1
|
Tiwari P, Thakkar S, Dufossé L. Antimicrobials from endophytes as novel therapeutics to counter drug-resistant pathogens. Crit Rev Biotechnol 2025; 45:164-190. [PMID: 38710617 DOI: 10.1080/07388551.2024.2342979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/28/2023] [Accepted: 01/29/2024] [Indexed: 05/08/2024]
Abstract
The rapid increase in antimicrobial resistance (AMR) projects a "global emergency" and necessitates a need to discover alternative resources for combating drug-resistant pathogens or "superbugs." One of the key themes in "One Health Concept" is based on the fact that the interconnected network of humans, the environment, and animal habitats majorly contribute to the rapid selection and spread of AMR. Moreover, the injudicious and overuse of antibiotics in healthcare, the environment, and associated disciplines, further aggravates the concern. The prevalence and persistence of AMR contribute to the global economic burden and are constantly witnessing an upsurge due to fewer therapeutic options, rising mortality statistics, and expensive healthcare. The present decade has witnessed the extensive exploration and utilization of bio-based resources in harnessing antibiotics of potential efficacies. The discovery and characterization of diverse chemical entities from endophytes as potent antimicrobials define an important yet less-explored area in natural product-mediated drug discovery. Endophytes-produced antimicrobials show potent efficacies in targeting microbial pathogens and synthetic biology (SB) mediated engineering of endophytes for yield enhancement, forms a prospective area of research. In keeping with the urgent requirements for new/novel antibiotics and growing concerns about pathogenic microbes and AMR, this paper comprehensively reviews emerging trends, prospects, and challenges of antimicrobials from endophytes and their effective production via SB. This literature review would serve as the platform for further exploration of novel bioactive entities from biological organisms as "novel therapeutics" to address AMR.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Shreya Thakkar
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, India
| | - Laurent Dufossé
- Laboratoire CHEMBIOPRO (Chimie et Biotechnologie des Produits Naturels), ESIROI Département agroalimentaire, Université de La Réunion, Saint-Denis, France
| |
Collapse
|
2
|
Mirzaee H, Ariens E, Blaskovich MAT, Clark RJ, Schenk PM. Biostimulation of Bacteria in Liquid Culture for Identification of New Antimicrobial Compounds. Pharmaceuticals (Basel) 2021; 14:1232. [PMID: 34959632 PMCID: PMC8706287 DOI: 10.3390/ph14121232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/05/2022] Open
Abstract
We hypothesized that environmental microbiomes contain a wide range of bacteria that produce yet uncharacterized antimicrobial compounds (AMCs) that can potentially be used to control pathogens. Over 600 bacterial strains were isolated from soil and food compost samples, and 68 biocontrol bacteria with antimicrobial activity were chosen for further studies based on inhibition assays against a wide range of food and plant pathogens. For further characterization of the bioactive compounds, a new method was established that used living pathogens in a liquid culture to stimulate bacteria to produce high amounts of AMCs in bacterial supernatants. A peptide gel electrophoresis microbial inhibition assay was used to concurrently achieve size separation of the antimicrobial peptides. Fifteen potential bioactive peptides were then further characterized by tandem MS, revealing cold-shock proteins and 50S ribosomal proteins. To identify non-peptidic AMCs, bacterial supernatants were analyzed by HPLC followed by GC/MS. Among the 14 identified bioactive compounds, 3-isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione and 2-acetyl-3-methyl-octahydropyrrolo[1,2-a]piperazine-1,4-dione were identified as new AMCs. Our work suggests that antimicrobial compound production in microbes is enhanced when faced with a threat from other microorganisms, and that this approach can rapidly lead to the development of new antimicrobials with the potential for upscaling.
Collapse
Affiliation(s)
- Hooman Mirzaee
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Emily Ariens
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Mark A. T. Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Richard J. Clark
- Peptide Chemical Biology Laboratory, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Peer M. Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| |
Collapse
|
3
|
dos Santos IR, Abdel-Azeem AM, Mohesien MT, Piekutowska M, Sheir DH, da Silva LL, da Silva Castro C, Carvalho DDC, Bezerra JDP, Saad HA, Borges LL, Xavier-Santos S. Insights into the Bioprospecting of the Endophytic Fungi of the Medicinal Plant Palicourea rigida Kunth (Rubiaceae): Detailed Biological Activities. J Fungi (Basel) 2021; 7:689. [PMID: 34575727 PMCID: PMC8468907 DOI: 10.3390/jof7090689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 01/19/2023] Open
Abstract
A multitude of plants from the Brazilian savanna are known for their medicinal properties. Many plants contain endophytic fungi, which lead to the production of bioactive compounds by both the fungi and their hosts. This study investigated the bioprospecting of endophytic fungi recovered from the leaves of Palicourea rigida, a native medicinal plant of the Brazilian savanna. Four fungal taxa (Colletotrichum sp. SXS649, Pestalotiopsis sp. SXS650, the order Botryosphaeriales SXS651, and Diaporthe sp. SXS652) were recovered. The phenolic, flavonoid, extracellular degrading enzymes (amylase, cellulase, protease, and tannase) and antioxidant activity of these taxa were determined. Evaluation of the antimicrobial activity showed that the Botryosphaeriales SXS651 extract displays a minimum inhibitory concentration (MIC) of 23.20 mg mL-1 against Staphylococcus epidermidis and Pseudomonas aeruginosa, and the Diaporthe sp. SXS652 extract exhibited an MIC of 27.00 mg mL-1 against Escherichia coli. The Colletotrichum sp. SXS649 isolate inhibited tumors in potato discs by 69% at a concentration of 9.70 mg mL-1. All isolates had potential bioremediation criteria against soil contaminated with soybean oil, as proved by a high percentage of germination of Lactuca sativa and a reduction in phytotoxicity. Furthermore, the taxa under investigation demonstrated antagonistic action to phytopathogenic fungi, namely, Aspergillus niger, Inonotus rickii, Pestalotiopsis mangiferae, and Coniophora puteana, with an inhibition range between 34.2% and 76.9%. The preliminary toxicity assessment showed that all isolates possessed an LC50 of less than 100 mg mL-1 to the microcrustacean Artemia salina. These results indicate that the endophytic fungi of the Brazilian savanna are promising candidates for biotechnological and industrial applications and, in agricultural applications, for the biological control of phytopathogenic fungi.
Collapse
Affiliation(s)
- Igor Romeiro dos Santos
- Basic, Applied and Scientific Divulgation Mycolgy Laboratory (FungiLab), Central Campus, State University of Goiás, Anápolis 75132-903, GO, Brazil; (I.R.d.S.); (L.L.d.S.); (C.d.S.C.); (L.L.B.)
| | - Ahmed M. Abdel-Azeem
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Marwa T. Mohesien
- Botany and Microbiology Department, Faculty of Science, Damietta University, New Damietta 34511, Egypt;
| | - Magdalena Piekutowska
- Department of Geoecology and Geoinformation, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Partyzantów 27, 76-200 Słupsk, Poland;
| | - Donia H. Sheir
- National Research Centre, Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Division, Giza 12622, Egypt;
| | - Lucas Leonardo da Silva
- Basic, Applied and Scientific Divulgation Mycolgy Laboratory (FungiLab), Central Campus, State University of Goiás, Anápolis 75132-903, GO, Brazil; (I.R.d.S.); (L.L.d.S.); (C.d.S.C.); (L.L.B.)
| | - Camila da Silva Castro
- Basic, Applied and Scientific Divulgation Mycolgy Laboratory (FungiLab), Central Campus, State University of Goiás, Anápolis 75132-903, GO, Brazil; (I.R.d.S.); (L.L.d.S.); (C.d.S.C.); (L.L.B.)
| | | | - Jadson Diogo Pereira Bezerra
- Mycology Sector, Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74690-900, GO, Brazil;
| | - Hosam A. Saad
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Leonardo Luiz Borges
- Basic, Applied and Scientific Divulgation Mycolgy Laboratory (FungiLab), Central Campus, State University of Goiás, Anápolis 75132-903, GO, Brazil; (I.R.d.S.); (L.L.d.S.); (C.d.S.C.); (L.L.B.)
| | - Solange Xavier-Santos
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
4
|
Diversity, Chemical Constituents and Biological Activities of Endophytic Fungi Isolated from Schinus terebinthifolius Raddi. Microorganisms 2020; 8:microorganisms8060859. [PMID: 32517286 PMCID: PMC7356110 DOI: 10.3390/microorganisms8060859] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022] Open
Abstract
Schinus terebinthifolius Raddi is a medicinal plant widely used for the treatment of various diseases. The secondary metabolites responsible for the pharmacological properties can be produced directly by the plant or by endophytic fungi. The objective of this study was to evaluate the diversity of endophytic fungi of different parts of S. terebinthifolius and to identify chemical compounds produced by endophytes and their antioxidant and antibacterial activities. For this, fruits, stem bark and roots were dried, ground and placed in fungal growth medium. The selected endophytes were grown and subjected to extraction with ethyl acetate. DPPH, FRAP, β-carotene bleaching and antimicrobial assays were performed. The phylogenetic tree was elaborated, encompassing 15 different species. The fungal extracts showed hydroxybenzoic acids and 1-dodecanol as predominant compounds. All fungal extracts exhibited antioxidant activity. The fungal extracts exhibited bactericidal and bacteriostatic activities against Gram-positive and Gram-negative bacterial ATCC strains and against methicillin-resistant nosocomial bacteria. Among the 10 endophytic fungi evaluated, the extract of the fungus Ochrocladosporium elatum showed higher phenolic content and exhibited higher antioxidant and antibacterial activities in all tests. Together, the results increase the known diversity of S. terebinthifolius endophytic fungi, secondary metabolites produced and their antioxidant and antibacterial activities.
Collapse
|
5
|
de Giffoni de Carvalho JT, da Silva Baldivia D, Leite DF, de Araújo LCA, de Toledo Espindola PP, Antunes KA, Rocha PS, de Picoli Souza K, dos Santos EL. Medicinal Plants from Brazilian Cerrado: Antioxidant and Anticancer Potential and Protection against Chemotherapy Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3685264. [PMID: 31534620 PMCID: PMC6732650 DOI: 10.1155/2019/3685264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/16/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022]
Abstract
The use of natural antioxidants in cancer therapy has increased: first, due to the potential of natural antioxidants to kill tumour cells and second, because of their capacity to protect healthy cells from the damage caused by chemotherapy. This review article discusses the antioxidant properties of extracts obtained from medicinal plants from the Brazilian Cerrado and the cell death profile induced by each of these extracts in malignant cells. Next, we describe the capacity of other medicinal plants from the Cerrado to protect against chemotherapy-induced cell toxicity. Finally, we focus on recent insights into the cell death profile induced by extracts from Cerrado plants and perspectives for future therapeutic approaches.
Collapse
Affiliation(s)
| | - Débora da Silva Baldivia
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Daniel Ferreira Leite
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Laura Costa Alves de Araújo
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | | | - Katia Avila Antunes
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Paola Santos Rocha
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Edson Lucas dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| |
Collapse
|
6
|
Muscodor brasiliensis sp. nov. produces volatile organic compounds with activity against Penicillium digitatum. Microbiol Res 2019; 221:28-35. [PMID: 30825939 DOI: 10.1016/j.micres.2019.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/08/2019] [Accepted: 01/17/2019] [Indexed: 01/12/2023]
Abstract
Endophytic fungi belonging to Muscodor genus are considered as promising alternatives to be used in biological control due to the production of volatile organic compounds (VOCs). The strains LGMF1255 and LGMF1256 were isolated from the medicinal plant Schinus terebinthifolius and, by morphological data and phylogenetic analysis, identified as belonging to Muscodor genus. Phylogenetic analysis suggests that strain LGMF1256 is a new species, which is herein introduced as Muscodor brasiliensis sp. nov. The analysis of VOCs production revealed that compounds phenylethyl alcohol, α-curcumene, and E (β) farnesene until now has been reported only from M. brasiliensis, data that supports the classification of strain LGMF1256 as a new species. M. brasiliensis completely inhibited the phytopathogen P. digitatum in vitro. We also evaluated the ability of VOCs from LGMF1256 to inhibit the development of green mold symptoms by inoculation of P. digitatum in detached oranges. M. brasiliensis reduced the severity of diseases in 77%, and showed potential to be used for fruits storage and transportation to prevent the green mold symptoms development, eventually reducing the use of fungicides.
Collapse
|
7
|
de Medeiros AG, Savi DC, Mitra P, Shaaban KA, Jha AK, Thorson JS, Rohr J, Glienke C. Bioprospecting of Diaporthe terebinthifolii LGMF907 for antimicrobial compounds. Folia Microbiol (Praha) 2018; 63:499-505. [PMID: 29497981 DOI: 10.1007/s12223-018-0587-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/19/2018] [Indexed: 10/17/2022]
Abstract
Antibiotic-resistant bacteria have been observed with increasing frequency over the past decades, driving the search for new drugs and stimulating the interest in natural products sources. Endophytic fungi from medicinal plants represent a great source of novel bioactive compounds useful to pharmaceutical and agronomical purposes. Diaporthe terebinthifolii is an endophytic species isolated from Schinus terebinthifolius, a plant used in popular medicine for several health problems. The strain D. terebinthifolii LGMF907 was previously reported by our group to produce secondary metabolites with biological activity against phytopathogens. Based on these data, strain LGMF907 was chosen for bioprospecting against microorganisms of clinical importance and for characterization of major secondary metabolites. In this study, different culture conditions were evaluated and the biological activity of this strain was expanded. The crude extracts demonstrated high antibacterial activity against Escherichia coli, Micrococcus luteus, Saccharomyces cerevisiae, methicillin-sensitive Staphylococcus aureus, and methicillin-resistant S. aureus. The compounds diaporthin and orthosporin were characterized and also showed activity against the clinical microorganisms evaluated. This study discloses the first isolation of diaporthin and orthosporin from D. terebinthifolii, and revealed the potential of this endophytic fungus to produce secondary metabolites with antimicrobial activity.
Collapse
Affiliation(s)
- Aliandra G de Medeiros
- Department of Genetics, Universidade Federal do Paraná, P.O. Box 19071, Curitiba, PR, CEP: 81531-980, Brazil.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Daiani C Savi
- Department of Genetics, Universidade Federal do Paraná, P.O. Box 19071, Curitiba, PR, CEP: 81531-980, Brazil.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Prithiba Mitra
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Khaled A Shaaban
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA.,Center for Pharmaceutical Research and Innovation (CPRI), University of Kentucky, Lexington, KY, 40536, USA
| | - Amit K Jha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Jon S Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA.,Center for Pharmaceutical Research and Innovation (CPRI), University of Kentucky, Lexington, KY, 40536, USA
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA.
| | - Chirlei Glienke
- Department of Genetics, Universidade Federal do Paraná, P.O. Box 19071, Curitiba, PR, CEP: 81531-980, Brazil.
| |
Collapse
|
8
|
Gos FMWR, Savi DC, Shaaban KA, Thorson JS, Aluizio R, Possiede YM, Rohr J, Glienke C. Antibacterial Activity of Endophytic Actinomycetes Isolated from the Medicinal Plant Vochysia divergens (Pantanal, Brazil). Front Microbiol 2017; 8:1642. [PMID: 28932210 PMCID: PMC5592219 DOI: 10.3389/fmicb.2017.01642] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/14/2017] [Indexed: 12/17/2022] Open
Abstract
Endophytic actinomycetes from medicinal plants produce a wide diversity of secondary metabolites (SM). However, to date, the knowledge about endophytes from Brazil remains scarce. Thus, we analyzed the antimicrobial potential of 10 actinomycetes isolated from the medicinal plant Vochysia divergens located in the Pantanal sul-mato-grossense, an unexplored wetland in Brazil. Strains were classified as belonging to the Aeromicrobium, Actinomadura, Microbacterium, Microbispora, Micrococcus, Sphaerisporangium, Streptomyces, and Williamsia genera, through morphological and 16S rRNA phylogenetic analyzes. A susceptibility analysis demonstrated that the strains were largely resistant to the antibiotics oxacillin and nalidixic acid. Additionally, different culture media (SG and R5A), and temperatures (28 and 36°C) were evaluated to select the best culture conditions to produce the active SM. All conditions were analyzed for active metabolites, and the best antibacterial activity was observed from metabolites produced with SG medium at 36°C. The LGMB491 (close related to Aeromicrobium ponti) extract showed the highest activity against methicillin-resistant Staphylococcus aureus (MRSA), with a MIC of 0.04 mg/mL, and it was selected for SM identification. Strain LGMB491 produced 1-acetyl-β-carboline (1), indole-3-carbaldehyde (2), 3-(hydroxyacetyl)-indole (4), brevianamide F (5), and cyclo-(L-Pro-L-Phe) (6) as major compounds with antibacterial activity. In this study, we add to the knowledge about the endophytic community from the medicinal plant V. divergens and report the isolation of rare actinomycetes that produce highly active metabolites.
Collapse
Affiliation(s)
| | - Daiani C. Savi
- Department of Genetics, Federal University of ParanáCuritiba, Brazil
| | - Khaled A. Shaaban
- Department of Pharmaceutical Sciences, College of Pharmacy, University of KentuckyLexington, KY, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of KentuckyLexington, KY, United States
| | - Jon S. Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of KentuckyLexington, KY, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of KentuckyLexington, KY, United States
| | - Rodrigo Aluizio
- Department of Genetics, Federal University of ParanáCuritiba, Brazil
| | - Yvelise M. Possiede
- Department of Biology, Federal University of Mato Grosso do SulCampo Grande, Brazil
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of KentuckyLexington, KY, United States
| | - Chirlei Glienke
- Department of Genetics, Federal University of ParanáCuritiba, Brazil
| |
Collapse
|
9
|
Martinez-Klimova E, Rodríguez-Peña K, Sánchez S. Endophytes as sources of antibiotics. Biochem Pharmacol 2017; 134:1-17. [DOI: 10.1016/j.bcp.2016.10.010] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/25/2016] [Indexed: 11/27/2022]
|
10
|
The Fungal Endobiome of Medicinal Plants: A Prospective Source of Bioactive Metabolites. MEDICINAL AND AROMATIC PLANTS OF THE WORLD 2017. [DOI: 10.1007/978-981-10-5978-0_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|