1
|
Hosseini SF, Jalali Nadoushan M, Fekrirad Z, Rasooli I. Omp34-Mediated Acinetobacter baumannii Invasion of Human Cervical Carcinoma Epithelial, HeLa Cells, and the Influence of Anti-Omp34 Antibodies. Anal Cell Pathol (Amst) 2025; 2025:1931119. [PMID: 40256153 PMCID: PMC12006715 DOI: 10.1155/ancp/1931119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/13/2025] [Indexed: 04/22/2025] Open
Abstract
Acinetobacter baumannii is known for its ability to invade and persist within eukaryotic cells, impacting infection outcomes and disease progression. This study investigates the role of Omp34, a key outer membrane protein (Omp), in A. baumannii interaction with epithelial cells and the protective effects of anti-Omp34 antibodies (Abs). Omp34 is a key regulator of A. baumannii epithelial cell invasion, influencing bacterial adherence, internalization, and intracellular proliferation. The presence of anti-Omp34 Abs mitigates A. baumannii-induced cellular damage and enhances bacterial clearance. The process involved the expression and purification of Omp34, which in turn induced Abs in BALB/c mice against Omp34. The acute toxicity of Omp34 was studied through a histological analysis conducted on six distinct organs in mice. HeLa cells were infected by A. baumannii ATCC 19606 and a clinical strain. Various aspects of A. baumannii behavior with HeLa cells, including HeLa cell viability, adherence, serum resistance, cell internalization, and intracellular proliferation with and without anti-Omp34 sera. Cytoskeleton inhibitors were used to study the potential roles played in the process of A. baumannii invasion by microfilaments and microtubules. Omp34 effectively triggered Ab production in mice without resulting in any toxicity. The assay for serum resistance revealed potent bactericidal and antibiofilm effects on both A. baumannii strains. Bacterial internalization was constrained when actin polymerization was inhibited. Examination under the microscope revealed instances of adherence, alterations in the cell membrane, apoptosis, vacuolization, and cell damage. HeLa cells exposed to anti-Omp34 serum showed decreased cell damage. The results provide substantial evidence of the adherence capacity of A. baumannii to proliferate in the epithelial cells. In conclusion, Omp34 plays a substantial role in regulating interactions between epithelial cells and A. baumannii, the multifaceted nature of which intricately modifies the trajectory of infection within host cells by A. baumannii.
Collapse
Affiliation(s)
| | - Mohammadreza Jalali Nadoushan
- Department of Pathology, School of Medicine, Shahed University, Tehran, Iran
- Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran
| | | | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran
- Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran
| |
Collapse
|
2
|
InvL, an Invasin-Like Adhesin, Is a Type II Secretion System Substrate Required for Acinetobacter baumannii Uropathogenesis. mBio 2022; 13:e0025822. [PMID: 35638734 PMCID: PMC9245377 DOI: 10.1128/mbio.00258-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen of growing concern, as isolates are commonly multidrug resistant. While A. baumannii is most frequently associated with pulmonary infections, a significant proportion of clinical isolates come from urinary sources, highlighting its uropathogenic potential. The type II secretion system (T2SS) of commonly used model Acinetobacter strains is important for virulence in various animal models, but the potential role of the T2SS in urinary tract infection (UTI) remains unknown. Here, we used a catheter-associated UTI (CAUTI) model to demonstrate that a modern urinary isolate, UPAB1, requires the T2SS for full virulence. A proteomic screen to identify putative UPAB1 T2SS effectors revealed an uncharacterized lipoprotein with structural similarity to the intimin-invasin family, which serve as type V secretion system (T5SS) adhesins required for the pathogenesis of several bacteria. This protein, designated InvL, lacked the β-barrel domain associated with T5SSs but was confirmed to require the T2SS for both surface localization and secretion. This makes InvL the first identified T2SS effector belonging to the intimin-invasin family. InvL was confirmed to be an adhesin, as the protein bound to extracellular matrix components and mediated adhesion to urinary tract cell lines in vitro. Additionally, the invL mutant was attenuated in the CAUTI model, indicating a role in Acinetobacter uropathogenesis. Finally, bioinformatic analyses revealed that InvL is present in nearly all clinical isolates belonging to international clone 2, a lineage of significant clinical importance. In all, we conclude that the T2SS substrate InvL is an adhesin required for A. baumannii uropathogenesis. IMPORTANCE While pathogenic Acinetobacter can cause various infections, we recently found that 20% of clinical isolates come from urinary sources. Despite the clinical relevance of Acinetobacter as a uropathogen, few virulence factors involved in urinary tract colonization have been defined. Here, we identify a novel type II secretion system effector, InvL, which is required for full uropathogenesis by a modern urinary isolate. Although InvL has predicted structural similarity to the intimin-invasin family of autotransporter adhesins, InvL is predicted to be anchored to the membrane as a lipoprotein. Similar to other invasin homologs, however, we demonstrate that InvL is a bona fide adhesin capable of binding extracellular matrix components and mediating adhesion to urinary tract cell lines. In all, this work establishes InvL as an adhesin important for Acinetobacter's urinary tract virulence and represents the first report of a type II secretion system effector belonging to the intimin-invasin family.
Collapse
|
3
|
Woo K, Kim DH, Oh MH, Park HS, Choi CH. N-3-Hydroxy Dodecanoyl-DL-homoserine Lactone (OH-dDHL) Triggers Apoptosis of Bone Marrow-Derived Macrophages through the ER- and Mitochondria-Mediated Pathways. Int J Mol Sci 2021; 22:ijms22147565. [PMID: 34299184 PMCID: PMC8305837 DOI: 10.3390/ijms22147565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Quorum sensing of Acinetobacter nosocomialis for cell-to-cell communication produces N-3-hydroxy dodecanoyl-DL-homoserine lactone (OH-dDHL) by an AnoR/I two-component system. However, OH-dDHL-driven apoptotic mechanisms in hosts have not been clearly defined. Here, we investigated the induction of apoptosis signaling pathways in bone marrow-derived macrophages treated with synthetic OH-dDHL. Moreover, the quorum-sensing system for virulence regulation was evaluated in vivo using wild-type and anoI-deletion mutant strains. OH-dDHL decreased the viability of macrophage and epithelial cells in dose- and time-dependent manners. OH-dDHL induced Ca2+ efflux and caspase-12 activation by ER stress transmembrane protein (IRE1 and ATF6a p50) aggregation and induced mitochondrial dysfunction through reactive oxygen species (ROS) production, which caused cytochrome c to leak. Pretreatment with a pan-caspase inhibitor reduced caspase-3, -8, and -9, which were activated by OH-dDHL. Pro-inflammatory cytokine and paraoxonase-2 (PON2) gene expression were increased by OH-dDHL. We showed that the anoI-deletion mutant strains have less intracellular invasion compared to the wild-type strain, and their virulence, such as colonization and dissemination, was decreased in vivo. Consequently, these findings revealed that OH-dDHL, as a virulence factor, contributes to bacterial infection and survival as well as the modification of host responses in the early stages of infection.
Collapse
Affiliation(s)
- Kyungho Woo
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (K.W.); (D.H.K.); (H.S.P.)
| | - Dong Ho Kim
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (K.W.); (D.H.K.); (H.S.P.)
| | - Man Hwan Oh
- Department of Microbiology, Dankook University, Cheonan 31116, Korea;
| | - Ho Sung Park
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (K.W.); (D.H.K.); (H.S.P.)
| | - Chul Hee Choi
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (K.W.); (D.H.K.); (H.S.P.)
- Correspondence: ; Tel.: +82-42-580-8246
| |
Collapse
|
4
|
Serwecińska L, Kiedrzyńska E, Kiedrzyński M. A catchment-scale assessment of the sanitary condition of treated wastewater and river water based on fecal indicators and carbapenem-resistant Acinetobacter spp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:142266. [PMID: 33182211 DOI: 10.1016/j.scitotenv.2020.142266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/22/2020] [Accepted: 09/06/2020] [Indexed: 05/14/2023]
Abstract
Urbanization and population growth have created considerable sanitation challenges in cities and communities in many parts of Europe and the world. As such, it is imperative to identify the most environmentally-harmful microbiological and chemical sources of pollution, these being wastewater treatment plants (WWTPs) which release wastewater of low quality. In the present manuscript, an extensive study was performed of the sanitary conditions of river water and treated wastewater from seventeen WWTPs of various sizes along the Pilica River catchment in central Poland, with the aim of identifying "hot spots" in terms of most serious sources of sanitary hazards. The bacteriological risk for the river, including fecal indicator bacteria (FIB) such as coliforms, E.coli, enterococci, C. perfringens, and carbapenem-resistant Acinetobacter spp. (CRA) were assessed using classical microbiological methods, and the physicochemical parameters were also tested. The WWTPs, particularly the small ones (<2000 people equivalent, PE) demonstrated significant variation regarding the physicochemical parameters. Carbapenem-resistant Acinetobacter spp. bacteria growing at 42 °C were found in the effluent wastewaters of all tested municipal WWTPs, and in most of the Pilica River water samples, presenting a potential hazard to public health. A positive correlation was identified between E. coli and CRA abundance in treated wastewater; however, no such relationship was found in river water. It was found that seven small treatment plants discharged wastewater with very different microbiological parameters. Moreover, three small treatment plants serving only 0.56% of the population in the studied area continuously released extremely high microbiological contamination, constituting as much as 54-82% of fecal indicator bacteria loads in the area studied. Our findings show that this type of comprehensive analysis may enable assessment of the use of the entire catchment area, thus identifying the most serious threats to surface water quality and guiding the actions needed to improve the worst operating WWTPs.
Collapse
Affiliation(s)
- Liliana Serwecińska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland
| | - Edyta Kiedrzyńska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland; UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | - Marcin Kiedrzyński
- Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha12/16, 90-237 Lodz, Poland
| |
Collapse
|
5
|
Modulation of Death and Inflammatory Signaling in Decidual Stromal Cells following Exposure to Group B Streptococcus. Infect Immun 2019; 87:IAI.00729-19. [PMID: 31548323 DOI: 10.1128/iai.00729-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
Group B Streptococcus (GBS) is an opportunistic bacterial pathogen that contributes to miscarriage, preterm birth, and serious neonatal infections. Studies have indicated that some multilocus sequence types (STs) of GBS are more likely to cause severe disease than others. We hypothesized that the ability of GBS to elicit varying host responses in maternal decidual tissue during pregnancy is an important factor regulating infection and disease severity. To address this hypothesis, we utilized an antibody microarray to compare changes in production and activation of host signaling proteins in decidualized telomerase-immortalized human endometrial stromal cells (dT-HESCs) following infection with GBS strains from septic neonates or colonized mothers. GBS infection increased levels of total and phosphorylated mitogen-activated protein kinase (MAPK) family members such as p38 and JNK and induced nuclear factor kappa B (NF-κB) pathway activation. Infection also altered the regulation of additional proteins that mediate cell death and inflammation in a strain-specific manner, which could be due to the observed variation in attachment to and invasion of the decidual stromal cells and ability to lyse red blood cells. Further analyses confirmed array results and revealed that p38 promotes programmed necrosis in dT-HESCs. Together, the observed signaling changes may contribute to deregulation of critical developmental signaling cascades and inflammatory responses following infection, both of which could trigger GBS-associated pregnancy complications.
Collapse
|
6
|
Szczuka E, Krzymińska S, Bogucka N, Kaznowski A. Multifactorial mechanisms of the pathogenesis of methicillin-resistant Staphylococcus hominis isolated from bloodstream infections. Antonie van Leeuwenhoek 2017; 111:1259-1265. [PMID: 29264791 PMCID: PMC5999180 DOI: 10.1007/s10482-017-1007-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/15/2017] [Indexed: 12/29/2022]
Abstract
Staphylococcus hominis is a species of the coagulase-negative staphylococci. It has been designated as a potential pathogen but so far the pathogenic mechanisms of this bacterium have not been determined. We studied 30 clinical isolates of methicillin-resistant S. hominis, which were previously examined for biofilm forming properties. The results of this study revealed that all these S. hominis strains had the ability to adhere to HeLa cells. Over 40% of the S. hominis strains invaded epithelial cells. The invasion index ranged from 0 to 41.5%. All isolates exhibited the cytotoxic activity of extracellular factors, which caused the destruction of epithelial cells. More than 90% of these methicillin-resistant strains contained at least one aminoglycosides resistance gene. The ant(4′)-I gene was found in 63% of the isolates, aac(6′)/aph(2″) in 20% and aph(3′)-IIIa in 47%. Two strains were assigned to SCCmec type VIII and three to SCCmec type III. The remaining isolates (83%) harboured a non-typeable SCCmec type. The mec complex A was predominant in this species. The results indicate that the pathogenicity of S. hominis may be multifactorial, involving adhesion, invasion and the activity of extracellular toxins, which cause damage to the host epithelium.
Collapse
Affiliation(s)
- Ewa Szczuka
- Department of Microbiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614, Poznań, Poland.
| | - Sylwia Krzymińska
- Department of Microbiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614, Poznań, Poland
| | - Natalia Bogucka
- Department of Microbiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614, Poznań, Poland
| | - Adam Kaznowski
- Department of Microbiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614, Poznań, Poland
| |
Collapse
|
7
|
Lázaro-Díez M, Navascués-Lejarza T, Remuzgo-Martínez S, Navas J, Icardo JM, Acosta F, Martínez-Martínez L, Ramos-Vivas J. Acinetobacter baumannii and A. pittii clinical isolates lack adherence and cytotoxicity to lung epithelial cells in vitro. Microbes Infect 2016; 18:559-64. [PMID: 27235198 DOI: 10.1016/j.micinf.2016.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 01/14/2023]
Abstract
The molecular and genetic basis of Acinetobacter baumannii and Acinetobacter pittii virulence remains poorly understood, and there is still lack of knowledge in host cell response to these bacteria. In this study, we have used eleven clinical Acinetobacter strains (A. baumannii n = 5; A. pittii n = 6) to unravel bacterial adherence, invasion and cytotoxicity to human lung epithelial cells. Our results showed that adherence to epithelial cells by Acinetobacter strains is scarce and cellular invasion was not truly detected. In addition, all Acinetobacter strains failed to induce any cytotoxic effect on A549 cells.
Collapse
Affiliation(s)
- María Lázaro-Díez
- Instituto de Investigación Valdecilla IDIVAL, Santander, Cantabria, Spain; Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | | | | | - Jesús Navas
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - José Manuel Icardo
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, Spain
| | - Felix Acosta
- Grupo de Investigación en Acuicultura, Universidad de Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Luis Martínez-Martínez
- Instituto de Investigación Valdecilla IDIVAL, Santander, Cantabria, Spain; Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain; Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - José Ramos-Vivas
- Instituto de Investigación Valdecilla IDIVAL, Santander, Cantabria, Spain; Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
8
|
Streptolysin S Promotes Programmed Cell Death and Enhances Inflammatory Signaling in Epithelial Keratinocytes during Group A Streptococcus Infection. Infect Immun 2015; 83:4118-33. [PMID: 26238711 DOI: 10.1128/iai.00611-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/28/2015] [Indexed: 01/09/2023] Open
Abstract
Streptococcus pyogenes, or group A Streptococcus (GAS), is a pathogen that causes a multitude of human diseases from pharyngitis to severe infections such as toxic shock syndrome and necrotizing fasciitis. One of the primary virulence factors produced by GAS is the peptide toxin streptolysin S (SLS). In addition to its well-recognized role as a cytolysin, recent evidence has indicated that SLS may influence host cell signaling pathways at sublytic concentrations during infection. We employed an antibody array-based approach to comprehensively identify global host cell changes in human epithelial keratinocytes in response to the SLS toxin. We identified key SLS-dependent host responses, including the initiation of specific programmed cell death and inflammatory cascades with concomitant downregulation of Akt-mediated cytoprotection. Significant signaling responses identified by our array analysis were confirmed using biochemical and protein identification methods. To further demonstrate that the observed SLS-dependent host signaling changes were mediated primarily by the secreted toxin, we designed a Transwell infection system in which direct bacterial attachment to host cells was prevented, while secreted factors were allowed access to host cells. The results using this approach were consistent with our direct infection studies and reveal that SLS is a bacterial toxin that does not require bacterial attachment to host cells for activity. In light of these findings, we propose that the production of SLS by GAS during skin infection promotes invasive outcomes by triggering programmed cell death and inflammatory cascades in host cells to breach the keratinocyte barrier for dissemination into deeper tissues.
Collapse
|
9
|
Koczura R, Przyszlakowska B, Mokracka J, Kaznowski A. Class 1 integrons and antibiotic resistance of clinical Acinetobacter calcoaceticus-baumannii complex in Poznań, Poland. Curr Microbiol 2014; 69:258-62. [PMID: 24740302 PMCID: PMC4113676 DOI: 10.1007/s00284-014-0581-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 02/20/2014] [Indexed: 02/04/2023]
Abstract
Sixty-three clinical isolates of Acinetobacter calcoaceticus-baumannii complex were analyzed for the presence of integrons and antimicrobial resistance. Class 1 integrons were detected in 40 (63.5 %) isolates. None of them had class 2 or class 3 integrons. The majority of the integrons contained aacC1-orfA-orfB-aadA1 gene cassette array. The presence of integrons was associated with the increased frequency of resistance to 12 of 15 antimicrobials tested, multi-drug resistance phenotype, and the overall resistance ranges of the strains.
Collapse
Affiliation(s)
- Ryszard Koczura
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul Umultowska 89, 61-614, Poznan, Poland,
| | | | | | | |
Collapse
|
10
|
The Acinetobacter baumannii Omp33-36 porin is a virulence factor that induces apoptosis and modulates autophagy in human cells. Infect Immun 2014; 82:4666-80. [PMID: 25156738 DOI: 10.1128/iai.02034-14] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acinetobacter baumannii is an extracellular opportunistic human pathogen that is becoming increasingly problematic in hospitals. In the present study, we demonstrate that the A. baumannii Omp 33- to 36-kDa protein (Omp33-36) is a porin that acts as a channel for the passage of water. The protein is found on the cell surface and is released along with other porins in the outer membrane vesicles (OMVs). In immune and connective cell tissue, this protein induced apoptosis by activation of caspases and modulation of autophagy, with the consequent accumulation of p62/SQSTM1 (sequestosome 1) and LC3B-II (confirmed by use of autophagy inhibitors). Blockage of autophagy enables the bacterium to persist intracellularly (inside autophagosomes), with the subsequent development of cytotoxicity. Finally, we used macrophages and a mouse model of systemic infection to confirm that Omp33-36 is a virulence factor in A. baumannii. Overall, the study findings show that Omp33-36 plays an important role in the pathogenesis of A. baumannii infections.
Collapse
|
11
|
Riley DR, Sieber KB, Robinson KM, White JR, Ganesan A, Nourbakhsh S, Dunning Hotopp JC. Bacteria-human somatic cell lateral gene transfer is enriched in cancer samples. PLoS Comput Biol 2013; 9:e1003107. [PMID: 23840181 PMCID: PMC3688693 DOI: 10.1371/journal.pcbi.1003107] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 05/01/2013] [Indexed: 12/14/2022] Open
Abstract
There are 10× more bacterial cells in our bodies from the microbiome than human cells. Viral DNA is known to integrate in the human genome, but the integration of bacterial DNA has not been described. Using publicly available sequence data from the human genome project, the 1000 Genomes Project, and The Cancer Genome Atlas (TCGA), we examined bacterial DNA integration into the human somatic genome. Here we present evidence that bacterial DNA integrates into the human somatic genome through an RNA intermediate, and that such integrations are detected more frequently in (a) tumors than normal samples, (b) RNA than DNA samples, and (c) the mitochondrial genome than the nuclear genome. Hundreds of thousands of paired reads support random integration of Acinetobacter-like DNA in the human mitochondrial genome in acute myeloid leukemia samples. Numerous read pairs across multiple stomach adenocarcinoma samples support specific integration of Pseudomonas-like DNA in the 5′-UTR and 3′-UTR of four proto-oncogenes that are up-regulated in their transcription, consistent with conversion to an oncogene. These data support our hypothesis that bacterial integrations occur in the human somatic genome and may play a role in carcinogenesis. We anticipate that the application of our approach to additional cancer genome projects will lead to the more frequent detection of bacterial DNA integrations in tumors that are in close proximity to the human microbiome. There are 10× more bacterial cells in the human body than there are human cells that are part of the human microbiome. Many of those bacteria are in constant, intimate contact with human cells. We sought to establish if bacterial cells insert their own DNA into the human genome. Such random mutations could cause disease in the same manner that mutagens like UV rays from the sun or chemicals in cigarettes induce mutations. We detected the integration of bacterial DNA in the human genome more readily in tumors than normal samples. In particular, extensive amounts of DNA with similarity to Acinetobacter DNA were fused to human mitochondrial DNA in acute myeloid leukemia samples. We also identified specific integrations of DNA with similarity to Pseudomonas DNA near the untranslated regulatory regions of four proto-oncogenes. This supports our hypothesis that bacterial integrations occur in the human somatic genome that may potentially play a role in carcinogenesis. Further study in this area may provide new avenues for cancer prevention.
Collapse
Affiliation(s)
- David R. Riley
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Karsten B. Sieber
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Kelly M. Robinson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - James Robert White
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ashwinkumar Ganesan
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Computer Science and Electrical Engineering Department, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Syrus Nourbakhsh
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- University of Maryland College Park, College Park, Maryland, United States of America
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|