1
|
Huang Z, Xiao F, Wang Q, Zhang X, Shen Y, Deng Y, Shi P. BSC2 modulates AmB resistance via the maintenance of intracellular sodium/potassium ion homeostasis in Saccharomyces cerevisiae. Res Microbiol 2024; 175:104245. [PMID: 39245192 DOI: 10.1016/j.resmic.2024.104245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Previous studies on BSC2 have shown that it enhances yeast cell resistance to AmB via antioxidation and induces multidrug resistance by contributing to biofilm formation. Herein, we found that BSC2 overexpression could reverse the sensitivity of pmp3Δ to AmB and help the tested strains restore the intracellular sodium/potassium balance under exposure to AmB. Meanwhile, overexpression of the chitin gene CHS2 could simulate BSC2 to reverse the sensitivity of pmp3Δ and nha1Δ to high salt or AmB. However, BSC2 overexpression in flo11Δ failed to induce AmB resistance, form biofilms, and affect cell wall biogenesis, while CHS2 overexpression compensated the resistance of flo11Δ to AmB. Additionally, BSC2 levels were positively correlated with maintaining cell membrane integrity under exposure to AmB, CAS, or a combination of both. BSC2 overexpression in nha1Δ exhibited a similar function of CHS2, which can compensate for the sensitivity of the mutant to high salt. Altogether, the results demonstrate for the first time that BSC2 may promote ion equilibrium by strengthening cell walls and inhibiting membrane damage in a FLO path-dependent manner, thus enhancing the resistance of yeast cells to AmB. This study also reveals the possible mechanism of antifungal drugs CAS and AmB combined to inhibit fungi.
Collapse
Affiliation(s)
- Zhiwei Huang
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin Road, Shanghai, 201620, China.
| | - Fulong Xiao
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin Road, Shanghai, 201620, China
| | - Qiao Wang
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin Road, Shanghai, 201620, China
| | - Xiaojuan Zhang
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin Road, Shanghai, 201620, China
| | - Yuhu Shen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Xining, 810008, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Academy of Agriculture and Forestry Sciences of Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences), Xining, 810016, China
| | - Yunxia Deng
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin Road, Shanghai, 201620, China
| | - Ping Shi
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Academy of Agriculture and Forestry Sciences of Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences), Xining, 810016, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
2
|
Suljević D, Fočak M, Alijagic A. Assessing chromium toxicity across aquatic and terrestrial environments: a cross-species review. Drug Chem Toxicol 2024; 47:1312-1324. [PMID: 38727006 DOI: 10.1080/01480545.2024.2350660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/06/2024] [Accepted: 04/27/2024] [Indexed: 11/21/2024]
Abstract
Chromium (Cr) toxicity, even at low concentrations, poses a significant health threat to various environmental species. Cr is found in the environment in two oxidation states that differ in their bioavailability and toxicity. While Cr(III) is essential for glucose metabolism, the oxyanion chromate Cr(VI) is mostly of anthropogenic origin, toxic, and carcinogenic. The sources of Cr in the environment are multiple, including geochemical processes, disposal of industrial waste, and industrial wastewater. Cr pollution may consequently impact the health of numerous plant and animal species. Despite that, the number of published studies on Cr toxicity across environmental species remained mainly unchanged over the past two decades. The presence of Cr in the environment affects several plant physiological processes, including germination or photosynthesis, and consequently impacts growth, and lowers agricultural production and quality. Recent research has also reported the toxic effects of Cr in different aquatic and terrestrial organisms. Whereas some species showed sensitivity, others exhibited tolerance. Hence, this review discusses the understanding of the ecotoxicological effect of Cr on different plant and animal groups and serves as a concise source of consolidated information and a valuable reference for researchers and policymakers in an understanding of Cr toxicity. Future directions should focus on expanding research efforts to understand the mechanisms underlying species-specific responses to Cr pollution.
Collapse
Affiliation(s)
- Damir Suljević
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Muhamed Fočak
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
3
|
Huang Z, Zhang S, Chen R, Zhu Q, Shi P, Shen Y. The transporter PHO84/NtPT1 is a target of aluminum to affect phosphorus absorption in Saccharomyces cerevisiae and Nicotiana tabacum L. Metallomics 2023; 15:mfad069. [PMID: 37994650 DOI: 10.1093/mtomcs/mfad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
The molecular mechanism of aluminum toxicity in biological systems is not completely understood. Saccharomyces cerevisiae is one of the most used model organisms in the study of environmental metal toxicity. Using an unbiased metallomic approach in yeast, we found that aluminum treatment caused phosphorus deprivation, and the lack of phosphorus increased as the pH of the environment decreased compared to the control strain. By screening the phosphate signaling and response pathway (PHO pathway) in yeast with the synthetic lethality of a new phosphorus-restricted aluminum-sensitive gene, we observed that pho84Δ mutation conferred severe growth defect to aluminum under low-phosphorus conditions, and the addition of phosphate alleviated this sensitivity. Subsequently, the data showed that PHO84 determined the intracellular aluminum-induced phosphorus deficiency, and the expression of PHO84 was positively correlated with aluminum stress, which was mediated by phosphorus through the coordinated regulation of PHO4/PHO2. Moreover, aluminum reduced phosphorus absorption and inhibited tobacco plant growth in acidic media. In addition, the high-affinity phosphate transporter NtPT1 in tobacco exhibited similar effects to PHO84, and overexpression of NtPT1 conferred aluminum resistance in yeast cells. Taken together, positive feedback regulation of the PHO pathway centered on the high-affinity phosphate transporters is a highly conservative mechanism in response to aluminum toxicity. The results may provide a basis for aluminum-resistant microorganisms or plant engineering and acidic soil treatment.
Collapse
Affiliation(s)
- Zhiwei Huang
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin Road, Shanghai 201620, China
| | - Shixuan Zhang
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin Road, Shanghai 201620, China
| | - Ranran Chen
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin Road, Shanghai 201620, China
| | - Qian Zhu
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin Road, Shanghai 201620, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuhu Shen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|
4
|
Nowakowski M, Wiśniewska-Becker A, Czapla-Masztafiak J, Szlachetko J, Budziak A, Polańska Ż, Pietralik-Molińska Z, Kozak M, Kwiatek WM. Cr(vi) permanently binds to the lipid bilayer in an inverted hexagonal phase throughout the reduction process. RSC Adv 2023; 13:18854-18863. [PMID: 37350866 PMCID: PMC10282592 DOI: 10.1039/d2ra07851a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
Cr(vi) is a harmful, carcinogenic agent with a high permeability rate throughout the lipid membranes. In an intracellular environment and during interactions with cellular membranes, it undergoes an instant reduction to lower oxidation states throughout radical states, recognized as the most dangerous factor for cells. The cellular membrane is the most visible cellular organelle in the interior and exterior of a cell. In this study, liposomes and non-lamellar inverted hexagonal phase lipid structures based on phosphoethanolamine (PE) were used as model cellular bilayers because of their simple composition, preparation procedure, and the many other properties of natural systems. The lipid membranes were subjected to 0.075 mM Cr(vi) for 15 min, after which the Cr content was removed via dialysis. This way, the remaining Cr content could be studied qualitatively and quantitatively. Using the combined XRF/XAS/EPR approach, we revealed that some Cr content (Cr(iii) and Cr(vi)) was still present in the samples even after long-term dialysis at a temperature significantly above the phase transition for the chosen liposome. The amount of bound Cr increased with increasing PE and -C[double bond, length as m-dash]C- bond content in lipid mixtures. Internal membrane order decreased in less fluid membranes, while in more liquified ones, internal order was only slightly changed after subjecting them to the Cr(vi) agent. The results suggest that the inverted hexagonal phase of lipid structures is much more sensitive to oxidation than the lamellar lipid phase, which can play an important role in the strong cytotoxicity of Cr(vi).
Collapse
Affiliation(s)
- Michal Nowakowski
- Institute of Nuclear Physics Polish Academy of Sciences PL-31342 Krakow Poland
| | - Anna Wiśniewska-Becker
- Jagiellonian University in Krakow, Faculty of Biochemistry, Biophysics and Biotechnology PL-30387 Krakow Poland
| | | | - Jakub Szlachetko
- Solaris National Synchrotron Radiation Centre, Jagiellonian University 30-392 Krakow Poland
| | - Andrzej Budziak
- AGH University of Science and Technology, Faculty of Energy and Fuels Krakow Poland
| | - Żaneta Polańska
- Adam Mickiewicz University in Poznan, Faculty of Physics PL-61-614 Poznan Poland
| | | | - Maciej Kozak
- Adam Mickiewicz University in Poznan, Faculty of Physics PL-61-614 Poznan Poland
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics Polish Academy of Sciences PL-31342 Krakow Poland
| |
Collapse
|
5
|
Comparative Study of Cytotoxicity, DNA Damage and Oxidative Stress Induced by Heavy Metals Cd(II), Hg(II) and Cr(III) in Yeast. Curr Microbiol 2021; 78:1856-1863. [PMID: 33770215 DOI: 10.1007/s00284-021-02454-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/10/2021] [Indexed: 01/09/2023]
Abstract
Wide range of applications of heavy metals and improperly discarded their castoffs possess serious threats to environment and human health. In this study, cytotoxicity, DNA damage and oxidative stress induced by Cd(II), Hg(II) and Cr(III) were comparatively studied in yeast Saccharomyces cerevisiae. Cd(II), Hg(II), and Cr(III) all produced strong cytotoxicity resulting in growth inhibition and cell mortality to varying degrees (Hg(II) > Cd(II) > Cr(III)). Hg(II) produced more oxidative stress. Cr(III) caused more serious DNA damage in vitro. Cd(II) also caused both obvious DNA damage and oxidative stress at higher concentration, but not as efficiently as Cd(II) and Hg(II). A further null mutation sensitivity assay showed that the relative sensitivity of rad1∆ to the metals was Cr(III) > Cd(II) > Hg(II), and that of trx1∆ to the metals was Hg(II) > Cd(II) > Cr(III). These data provide a clear evidence that the Cr(III) can cause significant DNA damage and potential genotoxicity; Hg(II) can strongly inhibit SOD activity, produce lipid peroxidation and cause serious membrane injury, suggesting these heavy metals can cause different toxic effects in different ways.
Collapse
|
6
|
Chen R, Zhu Q, Fang Z, Huang Z, Sun J, Peng M, Shi P. Aluminum induces oxidative damage in Saccharomyces cerevisiae. Can J Microbiol 2020; 66:713-722. [PMID: 32730711 DOI: 10.1139/cjm-2020-0084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The mechanism of aluminum toxicity was studied in the model cells of Saccharomyces cerevisiae. Cell growth of yeast was inhibited by aluminum. The spot assay showed that the mechanism of aluminum detoxification in yeast cells was different from that of heavy metal cadmium. After treatment with aluminum, intracellular levels of reactive oxygen species, protein carbonyl, and thiobarbituric acid reactive substances were dramatically increased. Meanwhile, the percentage of aluminum-treated cells permeable to propidium iodide was augmented significantly. These data demonstrated that aluminum toxicity was attributed to oxidative stress in yeast, and it induced oxidative damage by causing lipid peroxidation, injuring cell membrane integrity. Moreover, aluminum triggered the antioxidant defense system in the cells. Glutathione levels were found to be decreased, while activities of superoxide dismutase and catalase were increased after treatment with aluminum. Additionally, an oxidative-stress-related mutation sensitivity assay showed that aluminum-induced yeast oxidative stress was closely related to glutathione. These data demonstrated that the oxidative damage caused by aluminum was different from that of hydrogen peroxide, in yeast. Aluminum could cause DNA damage, and aluminum toxicity was associated with sulfhydryl groups, such as glutathione, while it was independent of YAP1.
Collapse
Affiliation(s)
- Ranran Chen
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 Renmin Road, Shanghai 201620, People's Republic of China
| | - Qian Zhu
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 Renmin Road, Shanghai 201620, People's Republic of China
| | - Zhijia Fang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 Renmin Road, Shanghai 201620, People's Republic of China
| | - Zhiwei Huang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 Renmin Road, Shanghai 201620, People's Republic of China.,Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xiguan Avenue 59, Xining, Qinghai Province 810001, People's Republic of China
| | - Min Peng
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xiguan Avenue 59, Xining, Qinghai Province 810001, People's Republic of China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
7
|
Guo Y, Wang Y, Huang B. The acute toxicity effects of hexavalent chromium in antioxidant system and gonad development to male clam Geloina coaxans. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1775318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Y. Guo
- Ocean College, Hainan University, Haikou, Hainan, PR China
- A State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, PR China
| | - Y. Wang
- Ocean College, Hainan University, Haikou, Hainan, PR China
- A State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, PR China
| | - B. Huang
- Ocean College, Hainan University, Haikou, Hainan, PR China
- A State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, PR China
| |
Collapse
|
8
|
Kong Y, Wang Q, Cao F, Zhang X, Fang Z, Shi P, Wang H, Shen Y, Huang Z. BSC2 enhances cell resistance to AmB by inhibiting oxidative damage in Saccharomyces cerevisiae. Free Radic Res 2020; 54:231-243. [DOI: 10.1080/10715762.2020.1751151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yingying Kong
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Qiao Wang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Fangqi Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaoyu Zhang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Zhijia Fang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Handong Wang
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xining, China
| | - Yuhu Shen
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xining, China
| | - Zhiwei Huang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
9
|
Wang J, Zhang Y, Fang Z, Sun L, Wang Y, Liu Y, Xu D, Nie F, Gooneratne R. Oleic Acid Alleviates Cadmium-Induced Oxidative Damage in Rat by Its Radicals Scavenging Activity. Biol Trace Elem Res 2019; 190:95-100. [PMID: 30267311 DOI: 10.1007/s12011-018-1526-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022]
Abstract
Toxic heavy metal cadmium wildly pollutes the environment and threats the human health. Effective treatment of cadmium-induced toxicity and organ damage is an important issue. Cadmium causes organ damage through inducing oxidative stress. Our previous study also found oleic acid (OA) synthesis-related gene can confer resistance to cadmium and alleviate cadmium-induced stress in yeast. However, its alleviation mechanism on cadmium stress especially in animals is still unclear. In this study, the alleviative effects of OA on cadmium and cadmium-induced oxidative stress in rats were investigated. Oral administration of 10, 20, and 30 mg/kg/day OA can significantly increase the survival rate of rats intraperitoneally injected with 30 mg/kg/day cadmium continuously for 7 days. Similar to ascorbic acid (AA), OA can significantly reduce the cadmium-induced lipid peroxidation in multiple organs of rats. The investigation of OA on superoxide dismutase (SOD) activity showed that OA increased the SOD activity of cadmium-treated rat organs. More important, OA reduced the level of superoxide radical O2- of cadmium-treated rat organs. And OA exhibited a strong DPPH radicals scavenging activity at dose of 10, 20 and 30 mg/mL, which may contributed to alleviating cadmium-induced oxidative stress. This study revealed that OA could significantly alleviate cadmium stress via reducing cadmium-induced lipid peroxidation and SOD activity inhibition through its radicals scavenging activity.
Collapse
Affiliation(s)
- Jingwen Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang, 524088, China
| | - Yuanyuan Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang, 524088, China
| | - Zhijia Fang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang, 524088, China.
| | - Lijun Sun
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang, 524088, China
| | - Yaling Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang, 524088, China.
| | - Ying Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang, 524088, China
| | - Defeng Xu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang, 524088, China
| | - Fanghong Nie
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang, 524088, China
| | - Ravi Gooneratne
- Centre for Food Research and Innovation, Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| |
Collapse
|
10
|
Yu X, Yu RQ, Gui D, Zhang X, Zhan F, Sun X, Wu Y. Hexavalent chromium induces oxidative stress and mitochondria-mediated apoptosis in isolated skin fibroblasts of Indo-Pacific humpback dolphin. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 203:179-186. [PMID: 30153559 DOI: 10.1016/j.aquatox.2018.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
The increasing gas emissions and industrial wastewater discharge of anthropogenic hexavalent chromium (Cr(VI)) have been growing health concerns to the high trophic level marine mammals. Our previous studies showed that Indo-Pacific humpback dolphin (Sousa chinensis), stranded on the Pearl River Estuary region, contained exceedingly high levels of Cr in their skin-tissues. Unfortunately, the molecular toxic mechanisms on this mammal are absent, limiting our understanding of the eco-physiological impacts of Cr(VI) on dolphins. Thus, the cytotoxicity effects of Cr(VI) were analyzed on fibroblasts we isolated from the skin of S. chinensis (ScSF). This study showed that Cr(VI) markedly inhibited the viability of ScSF cells via induction of apoptosis accompanied by an increase in the production of reactive oxygen species and the population of G2/M arrest or apoptotic sub-G1 phase cells, up-regulation of p53, and activation of caspase-3. Further investigation on intracellular mechanisms indicated that Cr(VI) induced depletion of mitochondrial membrane potential in cells through regulating the expression of anti-apoptotic (Bcl-2) and pro-apoptotic (Bax) proteins, resulting in decrease of the ATP level, cytochrome c release from mitochondria into cytosol, and the activation of caspase-9. Furthermore, antioxidants N-acetylcysteine and vitamin C displayed chemoprotective activity against Cr(VI) via suppression of p53 expression, indicating that the Cr(VI)-induced cell death may be mediated by oxidative stress. Overall, these results provide insights into the potential mechanisms underlying the cytotoxicity of Cr(VI) in Indo-Pacific humpback dolphin skin cells, offer experimental support for the proposed protective role of antioxidants in Cr(VI)-induced toxicity, and suggest that Cr(VI) contamination is one of key health concern issues for the protection of Indo-Pacific humpback dolphin.
Collapse
Affiliation(s)
- Xinjian Yu
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ri-Qing Yu
- Department of Biology, University of Texas at Tyler, Tyler, TX 75799, USA
| | - Duan Gui
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiyang Zhang
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Fenping Zhan
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xian Sun
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yuping Wu
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
11
|
Huang Z, Yu Y, Fang Z, Deng Y, Shen Y, Shi P. OLE1 reduces cadmium-induced oxidative damage in Saccharomyces cerevisiae. FEMS Microbiol Lett 2018; 365:5067301. [DOI: 10.1093/femsle/fny193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/04/2018] [Indexed: 01/09/2023] Open
Affiliation(s)
- Zhiwei Huang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 Renmin Road, Shanghai 201620, China
| | - Yuanyuan Yu
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 Renmin Road, Shanghai 201620, China
| | - Zhijia Fang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 Renmin Road, Shanghai 201620, China
- College of Food Science and Technology, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang 524088, China
| | - Yunxia Deng
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 Renmin Road, Shanghai 201620, China
| | - Yuhu Shen
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, 23 Xining 810008, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
12
|
Fluconazole inhibits cellular ergosterol synthesis to confer synergism with berberine against yeast cells. J Glob Antimicrob Resist 2018; 13:125-130. [DOI: 10.1016/j.jgar.2017.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/06/2017] [Accepted: 12/15/2017] [Indexed: 01/08/2023] Open
|
13
|
Wang Q, Du X, Ma K, Shi P, Liu W, Sun J, Peng M, Huang Z. A critical role for very long-chain fatty acid elongases in oleic acid-mediated Saccharomyces cerevisiae cytotoxicity. Microbiol Res 2018; 207:1-7. [DOI: 10.1016/j.micres.2017.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 11/28/2022]
|
14
|
Wang Y, Su H, Gu Y, Song X, Zhao J. Carcinogenicity of chromium and chemoprevention: a brief update. Onco Targets Ther 2017; 10:4065-4079. [PMID: 28860815 PMCID: PMC5565385 DOI: 10.2147/ott.s139262] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chromium has two main valence states: hexavalent chromium (Cr[VI]) and trivalent chromium (Cr[III]). Cr(VI), a well-established human carcinogen, can enter cells by way of a sulfate/phosphate anion-transport system, and then be reduced to lower-valence intermediates consisting of pentavalent chromium (Cr[V]), tetravalent chromium (Cr[IV]) or Cr(III) via cellular reductants. These intermediates may directly or indirectly result in DNA damage or DNA–protein cross-links. Although Cr(III) complexes cannot pass easily through cell membranes, they have the ability to accumulate around cells to induce cell-surface morphological alteration and result in cell-membrane lipid injuries via disruption of cellular functions and integrity, and finally to cause DNA damage. In recent years, more research, including in vitro, in vivo, and epidemiological studies, has been conducted to evaluate the genotoxicity/carcinogenicity induced by Cr(VI) and/or Cr(III) compounds. At the same time, various therapeutic agents, especially antioxidants, have been explored through in vitro and in vivo studies for preventing chromium-induced genotoxicity/carcinogenesis. This review aims to provide a brief update on the carcinogenicity of Cr(VI) and Cr(III) and chemoprevention with different antioxidants.
Collapse
Affiliation(s)
- Yafei Wang
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Hong Su
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Yuanliang Gu
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Xin Song
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China.,Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
15
|
Feng M, Yin H, Peng H, Liu X, Yang P, Lu G, Dang Z. Influence of co-existed tetrabromobisphenol A (TBBPA) and hexavalent chromium on the cellular characteristics of Pycnoporus sanguineus during their removal and reduction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:388-398. [PMID: 28441625 DOI: 10.1016/j.ecoenv.2017.04.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/20/2017] [Accepted: 04/14/2017] [Indexed: 06/07/2023]
Abstract
Simultaneous TBBPA removal and Cr(VI) reduction by Pycnoporus sanguineus together with the effect of these co-existed pollutants on the fungal cellular characteristics were investigated in this study, aiming at illuminating the mechanism involved in the interactions between contaminants and microbial cells. The results revealed that Cr(VI) reduction and TBBPA removal declined from 92.5%, 75.4-30.6%, 44.8% when Cr(VI) concentration increased from 5 to 40mg/L, respectively. The removal efficiencies for Cr(VI) and TBBPA reached 61.4% and 94% separately under the optimum concentration of TBBPA at 10mg/L. Subsequent analyses indicated that the negative effect of Cr(VI) of high concentrations on Cr(VI) reduction and TBBPA removal was mainly attributed to the inhibition of fungal growth, intracellular proteins synthesis, cell viability and ATP enzyme activity. Compared with the moderate impact of TBBPA, the cell membrane of P. sanguineus was impaired severely and the surface morphology and intracellular structure changed dramatically in the presence of high concentration of Cr(VI) (above 10mg/L). This study also suggested that high level of TBBPA (15 and 20mg/L) promoted the synthesis of intracellular proteins and improved ATP enzyme activity within the first 48h of the reaction for enhancing the transportation and transformation of TBBPA.
Collapse
Affiliation(s)
- Mi Feng
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xintong Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Pingping Yang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
16
|
Halder S, Kar R, Mehta AK, Bhattacharya SK, Mediratta PK, Banerjee BD. Quercetin Modulates the Effects of Chromium Exposure on Learning, Memory and Antioxidant Enzyme Activity in F1 Generation Mice. Biol Trace Elem Res 2016; 171:391-398. [PMID: 26521059 DOI: 10.1007/s12011-015-0544-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/15/2015] [Indexed: 11/24/2022]
Abstract
In the present study, we investigated whether chromium (Cr) administered to the dams (F0) during lactation period could affect memory and oxidative stress in F1 generation mice in their adulthood and whether quercetin could modulate these effects. Morris water maze (MWM) was used to test for spatial memory. Passive avoidance task and elevated plus maze were used to test for acquisition and retention memory. Oxidative stress was evaluated by measuring glutathione-S-transferase (GST), catalase activity and malonaldehyde (MDA) levels in the brain tissue. The results of MWM showed that the animals in the Cr-treated group compared to control have better spatial memory that was further enhanced when Cr was administered along with quercetin (50 mg/kg). The elevated plus maze test also showed the Cr-treated group to improve acquisition as well as retention memory compared to control. Co-treatment with quercetin (all doses) also exhibited enhanced acquisition and retention memory compared to control. The passive avoidance task demonstrated no significant improvement in memory in the Cr-treated mice but co-treatment with quercetin (100 mg/kg) showed improved acquisition memory compared to control which was significantly better than the animals treated with chromium alone. GST activity was significantly increased in the Cr-treated animals, and this was further increased in groups treated with Cr and quercetin (all doses). Chromium when administered alone and in combination with quercetin (all doses) significantly reduced MDA levels. However, Cr treatment did not show significant change in catalase activity. Nevertheless, co-treatment with quercetin (25 and 50 mg/kg) resulted in significant decrease in catalase activity. Thus, our study demonstrates that Cr exposure during lactation could be beneficial for pups with respect to augmentation of cognitive function and reduction of oxidative stress. Quercetin could probably enhance this effect to some extent.
Collapse
Affiliation(s)
- Sumita Halder
- Department of Pharmacology, University College of Medical Sciences and G. T. B. Hospital, New Delhi, 110095, India.
| | - Rajarshi Kar
- Department of Biochemistry, University College of Medical Sciences and G. T. B. Hospital, New Delhi, 110095, India
| | - Ashish K Mehta
- Department of Pharmacology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, 110029, India
| | - Swapan K Bhattacharya
- Department of Pharmacology, University College of Medical Sciences and G. T. B. Hospital, New Delhi, 110095, India
| | - Pramod K Mediratta
- Department of Pharmacology, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201306, India
| | - Basu D Banerjee
- Department of Biochemistry, University College of Medical Sciences and G. T. B. Hospital, New Delhi, 110095, India
| |
Collapse
|
17
|
Fang Z, Zhao M, Zhen H, Chen L, Shi P, Huang Z. Genotoxicity of tri- and hexavalent chromium compounds in vivo and their modes of action on DNA damage in vitro. PLoS One 2014; 9:e103194. [PMID: 25111056 PMCID: PMC4128586 DOI: 10.1371/journal.pone.0103194] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/26/2014] [Indexed: 12/19/2022] Open
Abstract
Chromium occurs mostly in tri- and hexavalent states in the environment. Hexavalent chromium [Cr(VI)] compounds are extensively used in diverse industries, and trivalent chromium [Cr(III)] salts are used as micronutrients and dietary supplements. In the present work, we report that they both induce genetic mutations in yeast cells. They both also cause DNA damage in both yeast and Jurkat cells and the effect of Cr(III) is greater than that of Cr(VI). We further show that Cr(III) and Cr(VI) cause DNA damage through different mechanisms. Cr(VI) intercalates DNA and Cr(III) interferes base pair stacking. Based on our results, we conclude that Cr(III) can directly cause genotoxicity in vivo.
Collapse
Affiliation(s)
- Zhijia Fang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Min Zhao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Hong Zhen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lifeng Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhiwei Huang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| |
Collapse
|