1
|
Gupta S, Sinha S, Bhakta K, Bhowmick A, Ghosh A. Unravelling the role of the A domain and N-terminal alpha-helices of FtsY in archaeal signal recognition particle. Int J Biol Macromol 2025; 306:141645. [PMID: 40032113 DOI: 10.1016/j.ijbiomac.2025.141645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/12/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Signal recognition particle (SRP) system is critical for protein translocation across membranes in all domains of life. In archaea, this pathway relies on two GTPase proteins, SRP54 and FtsY, which interact with SRP RNA to facilitate the targeting of nascent proteins to the membrane. Although the SRP components in eukaryotes and bacteria are well characterized, the mechanisms underlying SRP-dependent membrane targeting in archaea remain poorly understood, particularly concerning the role of the FtsY N-terminal domains. This study provides an in-depth exploration of the archaeal SRP system, focusing on the N-terminal domains of the FtsY protein and their role in the formation and functionality of the targeting complex (TC). We characterized the minimal structural domains of FtsY required for SRP54 binding and membrane association, demonstrating the critical involvement of the A domain and N-terminal alpha helices in facilitating these processes. The deletion of these domains led to a progressive reduction in the affinity between SRP54 and FtsY, disrupting TC formation and compromising its catalytic efficiency. Molecular dynamics simulations and thermodynamic analyses corroborated these experimental findings, revealing that the A domain is integral to stabilizing TC and enhancing reciprocal GTP hydrolysis. Furthermore, the study showed that membrane association, mediated by the orientation of the A domain and the αN1 helix, is essential for stabilizing the interaction between SRP and the membrane. These results shed light on the molecular basis of SRP assembly and membrane targeting in archaea, marking an important advancement in our understanding of the archaeal SRP machinery.
Collapse
Affiliation(s)
- Sayandeep Gupta
- Department of Bioengineering, University of Oregon, 1505 Franklin Blvd., Eugene, OR 97403, USA
| | - Souvik Sinha
- Department of Bioengineering, University of California, 900 University Avenue, Riverside, CA 92521, USA
| | - Koustav Bhakta
- Department of Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, WB, India
| | - Arghya Bhowmick
- Department of Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, WB, India
| | - Abhrajyoti Ghosh
- Department of Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, WB, India.
| |
Collapse
|
2
|
Gupta S, Roy M, Dey D, Bhakta K, Bhowmick A, Chattopadhyay D, Ghosh A. Archaeal SRP RNA and SRP19 facilitate the assembly of SRP54-FtsY targeting complex. Biochem Biophys Res Commun 2021; 566:53-58. [PMID: 34116357 DOI: 10.1016/j.bbrc.2021.05.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
The signal recognition particle (SRP) plays an essential role in protein translocation across biological membranes. Stable complexation of two GTPases in the signal recognition particle (SRP) and its receptor (SR) control the delivery of nascent polypeptide to the membrane translocon. In archaea, protein targeting is mediated by the SRP54/SRP19/7S RNA ribonucleoprotein complex (SRP) and the FtsY protein (SR). In the present study, using fluorescence resonance energy transfer (FRET), we demonstrate that archaeal 7S RNA stabilizes the SRP54·FtsY targeting complex (TC). Moreover, we show that archaeal SRP19 further assists 7S RNA in stabilizing the targeting complex (TC). These results suggest that archaeal 7S RNA and SRP19 modulate the conformation of the targeting complex and thereby reinforce TC to execute protein translocation via concomitant GTP hydrolysis.
Collapse
Affiliation(s)
| | - Mousam Roy
- Department of Biochemistry, Bose Institute, Kolkata, India
| | - Dhritiman Dey
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Koustav Bhakta
- Department of Biochemistry, Bose Institute, Kolkata, India
| | | | | | | |
Collapse
|
3
|
Pinel-Marie ML, Brielle R, Riffaud C, Germain-Amiot N, Polacek N, Felden B. RNA antitoxin SprF1 binds ribosomes to attenuate translation and promote persister cell formation in Staphylococcus aureus. Nat Microbiol 2021; 6:209-220. [PMID: 33398097 DOI: 10.1038/s41564-020-00819-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/20/2020] [Indexed: 01/28/2023]
Abstract
Persister cells are a subpopulation of transiently antibiotic-tolerant bacteria associated with chronic infection and antibiotic treatment failure. Toxin-antitoxin systems have been linked to persister cell formation but the molecular mechanisms leading to bacterial persistence are mostly unknown. Here, we show that SprF1, a type I antitoxin, associates with translating ribosomes from the major human pathogen Staphylococcus aureus to reduce the pathogen's overall protein synthesis during growth. Under hyperosmotic stress, SprF1 levels increase due to enhanced stability, accumulate on polysomes and attenuate protein synthesis. Using an internal 6-nucleotide sequence on its 5'-end, SprF1 binds ribosomes and interferes with initiator transfer RNA binding, thus reducing translation initiation. An excess of messenger RNA displaces the ribosome-bound antitoxin, freeing the ribosomes for new translation cycles; however, this RNA antitoxin can also displace ribosome-bound mRNA. This translation attenuation mechanism, mediated by an RNA antitoxin, promotes antibiotic persister cell formation. The untranslated SprF1 is a dual-function RNA antitoxin that represses toxin expression by its 3'-end and fine-tunes overall bacterial translation via its 5'-end. These findings demonstrate a general function for a bacterial RNA antitoxin beyond protection from toxicity. They also highlight an RNA-guided molecular process that influences antibiotic persister cell formation.
Collapse
Affiliation(s)
- Marie-Laure Pinel-Marie
- Institut National de la Santé et de la Recherche Médicale, Bacterial Regulatory RNAs and Medicine UMR_S 1230, Rennes, France.
| | - Régine Brielle
- Institut National de la Santé et de la Recherche Médicale, Bacterial Regulatory RNAs and Medicine UMR_S 1230, Rennes, France
| | - Camille Riffaud
- Institut National de la Santé et de la Recherche Médicale, Bacterial Regulatory RNAs and Medicine UMR_S 1230, Rennes, France
| | - Noëlla Germain-Amiot
- Institut National de la Santé et de la Recherche Médicale, Bacterial Regulatory RNAs and Medicine UMR_S 1230, Rennes, France
| | - Norbert Polacek
- Department of Chemistry and Biochemistry, Bern University, Bern, Switzerland
| | - Brice Felden
- Institut National de la Santé et de la Recherche Médicale, Bacterial Regulatory RNAs and Medicine UMR_S 1230, Rennes, France.
| |
Collapse
|
4
|
Mukherjee D, Gupta S, Ghosh A, Ghosh A. Ustilago maydis secreted T2 ribonucleases, Nuc1 and Nuc2 scavenge extracellular RNA. Cell Microbiol 2020; 22:e13256. [PMID: 32844528 DOI: 10.1111/cmi.13256] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
Abstract
Ustilago maydis genome codes for many secreted ribonucleases. The contribution of two among these belonging to the T2 family (Nuc1 and Nuc2) in the pathogen virulence, has been assessed in this study. The nuc1 and nuc2 deletion mutants showed not only reduced pathogenicity compared to the SG200 WT strain but also exhibited significant delay in the completion of the pathogenic lifecycle. Both the proteins were also tested for their nucleolytic activities towards RNA substrates from maize and yeast. This also yielded valuable insights into the ability of the ribonucleases to utilise extracellular RNA as a nutrient source. Our study therefore established a role of two T2 type secreted ribonucleases of a phytopathogen in the acquisition of nutrient for the first time. This study also provides evidence that maize apoplast contains RNA, which can be utilised as a substrate by both Nuc1 and Nuc2.
Collapse
Affiliation(s)
- Dibya Mukherjee
- Division of Plant Biology, Bose Institute Centenary Campus, Kolkata, India
| | - Sayandeep Gupta
- Department of Biochemistry, Bose Institute Centenary Campus, Kolkata, India
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute Centenary Campus, Kolkata, India
| | - Anupama Ghosh
- Division of Plant Biology, Bose Institute Centenary Campus, Kolkata, India
| |
Collapse
|
5
|
Wild K, Becker MM, Kempf G, Sinning I. Structure, dynamics and interactions of large SRP variants. Biol Chem 2019; 401:63-80. [DOI: 10.1515/hsz-2019-0282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022]
Abstract
Abstract
Co-translational protein targeting to membranes relies on the signal recognition particle (SRP) system consisting of a cytosolic ribonucleoprotein complex and its membrane-associated receptor. SRP recognizes N-terminal cleavable signals or signal anchor sequences, retards translation, and delivers ribosome-nascent chain complexes (RNCs) to vacant translocation channels in the target membrane. While our mechanistic understanding is well advanced for the small bacterial systems it lags behind for the large bacterial, archaeal and eukaryotic SRP variants including an Alu and an S domain. Here we describe recent advances on structural and functional insights in domain architecture, particle dynamics and interplay with RNCs and translocon and GTP-dependent regulation of co-translational protein targeting stimulated by SRP RNA.
Collapse
Affiliation(s)
- Klemens Wild
- Heidelberg University Biochemistry Center (BZH) , INF 328 , D-69120 Heidelberg , Germany
| | - Matthias M.M. Becker
- Heidelberg University Biochemistry Center (BZH) , INF 328 , D-69120 Heidelberg , Germany
| | - Georg Kempf
- Heidelberg University Biochemistry Center (BZH) , INF 328 , D-69120 Heidelberg , Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH) , INF 328 , D-69120 Heidelberg , Germany
| |
Collapse
|