1
|
Singhvi N, Talwar C, Nagar S, Verma H, Kaur J, Mahato NK, Ahmad N, Mondal K, Gupta V, Lal R. Insights into the radiation and oxidative stress mechanisms in genus Deinococcus. Comput Biol Chem 2024; 112:108161. [PMID: 39116702 DOI: 10.1016/j.compbiolchem.2024.108161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Deinococcus species, noted for their exceptional resistance to DNA-damaging environmental stresses, have piqued scientists' interest for decades. This study dives into the complex mechanisms underpinning radiation resistance in the Deinococcus genus. We have examined the genomes of 82 Deinococcus species and classified radiation-resistance proteins manually into five unique curated categories: DNA repair, oxidative stress defense, Ddr and Ppr proteins, regulatory proteins, and miscellaneous resistance components. This classification reveals important information about the various molecular mechanisms used by these extremophiles which have been less explored so far. We also investigated the presence or lack of these proteins in the context of phylogenetic relationships, core, and pan-genomes, which offered light on the evolutionary dynamics of radiation resistance. This comprehensive study provides a deeper understanding of the genetic underpinnings of radiation resistance in the Deinococcus genus, with potential implications for understanding similar mechanisms in other organisms using an interactomics approach. Finally, this study reveals the complexities of radiation resistance mechanisms, providing a comprehensive understanding of the genetic components that allow Deinococcus species to flourish under harsh environments. The findings add to our understanding of the larger spectrum of stress adaption techniques in bacteria and may have applications in sectors ranging from biotechnology to environmental research.
Collapse
Affiliation(s)
- Nirjara Singhvi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun 248007, India
| | - Chandni Talwar
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shekhar Nagar
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi 110019, India
| | - Helianthous Verma
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
| | - Jasvinder Kaur
- Department of Zoology, Gargi College, University of Delhi, New Delhi 110049, India
| | - Nitish Kumar Mahato
- University Department of Zoology, Kolhan University, Chaibasa, Jharkhand, India
| | - Nabeel Ahmad
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun 248007, India
| | - Krishnendu Mondal
- Ministry of Environment, Forest and Climate Change, Integrated Regional Office, Dehradun 248001, India
| | - Vipin Gupta
- Ministry of Environment, Forest and Climate Change, Integrated Regional Office, Dehradun 248001, India.
| | - Rup Lal
- Acharya Narendra Dev College, University of Delhi, New Delhi 110019, India.
| |
Collapse
|
2
|
Lee JH, Jung JH, Kim MK, Lim S. Deinococcus taeanensis sp. nov., a Radiation-Resistant Bacterium Isolated from a Coastal Dune. Curr Microbiol 2022; 79:334. [PMID: 36161362 PMCID: PMC9510100 DOI: 10.1007/s00284-022-03044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022]
Abstract
A Gram-stain-negative, nonspore-forming, nonmotile, aerobic, rod-shaped, and very pale orange-colored bacterial strain, designated TS293T, was isolated from a sand sample obtained from a coastal dune after exposure to 3kGy of gamma (γ)-radiation. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that the isolate was a member of the genus Deinococcus and clustered with D. deserti VCD115T. The genome of strain TS293T was 4.62 Mbp long (68.2% G + C content and 4124 predicted genes) divided into a 2.86Mb main chromosome and five plasmids. Many genes considered to be important to the γ-radiation and oxidative stress resistance of Deinococcus were conserved in TS293T, but genome features that could differentiate TS293T from D. deserti and D. radiodurans, the type species of the Deinococcus genus, were also detected. Strain TS293T showed resistance to γ-radiation with D10 values (i.e., the dose required to reduce the bacterial population by tenfold) of 3.1kGy. The predominant fatty acids of strain TS293T were summed feature 3 (C16:1ω6c and/or C16:1ω7c) and iso-C16:0. The major polar lipids were two unidentified phosphoglycolipids and one unidentified glycolipid. The main respiratory quinone was menaquinone-8. Based on the phylogenetic, genomic, physiological, and chemotaxonomic characteristics, strain TS293T represents a novel species, for which the name Deinococcus taeanensis sp. nov. is proposed. The type strain is TS293T (= KCTC 43191T = JCM 34027T).
Collapse
Affiliation(s)
- Ji Hee Lee
- Division of Pathogen Resource Management, Korea Disease Control and Prevention Agency, Cheongju, 28160, Republic of Korea
| | - Jong-Hyun Jung
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Min-Kyu Kim
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Sangyong Lim
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
- Department of Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
3
|
García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T, Kyrpides NC, Hahnke RL, Göker M. Analysis of 1,000 Type-Strain Genomes Improves Taxonomic Classification of Bacteroidetes. Front Microbiol 2019; 10:2083. [PMID: 31608019 PMCID: PMC6767994 DOI: 10.3389/fmicb.2019.02083] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/23/2019] [Indexed: 11/25/2022] Open
Abstract
Although considerable progress has been made in recent years regarding the classification of bacteria assigned to the phylum Bacteroidetes, there remains a need to further clarify taxonomic relationships within a diverse assemblage that includes organisms of clinical, piscicultural, and ecological importance. Bacteroidetes classification has proved to be difficult, not least when taxonomic decisions rested heavily on interpretation of poorly resolved 16S rRNA gene trees and a limited number of phenotypic features. Here, draft genome sequences of a greatly enlarged collection of genomes of more than 1,000 Bacteroidetes and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa proposed long ago such as Bacteroides, Cytophaga, and Flavobacterium but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which can be considered valuable taxonomic markers. We detected many incongruities when comparing the results of the present study with existing classifications, which appear to be caused by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. The few significant incongruities found between 16S rRNA gene and whole genome trees underline the pitfalls inherent in phylogenies based upon single gene sequences and the impediment in using ordinary bootstrapping in phylogenomic studies, particularly when combined with too narrow gene selections. While a significant degree of phylogenetic conservation was detected in all phenotypic characters investigated, the overall fit to the tree varied considerably, which is one of the probable causes of misclassifications in the past, much like the use of plesiomorphic character states as diagnostic features.
Collapse
Affiliation(s)
- Marina García-López
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jan P. Meier-Kolthoff
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Richard L. Hahnke
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Markus Göker
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
4
|
Lim S, Jung JH, Blanchard L, de Groot A. Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species. FEMS Microbiol Rev 2019; 43:19-52. [PMID: 30339218 PMCID: PMC6300522 DOI: 10.1093/femsre/fuy037] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022] Open
Abstract
Deinococcus bacteria are famous for their extreme resistance to ionising radiation and other DNA damage- and oxidative stress-generating agents. More than a hundred genes have been reported to contribute to resistance to radiation, desiccation and/or oxidative stress in Deinococcus radiodurans. These encode proteins involved in DNA repair, oxidative stress defence, regulation and proteins of yet unknown function or with an extracytoplasmic location. Here, we analysed the conservation of radiation resistance-associated proteins in other radiation-resistant Deinococcus species. Strikingly, homologues of dozens of these proteins are absent in one or more Deinococcus species. For example, only a few Deinococcus-specific proteins and radiation resistance-associated regulatory proteins are present in each Deinococcus, notably the metallopeptidase/repressor pair IrrE/DdrO that controls the radiation/desiccation response regulon. Inversely, some Deinococcus species possess proteins that D. radiodurans lacks, including DNA repair proteins consisting of novel domain combinations, translesion polymerases, additional metalloregulators, redox-sensitive regulator SoxR and manganese-containing catalase. Moreover, the comparisons improved the characterisation of several proteins regarding important conserved residues, cellular location and possible protein–protein interactions. This comprehensive analysis indicates not only conservation but also large diversity in the molecular mechanisms involved in radiation resistance even within the Deinococcus genus.
Collapse
Affiliation(s)
- Sangyong Lim
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Jong-Hyun Jung
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | | | - Arjan de Groot
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| |
Collapse
|
5
|
Xiong W, Peng W, Liang R. Identification and genome analysis of Deinococcus actinosclerus SJTR1, a novel 17β-estradiol degradation bacterium. 3 Biotech 2018; 8:433. [PMID: 30306002 DOI: 10.1007/s13205-018-1466-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022] Open
Abstract
Biodegradation with microorganisms is considered as an efficient strategy to remove the environmental pollutants. In this work, Deinococcus actinosclerus SJTR1 isolated from the wastewater was confirmed with great degradation capability to 17β-estradiol, one typical estrogen chemical. It could degrade nearly 90% of 17β-estradiol (10 mg/L) in 5 days and transform it into estrone; its degradation kinetics fitted for the first-order kinetic equation. The whole genome sequence of D. actinosclerus SJTR1 was obtained and annotated, containing one chromosome (3,315,586 bp) and four plasmids (ranging from 17,267 bp to 460,244 bp). A total of 3913 CDSs and 73 RNA genes (including 12 rRNA genes, 50 tRNA genes, and 11 ncRNA genes) were identified in its whole genome sequence. On this basis, a series of potential genes involved in steroid metabolism and stress responses of D. actinosclerus SJTR1 were predicted. It is the first report of Deinococcus strain with the degradation capability to estrogens. This work could enrich the genome sources of the estrogen-degrading strains and promote the degradation mechanism study of 17β-estradiol in bacteria.
Collapse
Affiliation(s)
- Weiliang Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Wanli Peng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| |
Collapse
|
6
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2017; 67:1095-1098. [PMID: 28581921 DOI: 10.1099/ijsem.0.001986] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology and Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
7
|
Kim EB, Kang MS, Joo ES, Jeon SH, Jeong SW, Lim SY, Jung HY, Srinivasan S, Kim MK. Deinococcus ruber sp. nov., a radiation-resistant bacterium isolated from soil. Int J Syst Evol Microbiol 2017; 67:72-76. [DOI: 10.1099/ijsem.0.001567] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Eun Bit Kim
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women’s University, Seoul 139-774, Republic of Korea
| | - Myung Suk Kang
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 404-107, Republic of Korea
| | - Eun Sun Joo
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women’s University, Seoul 139-774, Republic of Korea
| | - Seon Hwa Jeon
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women’s University, Seoul 139-774, Republic of Korea
| | - Sun Wook Jeong
- Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Sang Yong Lim
- Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Hee Young Jung
- Institute of Plant Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
- College of Agricultural and Life Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Sathiyaraj Srinivasan
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women’s University, Seoul 139-774, Republic of Korea
| | - Myung Kyum Kim
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women’s University, Seoul 139-774, Republic of Korea
| |
Collapse
|
8
|
Jeon SH, Kang MS, Joo ES, Kim EB, Lim S, Jeong SW, Jung HY, Srinivasan S, Kim MK. Deinococcus persicinus sp. nov., a radiation-resistant bacterium from soil. Int J Syst Evol Microbiol 2016; 66:5077-5082. [DOI: 10.1099/ijsem.0.001473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Seon Hwa Jeon
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women’s University, Seoul 139-774, Republic of Korea
| | - Myung-Suk Kang
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 404-107, Republic of Korea
| | - Eun Sun Joo
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women’s University, Seoul 139-774, Republic of Korea
| | - Eun Bit Kim
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women’s University, Seoul 139-774, Republic of Korea
| | - Sangyong Lim
- Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Sun-wook Jeong
- Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Hee-Young Jung
- College of Agricultural and Life Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Sathiyaraj Srinivasan
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women’s University, Seoul 139-774, Republic of Korea
| | - Myung Kyum Kim
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women’s University, Seoul 139-774, Republic of Korea
| |
Collapse
|
9
|
Choi SG, Jeon SH, Lee JB, Joo ES, Lim S, Jung HY, Kim MK. Deinococcus rubellus sp. nov., bacteria isolated from the muscle of antarctic fish. J Microbiol 2016; 54:796-801. [PMID: 27888462 DOI: 10.1007/s12275-016-6390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 08/31/2016] [Accepted: 09/21/2016] [Indexed: 11/28/2022]
Abstract
Two new bacterial strains designated as Ant6T and Ant18 were isolated from the muscle of a fish which had been caught in the Antarctic Ocean. Both strains are Gram-stain-positive, catalase positive, oxidase negative, aerobic, and coccoid bacteria. Phylogenetic analysis based on the 16S rRNA gene sequences of strains Ant6T and Ant18 revealed that the strains Ant6T and Ant18 belong to the genus Deinococcus in the family Deinococcaceae in the class Deinococci. The highest degrees of sequence similarities of strains Ant6T and Ant18 were found with Deinococcus alpinitundrae LMG 24283T by 96.4% and 96.8%, respectively. Strain Ant6T exhibited a high level of DNA- DNA hybridization values with strain Ant18 (82 ± 0.6%). Chemotaxonomic data revealed that the predominant fatty acids were C17: 0 cyclo, 16:0, and feature 3 (C16:1 ω6c/ω7c) for both strains. A complex polar lipid profile consisted of major amounts of unknown phosphoglycolipids (PGL) and unknown aminophospholipid (APL). Based on the phylogenetic, phenotypic, and chemotaxonomic data, strains Ant6T (=KEMB 9004-169T =JCM 31434T) and Ant18 (=KEMB 9004-170) should be classified as a new species, for which the name Deinococcus rubellus sp. nov. is proposed.
Collapse
Affiliation(s)
- Seok-Gwan Choi
- Distant-water Fisheries Resources Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Seon Hwa Jeon
- Department of Bio and Environmental Technology, College of Natural Science, Seoul Women's University, Seoul, 01797, Republic of Korea
| | - Jae-Bong Lee
- Distant-water Fisheries Resources Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Eun Sun Joo
- Department of Bio and Environmental Technology, College of Natural Science, Seoul Women's University, Seoul, 01797, Republic of Korea
| | - Sangyong Lim
- Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 34057, Republic of Korea
| | - Hee-Young Jung
- College of Agricultural and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.,Institute of Plant Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Myung Kyum Kim
- Department of Bio and Environmental Technology, College of Natural Science, Seoul Women's University, Seoul, 01797, Republic of Korea.
| |
Collapse
|
10
|
Lee JJ, Kang MS, Kim GS, Lee CS, Lim S, Lee J, Roh SH, Kang H, Ha JM, Bae S, Jung HY, Kim MK. Flavisolibacter tropicus sp. nov., isolated from tropical soil. Int J Syst Evol Microbiol 2016; 66:3413-3419. [DOI: 10.1099/ijsem.0.001207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Jae-Jin Lee
- College of Agricultural and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Myung-Suk Kang
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 404-170, Republic of Korea
| | - Gyung Soon Kim
- Department of Nature Survey, National Institute of Ecology, Seocheon 33657, Republic of Korea
| | - Chang Soek Lee
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women’s University, Seoul 139-774, Republic of Korea
| | - Sangyong Lim
- Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Jidam Lee
- Honor’s Class, Seoul Women’s University, Seoul 139-774, Republic of Korea
| | - Si Hyeon Roh
- Honor’s Class, Seoul Women’s University, Seoul 139-774, Republic of Korea
| | - Hyerin Kang
- Honor’s Class, Seoul Women’s University, Seoul 139-774, Republic of Korea
| | - Jung Min Ha
- Honor’s Class, Seoul Women’s University, Seoul 139-774, Republic of Korea
| | - Sojung Bae
- Honor’s Class, Seoul Women’s University, Seoul 139-774, Republic of Korea
| | - Hee-Young Jung
- College of Agricultural and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Myung Kyum Kim
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women’s University, Seoul 139-774, Republic of Korea
| |
Collapse
|
11
|
Sun Joo E, Jin Lee J, Kang MS, Lim S, Jeong SW, Bit Kim E, Hwa Jeon S, Srinivasan S, Kyum Kim M. Deinococcus actinosclerus sp. nov., a novel bacterium isolated from soil of a rocky hillside. Int J Syst Evol Microbiol 2016; 66:1003-1008. [DOI: 10.1099/ijsem.0.000825] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Eun Sun Joo
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University, Seoul 139-774, Korea
| | - Jae Jin Lee
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University, Seoul 139-774, Korea
| | - Myung-Suk Kang
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 404-107, Republic of Korea
| | - Sangyong Lim
- Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Sun-wook Jeong
- Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Eun Bit Kim
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University, Seoul 139-774, Korea
| | - Seon Hwa Jeon
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University, Seoul 139-774, Korea
| | - Sathiyaraj Srinivasan
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University, Seoul 139-774, Korea
| | - Myung Kyum Kim
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University, Seoul 139-774, Korea
| |
Collapse
|