1
|
Li X, Zhang Y, Zhan Y, Tian H, Yan B, Cai J. Utilization of a strong promoter combined with the knockout of protease genes to improve the yield of Vip3Aa in Bacillus thuringiensis BMB171. PEST MANAGEMENT SCIENCE 2023; 79:1713-1720. [PMID: 36622044 DOI: 10.1002/ps.7343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Vip3Aa is an insecticidal protein secreted by some Bacillus thuringiensis strains during vegetative growth. It has excellent insecticidal activity, its mechanism of action is different from that of Cry protein, and it can delay the development of pest resistance. To date, Vip3Aa has been widely used in genetically modified Bt crops. However, the secretion of Vip3Aa by industrial production strains is usually very low. Moreover, most of the Vip3Aa in the medium is degraded by proteases, limiting its application as a biopesticide. RESULTS We report a novel constitutive strong promoter from B. thuringiensis, Prsi , which directs the abundant expression of vip3Aa in B. thuringiensis BMB171. Furthermore, to reduce the degradation of Vip3Aa caused by proteases, we constructed B. thuringiensis mutants in which different protease genes were knocked out. We found that the degradation of Vip3Aa was greatly inhibited and its yield was significantly improved in a mutant that lacked all three protease genes. CONCLUSION Our results provide a new strategy to enhance the production of Vip3Aa in B. thuringiensis and have reference value for the research and development of novel bioinsecticides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuelian Li
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yanli Zhang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yunda Zhan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongwei Tian
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Bing Yan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| |
Collapse
|
2
|
Gaona-Mendoza AS, Bravo Rivas MC, Barboza-Corona JE, Massange-Sánchez JA, Casados-Vázquez LE. Expression of thurincin H, ChiA74 and Cry proteins at the sporulation phase in Bacillus thuringiensis HD1. J Appl Microbiol 2021; 132:3049-3057. [PMID: 34967963 DOI: 10.1111/jam.15434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/03/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022]
Abstract
AIMS The objective of this study was to produce thurincin H, ChiA74 and Cry proteins together using B. thuringiensis subsp. kurstaki HD1 as a heterologous host. METHODS AND RESULTS pSTAB-ThurH and pSTAB-ChiA74 constructs were designed to produce thurincin H and chitinase respectively, at the sporulation phase. They were transformed into Bt HD1 generating the recombinant strains HD1/pSTAB-ThurH and HD1/pSTAB-ThurH/pSTAB-ChiA74. Antimicrobial and chitinolytic activity tests were performed with recombinant strains. Both strains were able to produce thurincin H up to 72 h with antibacterial activity of ~ 4000 U mg-1 . The HD1/pSTAB-ThurH/pSTAB-ChiA74 strain also showed chitinolytic activity of ~ 23 mU mg-1 at 72 h. All B. thuringiensis strains exhibited crystal formation at 72, and 96 h. In addition, the application of thurincin H in corn seeds increased the germination percentage and root length by 7 % and 10 %, respectively. CONCLUSIONS We showed that is possible to produce three proteins of biotechnological interest at the sporulation stage in B. thuringiensis, which two of them (thurincin H, and ChiA74) are naturally expressed in the vegetative stage. SIGNIFICANCE AND IMPACT OF THE STUDY These results form the basis for developing of a biocontrol and biostimulator product that can be used as an alternative for chemical application.
Collapse
Affiliation(s)
- America S Gaona-Mendoza
- Universidad de Guanajuato Campus Irapuato-Salamanca, Life Science Division, Graduate Program in Biosciences.,Food Department, Irapuato, Guanajuato, Mexico, 36500
| | - Martha C Bravo Rivas
- Universidad de Guanajuato Campus Irapuato-Salamanca, Life Science Division, Graduate Program in Biosciences.,Food Department, Irapuato, Guanajuato, Mexico, 36500
| | - José E Barboza-Corona
- Universidad de Guanajuato Campus Irapuato-Salamanca, Life Science Division, Graduate Program in Biosciences.,Food Department, Irapuato, Guanajuato, Mexico, 36500
| | - Julio A Massange-Sánchez
- Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología, Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, 44270, Mexico
| | - Luz E Casados-Vázquez
- Universidad de Guanajuato Campus Irapuato-Salamanca, Life Science Division, Graduate Program in Biosciences.,Food Department, Irapuato, Guanajuato, Mexico, 36500.,Cátedra Conacyt-Universidad de Guanajuato
| |
Collapse
|
3
|
Martínez-Zavala SA, Barboza-Pérez UE, Hernández-Guzmán G, Bideshi DK, Barboza-Corona JE. Chitinases of Bacillus thuringiensis: Phylogeny, Modular Structure, and Applied Potentials. Front Microbiol 2020; 10:3032. [PMID: 31993038 PMCID: PMC6971178 DOI: 10.3389/fmicb.2019.03032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/17/2019] [Indexed: 01/09/2023] Open
Abstract
The most important bioinsecticide used worldwide is Bacillus thuringiensis and its hallmark is a rich variety of insecticidal Cry protein, many of which have been genetically engineered for expression in transgenic crops. Over the past 20 years, the discovery of other insecticidal proteins and metabolites synthesized by B. thuringiensis, including chitinases, antimicrobial peptides, vegetative insecticidal proteins (VIP), and siderophores, has expanded the applied value of this bacterium for use as an antibacterial, fungicidal, and nematicidal resource. These properties allow us to view B. thuringiensis not only as an entity for the production of a particular metabolite, but also as a multifaceted microbial factory. In particular, chitinases of B. thuringiensis are secreted enzymes that hydrolyze chitin, an abundant molecule in the biosphere, second only to cellulose. The observation that chitinases increase the insecticidal activity of Cry proteins has stimulated further study of these enzymes produced by B. thuringiensis. Here, we provide a review of a subset of our knowledge of B. thuringiensis chitinases as it relates to their phylogenetic relationships, regulation of expression, biotechnological potential for controlling entomopathogens, fungi, and nematodes, and their use in generating chitin-derived oligosaccharides (ChOGs) that possess antibacterial activities against a number of clinically significant bacterial pathogens. Recent advances in the structural organization of these enzymes are also discussed, as are our perspective for future studies.
Collapse
Affiliation(s)
- Sheila A Martínez-Zavala
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Guanajuato, Mexico
| | - Uriel E Barboza-Pérez
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gustavo Hernández-Guzmán
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Guanajuato, Mexico.,Department of Biological Sciences, California Baptist University, Riverside, CA, United States
| | - Dennis K Bideshi
- Department of Entomology, University of California, Riverside, Riverside, CA, United States.,Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Guanajuato, Mexico
| | - José E Barboza-Corona
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Guanajuato, Mexico.,Department of Biological Sciences, California Baptist University, Riverside, CA, United States
| |
Collapse
|
4
|
Dang Y, Zhao F, Liu X, Fan X, Huang R, Gao W, Wang S, Yang C. Enhanced production of antifungal lipopeptide iturin A by Bacillus amyloliquefaciens LL3 through metabolic engineering and culture conditions optimization. Microb Cell Fact 2019; 18:68. [PMID: 30971238 PMCID: PMC6457013 DOI: 10.1186/s12934-019-1121-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/05/2019] [Indexed: 01/24/2023] Open
Abstract
Background Iturins, which belong to antibiotic cyclic lipopeptides mainly produced by Bacillus sp., have the potential for application in biomedicine and biocontrol because of their hemolytic and antifungal properties. Bacillus amyloliquefaciens LL3, isolated previously by our lab, possesses a complete iturin A biosynthetic pathway as shown by genomic analysis. Nevertheless, iturin A could not be synthesized by strain LL3, possibly resulting from low transcription level of the itu operon. Results In this work, enhanced transcription of the iturin A biosynthetic genes was implemented by inserting a strong constitutive promoter C2up into upstream of the itu operon, leading to the production of iturin A with a titer of 37.35 mg l−1. Liquid chromatography-mass spectrometry analyses demonstrated that the strain produced four iturin A homologs with molecular ion peaks at m/z 1044, 1058, 1072 and 1086 corresponding to [C14 + 2H]2+, [C15 + 2H]2+, [C16 + 2H]2+ and [C17 + 2H]2+. The iturin A extract exhibited strong inhibitory activity against several common plant pathogens. The yield of iturin A was improved to 99.73 mg l−1 by the optimization of the fermentation conditions using a response surface methodology. Furthermore, the yield of iturin A was increased to 113.1 mg l−1 by overexpression of a pleiotropic regulator DegQ. Conclusions To our knowledge, this is the first report on simultaneous production of four iturin A homologs (C14–C17) by a Bacillus strain. In addition, this study suggests that metabolic engineering in combination with culture conditions optimization may be a feasible method for enhanced production of bacterial secondary metabolites. Electronic supplementary material The online version of this article (10.1186/s12934-019-1121-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yulei Dang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Fengjie Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xiangsheng Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xu Fan
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Rui Huang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Weixia Gao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Shufang Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
5
|
Expression of ChiA74∆sp and its truncated versions in Bacillus thuringiensis HD1 using a vegetative promoter maintains the integrity and toxicity of native Cry1A toxins. Int J Biol Macromol 2019; 124:80-87. [DOI: 10.1016/j.ijbiomac.2018.11.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 01/01/2023]
|
6
|
Tan TT, Zhang XD, Miao Z, Yu Y, Du SL, Hou XY, Cai J. A single point mutation in hmgA leads to melanin accumulation in Bacillus thuringiensis BMB181. Enzyme Microb Technol 2019; 120:91-97. [DOI: 10.1016/j.enzmictec.2018.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/25/2018] [Accepted: 10/17/2018] [Indexed: 10/28/2022]
|
7
|
Cao ZL, Tan TT, Zhang YL, Han L, Hou XY, Ma HY, Cai J. NagR Bt Is a Pleiotropic and Dual Transcriptional Regulator in Bacillus thuringiensis. Front Microbiol 2018; 9:1899. [PMID: 30254611 PMCID: PMC6141813 DOI: 10.3389/fmicb.2018.01899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022] Open
Abstract
NagR, belonging to the GntR/HutC family, is a negative regulator that directly represses the nagP and nagAB genes, which are involved in GlcNAc transport and utilization in Bacillus subtilis. Our previous work confirmed that the chitinase B gene (chiB) of Bacillus thuringiensis strain Bti75 is also negatively controlled by YvoABt, the ortholog of NagR from B. subtilis. In this work, we investigated its regulatory network in Bti75 and found that YvoABt is an N-acetylglucosamine utilization regulator primarily involved in GlcNAc catabolism; therefore YvoABt is renamed as NagRBt. The RNA-seq data revealed that 27 genes were upregulated and 14 genes were downregulated in the ΔnagR mutant compared with the wild-type strain. The regulon (exponential phase) was characterized by RNA-seq, bioinformatics software, electrophoretic mobility shift assays, and quantitative real-time reverse transcription PCR. In the Bti75 genome, 19 genes that were directly regulated and 30 genes that were indirectly regulated by NagRBt were identified. We compiled in silico, in vitro, and in vivo evidence that NagRBt behaves as a repressor and activator to directly or indirectly influence major biological processes involved in amino sugar metabolism, nucleotide metabolism, fatty acid metabolism, phosphotransferase system, and the Embden-Meyerhof-Parnas pathway.
Collapse
Affiliation(s)
- Zhang-Lei Cao
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Tong-Tong Tan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yan-Li Zhang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Lu Han
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiao-Yue Hou
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hui-Yong Ma
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| |
Collapse
|
8
|
Feng J, Quan Y, Gu Y, Liu F, Huang X, Shen H, Dang Y, Cao M, Gao W, Lu X, Wang Y, Song C, Wang S. Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum. Microb Cell Fact 2017; 16:88. [PMID: 28532451 PMCID: PMC5440981 DOI: 10.1186/s12934-017-0704-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/15/2017] [Indexed: 01/01/2023] Open
Abstract
Background Poly-γ-glutamic acid (γ-PGA) is a valuable polymer with glutamate as its sole precursor. Enhancement of the intracellular glutamate synthesis is a very important strategy for the improvement of γ-PGA production, especially for those glutamate-independent γ-PGA producing strains. Corynebacterium glutamicum has long been used for industrial glutamate production and it exhibits some unique features for glutamate synthesis; therefore introduction of these metabolic characters into the γ-PGA producing strain might lead to increased intracellular glutamate availability, and thus ultimate γ-PGA production. Results In this study, the unique glutamate synthesis features from C. glutamicum was introduced into the glutamate-independent γ-PGA producing Bacillus amyloliquefaciens NK-1 strain. After introducing the energy-saving NADPH-dependent glutamate dehydrogenase (NADPH-GDH) pathway, the NK-1 (pHT315-gdh) strain showed slightly increase (by 9.1%) in γ-PGA production. Moreover, an optimized metabolic toggle switch for controlling the expression of ɑ-oxoglutarate dehydrogenase complex (ODHC) was introduced into the NK-1 strain, because it was previously shown that the ODHC in C. glutamicum was completely inhibited when glutamate was actively produced. The obtained NK-PO1 (pHT01-xylR) strain showed 66.2% higher γ-PGA production than the NK-1 strain. However, the further combination of these two strategies (introducing both NADPH-GDH pathway and the metabolic toggle switch) did not lead to further increase of γ-PGA production but rather the resultant γ-PGA production was even lower than that in the NK-1 strain. Conclusions We proposed new metabolic engineering strategies to improve the γ-PGA production in B. amyloliquefaciens. The NK-1 (pHT315-gdh) strain with the introduction of NADPH-GDH pathway showed 9.1% improvement in γ-PGA production. The NK-PO1 (pHT01-xylR) strain with the introduction of a metabolic toggle switch for controlling the expression of ODHC showed 66.2% higher γ-PGA production than the NK-1 strain. This work proposed a new strategy for improving the target product in microbial cell factories. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0704-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Feng
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China.,Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.,Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yufen Quan
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yanyan Gu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China.,Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Fenghong Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xiaozhong Huang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Haosheng Shen
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yulei Dang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Mingfeng Cao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Weixia Gao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Cunjiang Song
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China.
| | - Shufang Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
9
|
YvoA and CcpA Repress the Expression of chiB in Bacillus thuringiensis. Appl Environ Microbiol 2015; 81:6548-57. [PMID: 26162881 DOI: 10.1128/aem.01549-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/07/2015] [Indexed: 12/15/2022] Open
Abstract
Bacillus thuringiensis produces chitinases, which are involved in its antifungal activity and facilitate its insecticidal activity. In our recent work, we found that a 16-bp sequence, drechiB (AGACTTCGTGATGTCT), downstream of the minimal promoter region of the chitinase B gene (chiB) was a critical site for the inducible expression of chiB in B. thuringiensis Bti75. In this work, we show that a GntR family transcriptional regulator (named YvoABt), which is homologous to YvoA of Bacillus subtilis, can specifically bind to the drechiB oligonucleotide sequences in vitro by using electrophoretic mobility shift assays (EMSAs) and isothermal titration calorimetry (ITC) assays. The results of quantitative real-time reverse transcription-PCR (qRT-PCR) and Western blotting indicated that deletion of yvoA caused an ∼7.5-fold increase in the expression level of chiB. Furthermore, binding of purified YvoABt to its target DNA could be abolished by glucosamine-6-phosphate (GlcN-6-P). We also confirmed, in the presence of the phosphoprotein Hpr-Ser₄₅-P, that purified CcpABt bound specifically to the promoter of chiB, which contains the "crechiB" sequence (ATAAAGCGTTTACA). According to the results of qRT-PCR and Western blotting, deletion of ccpA resulted in a 39-fold increase in the chiB expression level, and glucose no longer influenced the expression of chiB. We confirm that chiB is negatively controlled by both CcpABt and YvoABt in Bti75.
Collapse
|
10
|
Xie CC, Shi J, Jia HY, Li PF, Luo Y, Cai J, Chen YH. Characterization of regulatory regions involved in the inducible expression of chiB in Bacillus thuringiensis. Arch Microbiol 2014; 197:53-63. [PMID: 25362505 DOI: 10.1007/s00203-014-1054-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 10/13/2014] [Accepted: 10/23/2014] [Indexed: 11/25/2022]
Abstract
Expression of the chiB gene from Bacillus thuringiensis Bti75 was defined as inducible by the use of transcriptional fusions with the bgaB reporter gene. The transcription start site of the chiB gene was identified as the C base located 132 base pairs upstream of the start codon. Analysis of 5' and 3' deletions of the chiB promoter region revealed that the sequence from position -192 to +36 with respect to the transcription start site was necessary for wild-type levels of inducible expression of the chiB gene. The minimal promoter region for the expression of chiB gene was identified as the sequence from position -100 to +12. Furthermore, a 16-bp sequence (designated dre) downstream of the minimal promoter region of chiB was shown to be required for chitin induction. To confirm the function of this 16-bp sequence, 25 base substitutions were introduced into the dre site. Most of the mutations resulted in constitutive expression, or the efficiency of induction decreased. All mutations identified the dre sequence as a critical site for the inducible expression of chiB. In addition, the dre site was shown to interact with a sequence-specific DNA binding factor of strain Bti75 cultured in the absence of the inducer.
Collapse
Affiliation(s)
- Chi-Chu Xie
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
11
|
Ge X, Wang W, Du B, Wang J, Xiong X, Zhang W. Multiple pqqA genes respond differently to environment and one contributes dominantly to pyrroloquinoline quinone synthesis. J Basic Microbiol 2013; 55:312-23. [PMID: 23828377 DOI: 10.1002/jobm.201300037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 06/01/2013] [Indexed: 11/11/2022]
Abstract
Pyrroloquinoline quinone is the third redox cofactor after nicotinamide and flavin in bacteria, and its biosynthesis pathway comprise five steps initiated from a precursor peptide PqqA coded by pqqA gene. Methylovorus sp. MP688 is equipped with five copies of pqqA genes. Herein, the transcription of pqqA genes under different conditions by real-time quantitative PCR and β-galactosidase reporter genes are reported. Multiple pqqA genes were proved to play significant roles and contribute differently in PQQ synthesis. pqqA1, pqqA2, and pqqA4 were determined to be dominantly transcribed over the others, and correspondingly absence of any of the three genes caused a decrease in PQQ synthesis. Notably, pqqA was up-regulated in low pH and limited oxygen environment, and it is pqqA2 promoter that could be induced when bacteria were transferred from pH 7.0 to pH 5.5. Deletion analysis revealed a region within pqqA2 promoter inhibiting transcription. PQQ concentration was increased by overexpression of pqq genes under control of truncated pqqA2 promoter. The results not only imply there exist negative transcriptional regulators for pqqA2 but also provide us a new approach to achieve higher PQQ production by deleting the target binding sequence.
Collapse
Affiliation(s)
- Xin Ge
- Laboratory of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing, China
| | | | | | | | | | | |
Collapse
|