1
|
Sermkaew N, Atipairin A, Wanganuttara T, Krobthong S, Aonbangkhen C, Yingchutrakul Y, Uchiyama J, Songnaka N. A Novel Bacitracin-like Peptide from Mangrove-Isolated Bacillus paralicheniformis NNS4-3 against MRSA and Its Genomic Insights. Antibiotics (Basel) 2024; 13:716. [PMID: 39200016 PMCID: PMC11350868 DOI: 10.3390/antibiotics13080716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024] Open
Abstract
The global rise of antimicrobial resistance (AMR) presents a critical challenge necessitating the discovery of novel antimicrobial agents. Mangrove microbes are valuable sources of new antimicrobial compounds. This study reports the discovery of a potent antimicrobial peptide (AMP) from Bacillus paralicheniformis NNS4-3, isolated from mangrove sediment, exhibiting significant activity against methicillin-resistant Staphylococcus aureus (MRSA). The AMP demonstrated a minimum inhibitory concentration ranging from 1 to 16 µg/mL in the tested bacteria and exhibited bactericidal effects at higher concentrations. Structural analysis revealed a bacitracin-like configuration and the peptide acted by disrupting bacterial membranes in a time- and concentration-dependent manner. The AMP maintained stability under heat, proteolytic enzymes, surfactants, and varying pH treatments. The ten biosynthetic gene clusters (BGCs) of secondary metabolites were found in the genome. Detailed sequence comparison of the predicted bacitracin BGC indicated distinct DNA sequences compared to previously reported strains. Although the antibiotic resistance genes were found, this strain was susceptible to antibiotics. Our findings demonstrated the potential of Bacillus paralicheniformis NNS4-3 and its AMP as a promising agent in combating AMR. The genetic information could be pivotal for future applications in the healthcare industry, emphasizing the need for continued exploration of marine microbial diversity in drug discovery.
Collapse
Affiliation(s)
- Namfa Sermkaew
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand; (N.S.); (A.A.); (T.W.)
- Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Apichart Atipairin
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand; (N.S.); (A.A.); (T.W.)
- Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Thamonwan Wanganuttara
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand; (N.S.); (A.A.); (T.W.)
- Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (C.A.)
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (C.A.)
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | - Jumpei Uchiyama
- Department of Bacteriology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
| | - Nuttapon Songnaka
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand; (N.S.); (A.A.); (T.W.)
- Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
2
|
Ko SJ, Kang NH, Kim MK, Park J, Park E, Park GH, Kang TW, Na DE, Park JB, Yi YE, Jeon SH, Park Y. Antibacterial and anti-biofilm activity, and mechanism of action of pleurocidin against drug resistant Staphylococcus aureus. Microb Pathog 2018; 127:70-78. [PMID: 30508627 DOI: 10.1016/j.micpath.2018.11.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/29/2018] [Indexed: 11/25/2022]
Abstract
The abuse of antibiotics has resulted in the emergence of multi-drug-resistant bacteria. Staphylococcus aureus is a frequent cause of infections, and antibiotic-resistant S. aureus has become a serious problem. Antimicrobial peptides play an important role in innate immunity and are attracting increasing attention as alternative antibiotics. In a previous study, pleurocidin, derived from winter flounder, was identified as a 25-amino acid antimicrobial peptide with no cytotoxicity toward mammalian cells and low hemolytic activity. In the present study, pleurocidin was observed to exhibit antimicrobial activity against gram-positive and gram-negative bacteria, especially against drug resistant S. aureus. Pleurocidin retained its antibacterial activity against drug resistant S. aureus in the presence of a physiological salt concentration. Membrane depolarization assays and propidium iodide uptake indicated that pleurocidin kills bacteria by damaging the integrity of the bacterial membrane. DNA binding assays revealed that pleurocidin binds to DNA. Thus, pleurocidin targets not only the bacterial membrane, but also their DNA. S. aureus biofilms have become a serious problem because of increased resistance to antibiotics. Therefore, we investigated the effect of pleurocidin on biofilm inhibition and eradication using crystal violet staining and microscopic observation. Pleurocidin inhibited and eradicated biofilms at low concentrations. Taken together, the results suggested that pleurocidin is a promising candidate therapeutic agent to treat drug-resistant bacteria and biofilm-related infections.
Collapse
Affiliation(s)
- Su Jin Ko
- Department of Biomedical Science, Chosun University, Gwangju, 61452, South Korea
| | - Na Hee Kang
- Department of Biomedical Science, Chosun University, Gwangju, 61452, South Korea
| | - Min Kyung Kim
- Department of Biomedical Science, Chosun University, Gwangju, 61452, South Korea
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju, 38065, South Korea
| | - Eunji Park
- Department of Biomedical Science, Chosun University, Gwangju, 61452, South Korea
| | - Ga Hyeon Park
- Jangseong High School, Jeollanamdo, 57216, South Korea
| | - Tae Woo Kang
- Jangseong High School, Jeollanamdo, 57216, South Korea
| | - Da Eun Na
- Jangseong High School, Jeollanamdo, 57216, South Korea
| | - Jin Bae Park
- Jangseong High School, Jeollanamdo, 57216, South Korea
| | - Yae Eun Yi
- Jangseong High School, Jeollanamdo, 57216, South Korea
| | | | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju, 61452, South Korea; Research Center for Proteineous Materials, Chosun University, Gwangju, 61452, South Korea.
| |
Collapse
|
3
|
Lee H, Lee DG. Arenicin-1-induced apoptosis-like response requires RecA activation and hydrogen peroxide against Escherichia coli. Curr Genet 2018; 65:167-177. [DOI: 10.1007/s00294-018-0855-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/25/2022]
|
4
|
Yun J, Woo ER, Lee DG. Isoquercitrin, isolated from Aster yomena triggers ROS-mediated apoptosis in Candida albicans. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|