| | - Laura Moya-Andérico
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | - Marija Vukomanovic
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | - Andrés Parra
- Department of Organic Chemistry, Faculty of Science, University of Granada, Campus Universitario
Fuentenueva s/n, 18071 Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Department of Organic Chemistry, Faculty of Science, University of Granada, Campus Universitario
Fuentenueva s/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, 18012 Granada, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Shin B, Park W. Synergistic Effect of Oleanolic Acid on Aminoglycoside Antibiotics against Acinetobacter baumannii. PLoS One 2015; 10:e0137751. [PMID: 26360766 PMCID: PMC4567131 DOI: 10.1371/journal.pone.0137751] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/20/2015] [Indexed: 01/08/2023] Open
Abstract
Difficulties involved in treating drug-resistant pathogens have created a need for new therapies. In this study, we investigated the possibility of using oleanolic acid (OA), a natural pentacyclic triterpenoid, as a natural adjuvant for antibiotics against Acinetobacter baumannii. High concentrations of OA can kill cells, partly because it generates reactive oxygen species. Measurement of the fractional inhibitory concentration (FIC) for OA and time-kill experiments demonstrated that it only synergizes with aminoglycoside antibiotics (e.g., gentamicin, kanamycin). Other classes of antibiotics (e.g., ampicillin, rifampicin, norfloxacin, chloramphenicol, and tetracycline) have no interactions with OA. Microarray and quantitative reverse transcription-PCR analysis indicated that genes involved in ATP synthesis and cell membrane permeability, the gene encoding glycosyltransferase, peptidoglycan-related genes, phage-related genes, and DNA repair genes were upregulated under OA. OA highly induces the expression of adk, which encodes an adenylate kinase, and des6, which encodes a linoleoyl-CoA desaturase, and deletion of these genes increased FICs; these observations indicate that adk and des6 are involved in the synergism of OA with aminoglycosides. Data obtained using 8-anilino-1-naphthalenesulfonic acid, fluorescence-conjugated gentamicin, and membrane fatty acid analysis indicates that adk and des6 are involved in changes in membrane permeability. Proton-motive force and ATP synthesis tests show that those genes are also involved in energy metabolism. Taken together, our data show that OA boosts aminoglycoside uptake by changing membrane permeability and energy metabolism in A. baumannii.
Collapse
Affiliation(s)
- Bora Shin
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
11
|
Broniatowski M, Flasiński M, Wydro P, Fontaine P. Grazing incidence diffraction studies of the interactions between ursane-type antimicrobial triterpenes and bacterial anionic phospholipids. Colloids Surf B Biointerfaces 2015; 128:561-567. [PMID: 25805152 DOI: 10.1016/j.colsurfb.2015.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/11/2015] [Accepted: 03/02/2015] [Indexed: 01/11/2023]
Abstract
α-Amyrin (AMalf) and ursolic acid (Urs) are ursane-type pentacyclic triterpenes which exhibit wide spectrum of antibacterial activity. These surface active compounds can be incorporated into bacterial membranes and alter their structure and function; however, the exact mechanism of their action still needs to be elucidated. Thus, we decided to study the interactions of these terpenes with specific anionic phospholipids:cardiolipins and phosphatidylglycerols extracted from Escherichia coli in the model environment of Langmuir monolayers. To characterize the ordering of the terpene molecules in one-component films as well as to study their interactions with the bacterial phospholipids in binary monolayers we applied grazing incidence X-ray diffraction (GIXD). It turned out that amyrins and ursolic acid molecules form crystalline hexagonal phases in Langmuir monolayers, in which the molecules are oriented uprightly. Regarding the mixtures, it was found that in the monolayers with Urs crystalline domains are present till moderate or even low Urs proportion. In contrast, in the mixtures with AMalf crystalline domains were observed only at the highest terpene concentration. In the interpretation of our results we underlined the significance of the interactions between the cyclopropane ring present in the hydrophobic part of the bacterial phospholipids and the terminal ring of the terpene structure. We proposed that the significant differences between the systems with AMalf and Urs are connected with the formation of hydrogen bonds between the Urs hydrophobic moieties. It can be inferred from the results that Urs is a more membrane-active agent than AMalf.
Collapse
Affiliation(s)
- Marcin Broniatowski
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 3, 30-387 Krakow, Poland.
| | - Michał Flasiński
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 3, 30-387 Krakow, Poland
| | - Paweł Wydro
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Philippe Fontaine
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP48, 91192 Gif sur Yvette Cedex, France
| |
Collapse
|
12
|
Wojnicz D, Tichaczek-Goska D, Kicia M. Pentacyclic triterpenes combined with ciprofloxacin help to eradicate the biofilm formed in vitro by Escherichia coli. Indian J Med Res 2015; 141:343-53. [PMID: 25963496 PMCID: PMC4442333 DOI: 10.4103/0971-5916.156631] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND & OBJECTIVES Ciprofloxacin is commonly used in clinical practice for the treatment of recurrent urinary tract infections caused by Escherichia coli. However, very often these recurrent infections are due to a failure in a complete eradication of the microorganisms colonizing the urinary tract, especially in catheterized patients. To enhance the bactericidal activity of ciprofloxacin against biofilm-forming uropathogenic E. coli (UPECs), we examined its effect in combination with two pentacyclic triterpenes - asiatic and ursolic acids. METHODS The anti-biofilm activity of ciprofloxacin and pentacyclic triterpenes - asiatic acid (AA) and ursolic acid (UA), as well as their synergistic effect were tested on two types of surfaces - polystyrene microtiter plates and silicone catheters. It was investigated using the time-killing and biofilm assays. RESULTS a0 nti-biofilm activity of ciprofloxacin was not observed on microtiter plates or on the catheters. Ciprofloxacin combined with ursolic acid inhibited the biofilm formation on microtitre plates. This mixture, however, did not express such a strong activity against the synthesis of biofilm on the surface of catheters. Ciprofloxacin combined with asiatic acid had very weak inhibiting effect on the synthesis of biofilm mass on microtitre plates as well as on the catheters. Despite this, both mixtures - ciprofloxacin and asiatic acid, as well as ciprofloxacin and ursolic acid, exhibited strong and significant impact on the eradication of mature biofilm (P < 0.05). INTERPRETATION & CONCLUSIONS Although ciprofloxacin is recommended in the treatment of urinary tract infections caused by UPECs, but its efficacy is arguable. Subinhibitory concentrations of ciprofloxacin did not inhibit the formation of biofilm. Pentacyclic triterpenes used in combination with ciprofloxacin enhanced its anti-biofilm effectiveness. However, this anti-biofilm activity was found to depend on the type of surface on which biofilm was formed.
Collapse
Affiliation(s)
- Dorota Wojnicz
- Department of Biology & Medical Parasitology, Wroclaw Medical University, Wroclaw, Poland
| | - Dorota Tichaczek-Goska
- Department of Biology & Medical Parasitology, Wroclaw Medical University, Wroclaw, Poland
| | - Marta Kicia
- Department of Biology & Medical Parasitology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
13
|
Jesus JA, Lago JHG, Laurenti MD, Yamamoto ES, Passero LFD. Antimicrobial activity of oleanolic and ursolic acids: an update. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:620472. [PMID: 25793002 PMCID: PMC4352472 DOI: 10.1155/2015/620472] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/22/2015] [Indexed: 12/14/2022]
Abstract
Triterpenoids are the most representative group of phytochemicals, as they comprise more than 20,000 recognized molecules. These compounds are biosynthesized in plants via squalene cyclization, a C30 hydrocarbon that is considered to be the precursor of all steroids. Due to their low hydrophilicity, triterpenes were considered to be inactive for a long period of time; however, evidence regarding their wide range of pharmacological activities is emerging, and elegant studies have highlighted these activities. Several triterpenic skeletons have been described, including some that have presented with pentacyclic features, such as oleanolic and ursolic acids. These compounds have displayed incontestable biological activity, such as antibacterial, antiviral, and antiprotozoal effects, which were not included in a single review until now. Thus, the present review investigates the potential use of these triterpenes against human pathogens, including their mechanisms of action, via in vivo studies, and the future perspectives about the use of compounds for human or even animal health are also discussed.
Collapse
Affiliation(s)
- Jéssica A. Jesus
- Laboratório de Patologia de Moléstias Infecciosas, Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, Avenue Dr. Arnaldo 455, 06780-210 Cerqueira César, SP, Brazil
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua Professor Artur Riedel 275, 09972-270 Diadema, SP, Brazil
| | - João Henrique G. Lago
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua Professor Artur Riedel 275, 09972-270 Diadema, SP, Brazil
| | - Márcia D. Laurenti
- Laboratório de Patologia de Moléstias Infecciosas, Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, Avenue Dr. Arnaldo 455, 06780-210 Cerqueira César, SP, Brazil
| | - Eduardo S. Yamamoto
- Laboratório de Patologia de Moléstias Infecciosas, Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, Avenue Dr. Arnaldo 455, 06780-210 Cerqueira César, SP, Brazil
| | - Luiz Felipe D. Passero
- Laboratório de Patologia de Moléstias Infecciosas, Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, Avenue Dr. Arnaldo 455, 06780-210 Cerqueira César, SP, Brazil
| |
Collapse
|
14
|
Broniatowski M, Mastalerz P, Flasiński M. Studies of the interactions of ursane-type bioactive terpenes with the model of Escherichia coli inner membrane-Langmuir monolayer approach. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:469-76. [PMID: 25450351 DOI: 10.1016/j.bbamem.2014.10.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/31/2014] [Accepted: 10/20/2014] [Indexed: 12/20/2022]
Abstract
Pentacyclic triterpenes (PT), ursolic acid (Urs), and α-amyrin (AMalf) are natural products exhibiting broad spectrum of antibacterial activity. These compounds are membrane-active and can disorder bacterial membranes when incorporated; however, the exact mechanism of their membrane activity is unknown. In our studies, we applied Langmuir monolayer technique supported by Brewster angle microscopy to model the interactions of the selected PT with the lipid matrix of E. coli inner membrane. As the model membrane, we applied mixtures (75/25 mole/.mole %) of the representative Escherichia coli phosphatidylethanolamine (POPE), with the cardiolipin (ECCL) or phosphatidylglycerol (ECPG) extracted from the E. coli inner membrane. On the basis of the recorded isotherms, we performed thermodynamic analysis and calculated free energy of mixing ΔGexc. It turned out that the phospholipids forming the inner membrane of E. coli are ideally miscible, whereas in binary systems composed of PT and POPE, negative deviations from ideality indicating attractive interactions between the investigated PT and POPE molecules were observed. On the other hand, in ternary systems composed of PT, POPE and one of the E. coli anionic phospholipids large positive changes in ΔGexc were observed. Thus, both PT exhibit disorganizing effect on the model E. coli membrane. It was also proved that at low terpene proportion, AMalf can be more active than Urs. However, at higher proportion Urs incorporation can lead to the disintegration of cardiolipin-rich domains present in bacterial membrane.
Collapse
Affiliation(s)
- Marcin Broniatowski
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 3,30-387 Kraków, Poland.
| | - Patrycja Mastalerz
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 3,30-387 Kraków, Poland
| | - Michał Flasiński
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 3,30-387 Kraków, Poland
| |
Collapse
|
15
|
Upadhyay A, Upadhyaya I, Kollanoor-Johny A, Venkitanarayanan K. Combating pathogenic microorganisms using plant-derived antimicrobials: a minireview of the mechanistic basis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:761741. [PMID: 25298964 PMCID: PMC4178913 DOI: 10.1155/2014/761741] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/05/2014] [Accepted: 08/08/2014] [Indexed: 12/19/2022]
Abstract
The emergence of antibiotic resistance in pathogenic bacteria has led to renewed interest in exploring the potential of plant-derived antimicrobials (PDAs) as an alternative therapeutic strategy to combat microbial infections. Historically, plant extracts have been used as a safe, effective, and natural remedy for ailments and diseases in traditional medicine. Extensive research in the last two decades has identified a plethora of PDAs with a wide spectrum of activity against a variety of fungal and bacterial pathogens causing infections in humans and animals. Active components of many plant extracts have been characterized and are commercially available; however, research delineating the mechanistic basis of their antimicrobial action is scanty. This review highlights the potential of various plant-derived compounds to control pathogenic bacteria, especially the diverse effects exerted by plant compounds on various virulence factors that are critical for pathogenicity inside the host. In addition, the potential effect of PDAs on gut microbiota is discussed.
Collapse
Affiliation(s)
- Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, 3636 Horsebarn Hill Road Extension, Unit 4040, Storrs, CT 06269, USA
| | - Indu Upadhyaya
- Department of Animal Science, University of Connecticut, 3636 Horsebarn Hill Road Extension, Unit 4040, Storrs, CT 06269, USA
| | - Anup Kollanoor-Johny
- Department of Animal Science, University of Connecticut, 3636 Horsebarn Hill Road Extension, Unit 4040, Storrs, CT 06269, USA
| | - Kumar Venkitanarayanan
- Department of Animal Science, University of Connecticut, 3636 Horsebarn Hill Road Extension, Unit 4040, Storrs, CT 06269, USA
| |
Collapse
|
16
|
Markowska K, Grudniak AM, Krawczyk K, Wróbel I, Wolska KI. Modulation of antibiotic resistance and induction of a stress response in Pseudomonas aeruginosa by silver nanoparticles. J Med Microbiol 2014; 63:849-854. [PMID: 24623636 DOI: 10.1099/jmm.0.068833-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to characterize the effects of silver nanoparticles on Pseudomonas aeruginosa. Their interactions with several conventional antibiotics and ability to induce a stress response were examined. Interactions between silver nanoparticles (AgNPs) and antibiotics against free-living cells and biofilm of P. aeruginosa were studied using the chequerboard method and time-kill assays. The ability of AgNPs to induce a stress response was determined by evaluation of cellular levels of the DnaK and HtpG chaperones using SDS-PAGE and Western blot analysis. Synergistic activity against free-living P. aeruginosa between AgNPs and ampicillin, streptomycin, rifampicin and tetracycline, but not oxacillin, ciprofloxacin, meropenem or ceftazidime, was demonstrated by the chequerboard method. No such interactions were observed against P. aeruginosa biofilm. The results of time-kill assays confirmed synergy only for the AgNPs-streptomycin combination. AgNPs induced the expression of chaperone DnaK. No induction of the HtpG chaperone was detected. In conclusion, AgNPs not only display potent bactericidal activity against P. aeruginosa, but also act synergistically with several conventional antibiotics to enhance their effect against free-living bacteria as determined by the chequerboard method. The time-kill assay proved synergy between AgNPs and streptomycin only. The ability of AgNPs to induce the major chaperone protein DnaK may influence bacterial resistance to antimicrobials.
Collapse
Affiliation(s)
- Katarzyna Markowska
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna M Grudniak
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Krzysztof Krawczyk
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Izabela Wróbel
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Krystyna I Wolska
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
17
|
Liu B, Liu Y, Yang G, Xu Z, Chen J. Ursolic acid induces neural regeneration after sciatic nerve injury. Neural Regen Res 2013; 8:2510-9. [PMID: 25206561 PMCID: PMC4145935 DOI: 10.3969/j.issn.1673-5374.2013.27.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022] Open
Abstract
In this study, we aimed to explore the role of ursolic acid in the neural regeneration of the injured sciatic nerve. BALB/c mice were used to establish models of sciatic nerve injury through unilateral sciatic nerve complete transection and microscopic anastomosis at 0.5 cm below the ischial tube-rosity. The successfully generated model mice were treated with 10, 5, or 2.5 mg/kg ursolic acid via intraperitoneal injection. Enzyme-linked immunosorbent assay results showed that serum S100 protein expression level gradually increased at 1-4 weeks after sciatic nerve injury, and significantly decreased at 8 weeks. As such, ursolic acid has the capacity to significantly increase S100 protein expression levels. Real-time quantitative PCR showed that S100 mRNA expression in the L4-6 segments on the injury side was increased after ursolic acid treatment. In addition, the muscular mass index in the soleus muscle was also increased in mice treated with ursolic acid. Toluidine blue staining revealed that the quantity and average diameter of myelinated nerve fibers in the injured sciatic nerve were significantly increased after treatment with ursolic acid. 10 and 5 mg/kg of ursolic acid produced stronger effects than 2.5 mg/kg of ursolic acid. Our findings indicate that ursolic acid can dose-dependently increase S100 expression and promote neural regeneration in BALB/c mice following sciatic nerve injury.
Collapse
Affiliation(s)
- Biao Liu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Yan Liu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Guang Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Zemin Xu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
18
|
Kurek A, Nadkowska P, Pliszka S, Wolska KI. Modulation of antibiotic resistance in bacterial pathogens by oleanolic acid and ursolic acid. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:515-9. [PMID: 22341643 DOI: 10.1016/j.phymed.2011.12.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 12/24/2011] [Indexed: 05/31/2023]
Abstract
Antibiotic resistance among bacterial pathogens is a serious problem for human and veterinary medicine, which necessitates the development of novel therapeutics and antimicrobial strategies. Some plant-derived compounds, e.g. pentacyclic triterpenoids such as oleanolic acid (OA) and ursolic acid (UA), have potential as a new class of antibacterial agents as they are active against many bacterial species, both Gram-positive and Gram-negative, and specifically target the cell envelope. The aim of the present study was to investigate the influence of OA and UA on the susceptibility of four bacterial pathogens (Pseudomonas aeruginosa, Listeria monocytogenes, Staphylococcus aureus and Staphylococcus epidermidis) to the β-lactam antibiotics ampicillin (Ap) and oxacillin (Ox). Antimicrobial assays were conducted with bacteria growing in liquid suspension cultures (planktonic cells) or as biofilms. Using FICI value estimation and the time-kill method it was demonstrated that in some combinations, the tested compounds acted in synergy to lower the susceptibility of S. aureus, S. epidermidis and L. monocytogenes to ampicillin and oxacillin, but no synergy was observed for P. aeruginosa. These results indicate that OA and UA may be useful when administered in combination with β-lactam antibiotics to combat bacterial infections caused by some Gram-positive pathogens.
Collapse
Affiliation(s)
- Anna Kurek
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | |
Collapse
|