1
|
Dai TTX, Chau TT, Tran LC, Tai TL. Isolating, Screening, and Optimizing Antioxidant Production of Endophytic Bacteria From Zingiber officinale Roscoe (Ginger). Curr Microbiol 2025; 82:233. [PMID: 40186780 DOI: 10.1007/s00284-025-04197-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/17/2025] [Indexed: 04/07/2025]
Abstract
Zingiber officinale Roscoe (ginger) is widely used as a herb in traditional cuisines and medicines. This study aimed to identify endophytic bacteria with high antioxidative potential in ginger plants and determine the optimum conditions for antioxidant fermentation from the strain. The bacteria from ginger were isolated and the growth conditions were surveyed. The secondary metabolites of the endophytes extracted using ethyl acetate were used to determine the total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activities. Six bacterial strains were selected for identification using 16S rRNA gene sequencing. Kosakonia sp. ZO-Rh4 exhibited the highest activity, and the fermentation conditions were optimized. The results showed that 32 endophytic strains isolated from ginger tissues exhibited the significant activity. The strains ZO-Rh4, ZO-L2, ZO-S7, ZO-S8, ZO-L7, and ZO-L8, revealed the highest ones, belonged to the genera Kosakonia, Pantoea, Enterobacter, and Klebsiella. Under optimum fermentation conditions of 32.58 °C, 71.49 h, 14.45 g/L glucose, and a pH of 7.58, the Kosakonia sp. ZO-Rh4 produced a TPC of 285.74 mg gallic acid equivalents/mL and TFC of144.49 mg quercetin equivalents/mL. Furthermore, the antioxidant activity significantly increased, as evidenced by the EC50 values for the 2,2-diphenyl-1-picrylhydrazyl scavenging activity, total antioxidant capacity, and reducing power assays. These findings highlight the potential of endophytes, particularly Kosakonia sp. ZO-Rh4 is a natural antioxidant with various applications.
Collapse
Affiliation(s)
- Trang Thi Xuan Dai
- Department of Biology, College of Natural Sciences, Can Tho University, Campus II, 3-2 Street, Ninh Kieu District, Can Tho City, 94000, Viet Nam.
| | - Tuan Thanh Chau
- Institute of Food and Biotechnology, Can Tho University, Campus II, 3-2 Street, Ninh Kieu District, Can Tho City, 94000, Viet Nam
| | - Linh Chi Tran
- Department of Biology, College of Natural Sciences, Can Tho University, Campus II, 3-2 Street, Ninh Kieu District, Can Tho City, 94000, Viet Nam
- Faculty of Medicine, Nam Can Tho University, 168, Nguyen Van Cu (Extension Road), Ninh Kieu District, Can Tho City, 94000, Viet Nam
| | - Ta Lam Tai
- Institute of Food and Biotechnology, Can Tho University, Campus II, 3-2 Street, Ninh Kieu District, Can Tho City, 94000, Viet Nam
| |
Collapse
|
2
|
Ravi A, Das S, Sebastian SK, Aravindakumar CT, Mathew J, Krishnankutty RE. Bioactive Metabolites of Serratia sp. NhPB1 Isolated from Pitcher of Nepenthes and its Application to Control Pythium aphanidermatum. Probiotics Antimicrob Proteins 2025; 17:721-736. [PMID: 37872287 DOI: 10.1007/s12602-023-10154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/25/2023]
Abstract
Plant-associated bacteria have already been considered as the store house of bioactive compounds that confer the plant growth promotion and disease protection. Hence, the unique plant parts have already been expected to harbor diverse microbial communities with multi-beneficial properties. Based on this, the current study has been designed to identify the potential of Serratia sp. NhPB1 isolated from the pitcher of Nepenthes plant for its activity against the infamous pathogen Pythium aphanidermatum. The in vitro antifungal, plant growth promoting and enzymatic activities of the isolate indicated its promises for agricultural application. The isolate NhPB1 was also demonstrated to have positive effect on Solanum lycopersicum and Capsicum annuum, due to its plant beneficial metabolites. From the results of LC-MS/MS analysis, the isolate has also been revealed to have the ability to synthesize bioactive compounds including salicylic acid, cyclodipeptides, acyl homoserine lactone, indole-3-acetic acid, and serrawettin W1. These identified compounds and their known biological properties make the isolate characterized in the study to have significant promises as an eco-friendly solution for the improvement of agricultural productivity.
Collapse
Affiliation(s)
- Aswani Ravi
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Soumya Das
- Department of Zoology, KE College, Mannanam, Kottayam, 686561, India
| | | | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
- Inter University Instrumentation Centre, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Jyothis Mathew
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | | |
Collapse
|
3
|
Taechowisan T, Chuen-Im T, Phutdhawong WS. Antibacterial and Anticancer Properties of Endophenazines from Streptomyces prasinus ZO16, an Endophyte in Zingiber officinale Rosc. Pak J Biol Sci 2024; 27:469-478. [PMID: 39415555 DOI: 10.3923/pjbs.2024.469.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
<b>Background and Objective:</b> This study investigated a bacterial strain, ZO16, isolated from ginger (<i>Zingiber officinale</i>) roots. Analysis of its 16S ribosomal DNA (rDNA), along with chemical and physical properties, revealed it to be <i>Streptomyces prasinus</i>. This study aimed to isolate and characterize the main bioactive compounds from ZO16, evaluating their antibacterial and anticancer properties. <b>Materials and Methods:</b> Techniques like column chromatography and thin-layer chromatography (TLC) were used to purify the key compounds from ZO16's culture extract. Nuclear Magnetic Resonance (NMR) spectroscopy and mass spectrometry were utilized to confirm the identities of the purified compounds as endophenazine A (compound 1) and endophenazine B (compound 2). The antibacterial and anticancer properties of these compounds were then evaluated. <b>Results:</b> The isolated compounds displayed antibacterial activity against <i>Staphylococcus aureus</i> ATCC 25923 and Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA). The minimum inhibitory concentration (MIC) of the isolated compounds against bacteria ranged from 8 to 32 μg/mL, while the minimum bactericidal concentration (MBC) was between 32 and 128 μg/mL. These compounds exhibited effectiveness against tested cancer cells with IC<sub>50</sub> values ranging from 30.40 to 32.51 μg/mL for cervical cancer (HeLa), 78.32 to 86.45 μg/mL for liver cancer (HepG2) and 23.41 to 28.26 μg/mL for breast cancer (MDA-MB-231) cells. However, these compounds also showed moderate toxicity towards non-cancerous Vero cells (IC<sub>50</sub> = 317.44-328.63 μg/mL). <b>Conclusion:</b> The findings of this study suggest that <i>Streptomyces prasinus</i> strain ZO16 produces compounds with antibacterial and anticancer properties. Further investigation of these compounds has the potential to contribute to the development of improved methods for controlling and treating bacterial infections and some cancers.
Collapse
|
4
|
Panichikkal J, Manu S, Krishnankutty RE. Bacillus licheniformis and Bacillus velezensis from Rhizosphere of Clerodendrum infortunatum L. Promote Plant Growth and Resistance to Sclerotium rolfsii in Vigna unguiculata (L.) Walp. Curr Microbiol 2024; 81:238. [PMID: 38907867 DOI: 10.1007/s00284-024-03749-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/25/2024] [Indexed: 06/24/2024]
Abstract
In the current study, thirty bacterial strains isolated from the rhizosphere of Clerodendrum infortunatum L. were evaluated for the properties related to the plant growth promotion and disease resistance. Here, all the selected strains were screened for its antagonistic effect towards the phytopathogen Sclerotium rolfsii and also for the production of bioactive compounds known to promote the plant growth. Among these isolates, CiRb1 and CiRb16 were observed to have a broad range of plant beneficial features and were identified as Bacillus licheniformis and Bacillus velezensis respectively. Both the isolates were also demonstrated to produce the volatile organic compounds (VOCs) responsible for the growth enhancement in Brassica nigra (L.) and growth inhibition of S. rolfsii. Talc based formulations made out of both B. licheniformis and B. velezensis were further demonstrated to augment the plant growth and protection against S. rolfsii in Vigna unguiculata (L.) Walp. By the GC-MS based analysis, undecane could also be detected in the methanolic extracts prepared from both B. licheniformis and B. velezensis. Here, the selected rhizobacterial isolates were found to promote the plant growth and disease resistance through both direct and VOC mediated mechanisms. The results of the study hence reveal both B. licheniformis and B. velezensis have the potential in field application to promote the growth and control of plant diseases.
Collapse
Affiliation(s)
- Jishma Panichikkal
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, 686 560, India
| | - Smruthy Manu
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, 686 560, India
| | | |
Collapse
|
5
|
Cheng C, Zhang Y, Zhang L, Guo J, Xu S, Gao P, Fan K, He Y, Gong Y, Zhong G, Su S, Liu Z. Succession of tissue microbial community during oat developmental. Heliyon 2024; 10:e30276. [PMID: 38711667 PMCID: PMC11070799 DOI: 10.1016/j.heliyon.2024.e30276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Investigating oat tissue microflora during its different developmental stages is necessary for understanding its growth and anti-disease mechanism. In this study, 16S rDNA and ITS (Internally Transcribed Spacer) high-throughput sequencing technology were used to explore the microflora diversity of oat tissue. Twenty-seven samples of leaves, stems, and roots from three developmental stages, namely the seedling stage (SS), jointing stage (JS), and maturity stage (MS), underwent sequencing analysis. The analysis showed that 6480 operational taxonomic units (OTUs) were identified in the examined samples, of which 1698 were fungal and 4782 were bacterial. Furthermore, 126 OTUs were shared by fungi, mainly Ascomycota, Basidiomycota, and Mucoromycota at the phylum level, and 39 OTUs were shared by bacteria, mainly Actinobacteriota and Proteobacteria at the phylum level. The microbial diversity of oat tissue in the three developmental stages showed differences, and the α-diversity of the bacteria and β-diversity of the bacteria and fungi in the roots were higher than those of the stems and leaves. Among the bacteria species, Thiiopseudomonas, Rikenellaceae RC9 gut group, and Brevibacterium were predominant in the leaves, MND1 was predominant in the roots, and Lactobacillus was predominant in the stems. Moreover, Brevibacterium maintained a stable state at all growth stages. In the fungal species, Phomatospora was dominant in the leaves, Kondoa was dominant in the roots, and Pyrenophora was dominant in the stems. All species with a high abundance were related to the growth process of oats and antagonistic bacteria. Furthermore, connection modules were denser in bacterial than in fungal populations. The samples were treated with superoxide dismutase and peroxidase. There were 42 strains associated with SOD (Superoxide dismutase), 60 strains associated with POD (Peroxidase), and 38 strains in total, which much higher than fungi. The network analysis showed that bacteria might have more dense connection modules than fungi, The number of bacterial connections to enzymes were much higher than that of fungi. Furthermore, these results provide a basis for further mechanistic research.
Collapse
Affiliation(s)
- Chao Cheng
- School of Life Science and Technology, Jining Normal University, Jining, China
- Institute of Biotechnology R&D and Application, Jining Normal University, Jining, China
- Ulanqab Key Laboratory of Biological Economic Function and Stress Resistance, Jining, China
| | - Yahong Zhang
- School of Life Science and Technology, Jining Normal University, Jining, China
- Institute of Biotechnology R&D and Application, Jining Normal University, Jining, China
- Ulanqab Key Laboratory of Biological Economic Function and Stress Resistance, Jining, China
| | | | - Jianjun Guo
- Jinyu Baoling Biological Drugs Co., LTD, Hohhot, China
| | - Songhe Xu
- School of Life Science and Technology, Jining Normal University, Jining, China
- Institute of Biotechnology R&D and Application, Jining Normal University, Jining, China
- Ulanqab Key Laboratory of Biological Economic Function and Stress Resistance, Jining, China
| | - Pengfei Gao
- Vocational and Technical College of Ulanqab, Jining, China
| | - Kongxi Fan
- Inner Mongolia Agricultural University, Hohhot, China
| | - Yiwei He
- School of Life Science and Technology, Jining Normal University, Jining, China
- Institute of Biotechnology R&D and Application, Jining Normal University, Jining, China
- Ulanqab Key Laboratory of Biological Economic Function and Stress Resistance, Jining, China
| | - Yanchun Gong
- Agriculture and Animal Husbandry Technology Promotion Center of Inner Mongolia, Hohhot, China
| | - Gang Zhong
- Agriculture and Animal Husbandry Technology Promotion Center of Inner Mongolia, Hohhot, China
| | - Shaofeng Su
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Zhiguo Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
6
|
Bódalo A, Borrego R, Garrido C, Bolivar-Anillo HJ, Cantoral JM, Vela-Delgado MD, González-Rodríguez VE, Carbú M. In Vitro Studies of Endophytic Bacteria Isolated from Ginger ( Zingiber officinale) as Potential Plant-Growth-Promoting and Biocontrol Agents against Botrytis cinerea and Colletotrichum acutatum. PLANTS (BASEL, SWITZERLAND) 2023; 12:4032. [PMID: 38068667 PMCID: PMC10708395 DOI: 10.3390/plants12234032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 03/30/2025]
Abstract
Agriculture currently confronts a multitude of challenges arising from the excessive utilization of chemical pesticides and the proliferation of phytopathogenic fungi strains that exhibit resistance to commonly employed active compounds in the field. Botrytis cinerea and Colletotrichum acutatum are phytopathogenic fungi that inflict substantial economic losses within agriculture and food due to their high impacts on crops both pre- and post-harvest. Furthermore, the emergence of fungal strains that are resistant to commercial fungicides has exacerbated this problem. To explore more environmentally sustainable alternatives for the control of these pathogens, an investigation into the endophytic bacteria associated with ginger (Zingiber officinale Rosc.) was conducted. The primary focus of this study involved evaluating their inhibitory efficacy against the fungi and assessing their potential for promoting plant growth. The endophytic bacteria genera Lelliottia, Lysinibacillus, Kocuria, Agrococcus, Acinetobacter, Agrobacterium, Zymobacter, and Mycolicibacterium were identified. All isolates showed remarkable in vitro antagonistic ability against B. cinerea (>94%) and C. acutatum (>74%). Notably, the Lelliottia amnigena J29 strain exhibited a notable proficiency in producing extracellular enzymes and indole compounds (IAA), solubilizing phosphate and potassium, and forming biofilm. Furthermore, the Lysinibacillus capsici J26, Agrococcus citreus J28, and Mycolicibacterium sp. J5 strains displayed the capacity for atmospheric nitrogen fixation and siderophore production. These findings underscore the agricultural and biotechnological potential of endophytic bacteria derived from ginger plants and suggest the feasibility of developing alternative approaches to manage these two phytopathogenic fungi.
Collapse
Affiliation(s)
- Alejandro Bódalo
- Microbiology Laboratory, Department of Biomedicine, Biotechnology and Public Health, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Spain; (A.B.); (R.B.); (C.G.); (J.M.C.)
| | - Rogelio Borrego
- Microbiology Laboratory, Department of Biomedicine, Biotechnology and Public Health, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Spain; (A.B.); (R.B.); (C.G.); (J.M.C.)
| | - Carlos Garrido
- Microbiology Laboratory, Department of Biomedicine, Biotechnology and Public Health, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Spain; (A.B.); (R.B.); (C.G.); (J.M.C.)
| | - Hernando José Bolivar-Anillo
- Programa de Microbiología, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla 080002, Colombia;
| | - Jesús M. Cantoral
- Microbiology Laboratory, Department of Biomedicine, Biotechnology and Public Health, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Spain; (A.B.); (R.B.); (C.G.); (J.M.C.)
| | | | - Victoria E. González-Rodríguez
- Microbiology Laboratory, Department of Biomedicine, Biotechnology and Public Health, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Spain; (A.B.); (R.B.); (C.G.); (J.M.C.)
| | - María Carbú
- Microbiology Laboratory, Department of Biomedicine, Biotechnology and Public Health, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Spain; (A.B.); (R.B.); (C.G.); (J.M.C.)
| |
Collapse
|
7
|
Plant Protection Mediated Through an Array of Metabolites Produced by Pantoea dispersa Isolated from Pitcher Plant. Appl Biochem Biotechnol 2023; 195:1607-1629. [PMID: 36350486 DOI: 10.1007/s12010-022-04179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
In the study, the bacterial isolate NhPB54 purified from the pitcher of Nepenthes plant was observed to have activity against Pythium aphanidermatum by dual culture and well diffusion. Hence, it was subjected to 16S rDNA sequencing and BLAST analysis, where the NhPB54 was found to have 100% identity to Pantoea dispersa. Upon screening for the plant beneficial properties, Pantoea dispersa NhPB54 was found to be positive for phosphate, potassium and zinc solubilization, nitrogen fixation, indole-3-acetic acid, ammonia, 1-aminocyclopropane-1-carboxylate deaminase, biofilm and biosurfactant production. Further to this, Solanum lycopersicum seedlings primed with P. dispersa NhPB54 were studied for the improved plant growth and disease protection. Here, the seedlings pre-treated with the NhPB54 culture supernatant were found to have enhanced plant growth and protection from damping off and fruit rot caused by P. aphanidermatum. From the LC-QTOF-MS/MS and GC MS analysis, P. dispersa NhPB54 was found to produce a blend of chemicals including 1-hydroxyphenazine, surfactin, and other bioactive metabolites with the likely basis of its observed antifungal and plant growth-promoting properties. From the results of the study, plants with unique adaptations can expect to harbor microbial candidates with beneficial applications.
Collapse
|
8
|
Li X, Li X, Hong J, Wang Y, Guo D, Liu J, Zhang Z, He W, Xue K, Wang Q. Comparative Analyses of Soil Bacterial Colonies of Two Types of Chinese Ginger after a Major Flood Disaster. Microbiol Spectr 2023; 11:e0435522. [PMID: 36744938 PMCID: PMC10100910 DOI: 10.1128/spectrum.04355-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023] Open
Abstract
Ginger, an important cash crop, has been cultivated for thousands of years in China. However, comparative studies on soil bacterial communities of Chinese ginger varieties, especially after flooding, are lacking. Here, we comprehensively compared the bacterial communities of two types of ginger soils from four different locations. Surprisingly, the 100-year flood (20 July 2021, in Henan, China) did not significantly affect the soil bacterial composition compared with previous reports. In contrast, flooding may have brought in nutrients and promoted the propagation of eutrophic bacteria, and Alphaproteobacteria were the most abundant in the Zhangliang region (~25%). However, due to the most severe flooding and inundation, the Zhangliang region, also probably contaminated with polycyclic aromatic hydrocarbons and heavy metals, showed the lowest microbial diversity. Moreover, the geographical location influenced the microbial communities more than did the soil type or ginger variety. These findings help us understand the species and composition of bacteria and infection of ginger after flooding and soaking. Further, the interaction mechanisms underlying these emerging phenomena need to be further investigated. IMPORTANCE There are few comparative studies on the soil bacterial communities of Chinese ginger varieties after flooding. After a 100-year flood (20 July 2021, in Henan, China), we comprehensively compared the bacterial communities of two types of ginger soils from four different locations. Surprisingly, this flood did not significantly affect the soil bacterial composition compared with previous reports. In contrast, it was found that the flooding may have brought in nutrients and promoted the propagation of eutrophic bacteria for the Zhangliang region. However, the flooding had also brought in polycyclic aromatic hydrocarbon and heavy metal contamination. Moreover, we also verified that geographical location influenced the microbial communities more than did the soil type or ginger variety. These findings help us understand the species and composition of bacteria and infection of ginger after flooding and soaking.
Collapse
Affiliation(s)
- Xinyang Li
- Henan University of Urban Construction, Ping Dingshan, China
| | - Xiaokang Li
- Wuhan Jinxin Gynecology and Obstetrics Hospital of Integrative Medicine, Wuhan, China
| | - Jun Hong
- Henan University of Urban Construction, Ping Dingshan, China
| | - Yan Wang
- Henan University of Urban Construction, Ping Dingshan, China
| | - Duanqiang Guo
- Henan University of Urban Construction, Ping Dingshan, China
| | - Jinlong Liu
- Henan University of Urban Construction, Ping Dingshan, China
| | - Zewen Zhang
- Henan University of Urban Construction, Ping Dingshan, China
| | - Wenwei He
- Henan University of Urban Construction, Ping Dingshan, China
| | - Kaisheng Xue
- Henan University of Urban Construction, Ping Dingshan, China
| | - Qingqing Wang
- Henan University of Urban Construction, Ping Dingshan, China
| |
Collapse
|
9
|
Huang K, Sun X, Zou Y, Li H, Xu P, Zhang W, Zhang Y, Li H, Sun H, Wang W, Pang M, Luo J. Comparison of the Endophytic Bacterial Microbiota of Asymptomatic and Symptomatic Ginger Rhizomes During the Activation of Adventitious Bud Development. PLANT DISEASE 2022; 106:2470-2479. [PMID: 35286131 DOI: 10.1094/pdis-09-21-2069-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial infections are the cause of rhizome rot in ginger (Zingiber officinale). Key members of the endophytic microbial community in ginger rhizomes have not been identified, and their impact on the decay of rhizomes during the activation of adventitious bud development has not been investigated. High-throughput, 16S rRNA amplicon sequencing and inoculation experiments were used to analyze the microbial diversity, community structure and composition, and pathogenicity of isolated bacteria. Our results indicated that the composition of the endophytic microbiota underwent a shift during the progression of rhizome rot disease. Enterobacteriaceae, Lachnospiraceae, and the bacterial genera Clostridium, Bacteroides, Acrobacter, Dysgonomonas, Anaerosinus, Pectobacterium, and Lactococcus were relatively abundant in the bacterial community of rhizomes exhibiting bacterial decay symptoms but were also present in asymptomatic rhizomes. The presence of Enterobacteriaceae and Pseudomonadaceae were positively correlated (ρ = 0.83) at the beginning of the sampling period in the symptomatic group, while a positive correlation (ρ = 0.89) was only observed after 20 days in the asymptomatic group. These data indicate that the co-occurrence of Enterobacteriaceae and Pseudomonadaceae may be associated with the development of ginger rot. Bacterial taxa isolated from ginger rhizomes, such as Enterobacter cloacae, E. hormaechei, and Pseudomonas putida, induced obvious rot symptoms when they were inoculated on ginger rhizomes. Notably, antibiotic-producing bacterial taxa in the Streptococcaceae and Flavobacteriaceae were also relatively abundant in rhizomes with rot and appeared to be linked to the onset of rhizome rot disease. Our results provide important information on the establishment and management of disease in ginger rhizomes.
Collapse
Affiliation(s)
- Ke Huang
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts & Sciences, Yongchuan, 402160, China
- Institute of Microbial Ecology, Chongqing University of Arts & Sciences, Yongchuan, 402160, China
| | - Xiangcheng Sun
- West China Biopharm Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yong Zou
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts & Sciences, Yongchuan, 402160, China
| | - Huihe Li
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts & Sciences, Yongchuan, 402160, China
| | - Panpan Xu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenlin Zhang
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts & Sciences, Yongchuan, 402160, China
| | - Yin Zhang
- Agricultural and Rural Committee of Chongqing Rongchang District, Rongchang, 402460, China
| | - Honglei Li
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts & Sciences, Yongchuan, 402160, China
| | - Hanchang Sun
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts & Sciences, Yongchuan, 402160, China
| | - Wei Wang
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts & Sciences, Yongchuan, 402160, China
- Institute of Microbial Ecology, Chongqing University of Arts & Sciences, Yongchuan, 402160, China
| | - Min Pang
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts & Sciences, Yongchuan, 402160, China
| | - Jie Luo
- Department of Pharmaceutical, Chongqing University of Arts and Sciences, Chongqing University of Arts & Sciences, Yongchuan, 402160, China
| |
Collapse
|
10
|
Zhu N, Meng T, Li S, Yu C, Tang D, Wang Y, Leng F, Ma J. Improved growth and metabolite accumulation in Codonopsis pilosula (Franch.) Nannf. by inoculation with the endophytic Geobacillu sp. RHBA19 and Pseudomonas fluorescens RHBA17. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153718. [PMID: 35598432 DOI: 10.1016/j.jplph.2022.153718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
In this study, we focused on the plant-growth-promoting properties of two strains isolated from Codonopsis pilosula, and the effect of inoculation with different strain treatments on physiological and metabolite accumulation of C. pilosula. The strains RHBA19 and RHBA17 were isolated and identified as Geobacillu sp. and Pseudomonas fluorescens, respectively. The two strains produced indole acetic acid (IAA), siderophore, biofilm, and various exoenzymes. Based on the pot experiments, inoculation of RHBA19 (G group) and the two mixed bacteria (M group) significantly improved the growth, root development, and photosynthesis of C. pilosula. Compared with the no-inoculation group (CK), the total polysaccharide content of root in the G and M groups was dramatically enhanced by 59.27% and 96.07%, and the lobetyolin (root) improved by 58.4% and 66.0%, respectively. After inoculation with bacteria agents, the activities of antioxidant enzymes (CAT, POD, SOD) of C. pilosula increased differentially. Inoculation with two types of bacterial agents significantly increased the activities of sucrose synthase (SS) and sucrose phosphate synthase (SPS) in root, and phenylalanine ammonia lyase (PAL) in leaf of C. pilosula. In addition, the content of signaling molecules (NO and H2O2) in three types of tissue increased significantly. The magnitude of these results was higher with mixtures than with individual strains. These results imply that the two types of bacterial agents induce physiological metabolism changes to accumulate polysaccharides and lobetyolin by regulating stress resistance enzymes and signal molecules, especially NO and H2O2.
Collapse
Affiliation(s)
- Ning Zhu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Tongtong Meng
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Shaowei Li
- Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chenqun Yu
- Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dan Tang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jianzhong Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| |
Collapse
|
11
|
Fang H, Zheng K, Zhang J, Gu X, Zhao Y, Zheng Y, Wang Q. Differences in gene expression and endophytic bacterial diversity in Atractylodes macrocephala Koidz. rhizomes from different growth years. Can J Microbiol 2022; 68:353-366. [PMID: 35080442 DOI: 10.1139/cjm-2021-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atractylodes macrocephala Koidz. (AMK) is widely used owing to its pharmacological activity in traditional Chinese medicine (TCM). Here, we aimed to characterize the differentially expressed genes (DEGs) of one- and three-year growth (OYG and TYG) rhizomes of AMK combined with the endophytic bacterial diversity analysis using high-throughput RNA-sequencing. 114,572 unigenes were annotated in six public databases. 3570 DEGs revealed a clear difference, of which 936 and 2634 genes were up- and down-regulated, respectively. The results of KEGG pathway analysis indicated that DEGs corresponding to the terpenoid synthesis gene were downregulated in TYG rhizomes. 414,424 sequences corresponding to the 16S rRNA gene were divided into 1267 operational taxonomic units (OTUs). Moreover, the diversity of endophytic bacteria changed with species in OYG (773) and TYG (1201) rhizomes at OTU level, and Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant phyla. Comparison of species differences among different growth years revealed that some species were significantly different, such as Actinomycetes, Variovorax, Cloacibacterium, etc. Interestingly, the decrease in the function-related metabolism of terpenoids and polyketides was found to be correlated the low expression of terpene synthesis genes in TYG rhizomes assessed using PICRUSt2. These data provide a scientific basis for elucidating the mechanism underlying metabolite accumulation and endophytic bacterial diversity in relation to the growth years in AMK.
Collapse
Affiliation(s)
- Huiyong Fang
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, College of Pharmacy, China;
| | - Kaiyan Zheng
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| | - Jianyun Zhang
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China, 050200.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China, 050200;
| | - Xian Gu
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| | - Yanyun Zhao
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| | - Yuguang Zheng
- Hebei Chemical and Pharmaceutical College, 118457, Shijiazhuang, Hebei, China.,Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China;
| | - Qian Wang
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| |
Collapse
|
12
|
Park JM, Hong JW, Lee W, Lee BH, You YH. Geographical Isolation and Root-Associated Fungi in the Marine Terrains: A Step Toward Establishing a Strategy for Acquiring Unique Microbial Resources. MYCOBIOLOGY 2021; 49:235-248. [PMID: 36999089 PMCID: PMC10049744 DOI: 10.1080/12298093.2021.1913826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/09/2021] [Accepted: 04/03/2021] [Indexed: 06/14/2023]
Abstract
This study aimed to understand whether the geo-ecological segregation of native plant species affects the root-associated fungal community. Rhizoplane (RP) and rhizosphere (RS) fungal microbiota of Sedum takesimense native to three geographically segregated coastal regions (volcanic ocean islands) were analyzed using culture-independent methods: 568,507 quality sequences, 1399 operational taxonomic units, five phyla, and 181 genera were obtained. Across all regions, significant differences in the phyla distribution and ratio were confirmed. The Chao's richness value was greater for RS than for RP, and this variance coincided with the number of genera. In contrast, the dominance of specific genera in the RS (Simpson value) was lower than the RP at all sites. The taxonomic identity of most fungal species (95%) closely interacting with the common host plant was different. Meanwhile, a considerable number of RP only residing fungal genera were thought to have close interdependency on their host halophyte. Among these, Metarhizium was the sole genus common to all sites. These suggest that the relationship between potential symbiotic fungi and their host halophyte species evolved with a regional dependency, in the same halophyte species, and of the same natural habitat (volcanic islands); further, the fungal community differenced in distinct geographical regions. Importantly, geographical segregation should be accounted for in national culture collections, based on taxonomical uniqueness.
Collapse
Affiliation(s)
- Jong Myong Park
- Water Quality Research Institute, Waterworks Headquarters Incheon Metropolitan City, Incheon, Republic of Korea
- Incheon Metropolitan City Institute of Public Health and Environment, Incheon, Republic of Korea
| | - Ji Won Hong
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu, Republic of Korea
| | - Woong Lee
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, Republic of Korea
| | - Byoung-Hee Lee
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Young-Hyun You
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| |
Collapse
|
13
|
Faria PSA, Marques VDO, Selari PJRG, Martins PF, Silva FG, Sales JDF. Multifunctional potential of endophytic bacteria from Anacardium othonianum Rizzini in promoting in vitro and ex vitro plant growth. Microbiol Res 2020; 242:126600. [PMID: 33011553 DOI: 10.1016/j.micres.2020.126600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/05/2020] [Accepted: 09/04/2020] [Indexed: 01/15/2023]
Abstract
Anacardium othonianum Rizzini, a cashew tree native to the Brazilian Cerrado, is economically important due to its applications in the food, chemical and pharmaceutical industries. However, A. othonianum yields a crop with low productivity due to a number of factors, such as nutritionally poor soils, drought and losses due to pests and diseases. Brazil is one of the nine largest cashew nut producers worldwide, and sustainable technologies are needed to increase the productivity of this crop. In this context, the use of endophytic microorganisms could promote plant growth and provide protection against phytopathogens. In this study, the isolation of the root endophytic community of A. othonianum led to the characterization of 22 distinct bacterial strains with multifunctional traits for plant growth promotion. The results of in vitro assays to assess auxin synthesis, phosphate solubilization, phosphatase and siderophore production and biocontrol against Fusarium oxysporum led to the selection of Acinetobacter lwoffii Bac109 and Pantoea agglomerans Bac131 as the most promising strains. The reinoculation of the Bac109 and Bac131 strains onto A. othonianum seeds showed that the treatment containing a mixture of these strains was the most effective in promoting increases in the biometric parameters of early plant growth. Thus, this study highlights the biotechnological potential of a consortium of A. lwoffii Bac109 and P. agglomerans Bac131 for future applications in sustainable cashew cultivation.
Collapse
Affiliation(s)
- Paula Sperotto Alberto Faria
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| | - Vinicius de Oliveira Marques
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| | - Priscila Jane Romano Gonçalves Selari
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Ceres, Goiás, Brazil.
| | - Paula Fabiane Martins
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| | - Fabiano Guimarães Silva
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| | - Juliana de Fátima Sales
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| |
Collapse
|
14
|
Park JM, Hong JW, Lee W, Lee BH, You YH. Fungal Clusters and Their Uniqueness in Geographically Segregated Wetlands: A Step Forward to Marsh Conservation for a Wealth of Future Fungal Resources. MYCOBIOLOGY 2020; 48:351-363. [PMID: 33177915 PMCID: PMC7580721 DOI: 10.1080/12298093.2020.1796413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Here, we investigated fungal microbiota in the understory root layer of representative well-conserved geographically segregated natural wetlands in the Korean Peninsula. We obtained 574,143 quality fungal sequences in total from soil samples in three wetlands, which were classified into 563 operational taxonomic units (OTU), 5 phyla, 84 genera. Soil texture, total nitrogen, organic carbon, pH, and electrical conductivity of soil were variable between geographical sites. We found significant differences in fungal phyla distribution and ratio, as well as genera variation and richness between the wetlands. Diversity was greater in the Jangdo islands wetland than in the other sites (Chao richness/Shannon/Simpson's for wetland of the Jangdo islands: 283/6.45/0.97 > wetland of the Mt. Gariwang primeval forest: 169/1.17/0.22 > wetland of the Hanbando geology: 145/4.85/0.91), and this variance corresponded to the confirmed number of fungal genera or OTUs (wetlands of Jangdo islands: 42/283 > of Mt. Gariwang primeval forest: 32/169 > of the Hanbando geology: 25/145). To assess the uniqueness of the understory root layer fungus taxa, we analyzed fungal genera distribution. We found that the percentage of fungal genera common to two or three wetland sites was relatively low at 32.3%, while fungal genera unique to each wetland site was 67.7% of the total number of identified fungal species. The Jangdo island wetland had higher fungal diversity than did the other sites and showed the highest level of uniqueness among fungal genera (Is. Jangdo wetland: 34.5% > wetland of Mt. Gariwang primeval forest: 28.6% > wetland of the Hanbando geology: 16.7%).
Collapse
Affiliation(s)
- Jong Myong Park
- Water Quality Research Institute, Waterworks Headquarters Incheon Metropolitan City, Incheon, Republic of Korea
| | - Ji Won Hong
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu, Republic of Korea
| | - Woong Lee
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, Republic of Korea
| | - Byoung-Hee Lee
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Young-Hyun You
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
- CONTACT Young-Hyun You
| |
Collapse
|
15
|
The Effect of Auxin and Auxin-Producing Bacteria on the Growth, Essential Oil Yield, and Composition in Medicinal and Aromatic Plants. Curr Microbiol 2020; 77:564-577. [PMID: 32080752 DOI: 10.1007/s00284-020-01917-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/08/2020] [Indexed: 12/28/2022]
Abstract
Aromatic plants had been used since ancient times for their preservative and medicinal properties, and to impart aroma and flavor to food. Also their secondary metabolites are economically important as drugs, flavor and fragrances, pharmaceuticals, agrochemicals, dye, and pigments, pesticides, cosmetics, food additives, other industrially biochemical, and also play a major role in the adaptation of plants to their environment. Indole acetıc acid-producing rhizobacteria inoculations increase in stomatal density and level of secondary metabolite and have a synergistic effect on monoterpene biosynthesis. Bacterial inoculation significantly affected and increased the chemical composition of essential oil, citronellol, and geraniol content in rose-scented geranium; essential oil composition and total phenolic content in marigold; density, number, and size of glandular trichomes in sweet wormwood and peppermint essential oil components such as geranyl acetate, limonene, and β-pinene in coriander; oil yield and content in calendula; yield of the herb in hyssop; oxygenated compounds, essential oil content and yield, anethol and changing the chemical composition in fennel; growth, number of glandular trichomes and essential oil yield, root branching and length, and total amount of essential oil, production of monoterpenes such as pulegone, menthol, menthone, menthofuran, and terpineol content, biosynthesis of secondary metabolites in peppermint; growth and essential oil yield in marjoram; glandular hair abundance, essential oil yield, and monoterpene biosynthesis in basil; phellandrene, limonene, borneol, and campor in rosemary; carvacrol, thymol, linalool, and borneol in oregano; and α-thujene, α-pinene, α-terpinene, p-simen, β-pinene, and γ-terpinene contents and essential oil yield in summer savory. Inoculation with IAA-producing bacteria medicinal roots increased the valerenic acid in valerian, essential oil and quality in vetiver, curcumin content in turmeric alkaloid and ginsenoside content in ginseng, and inulin content in Jerusalem artichoke.
Collapse
|
16
|
Borah A, Das R, Mazumdar R, Thakur D. Culturable endophytic bacteria of Camellia species endowed with plant growth promoting characteristics. J Appl Microbiol 2019; 127:825-844. [PMID: 31216598 DOI: 10.1111/jam.14356] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/29/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Abstract
AIM Tea (Camellia sinensis (L.) O. Kuntze) is an economically important caffeine-containing beverage crop with massive plantation in the Northeast corner of the agroclimatic belt of India. The main aim of the work was to isolate, identify and characterize the native plant growth promoting endophytes associated with tea for future microbe based bioformulation. METHODS AND RESULTS A total of 129 endophytic bacteria were isolated and characterized for plant growth promoting traits such as indole-3-acetic acid (IAA), phosphate solubilization, ammonia production, biocontrol traits like siderophore and extracellular enzyme production. BOX-PCR fingerprinting was used to differentiate the various bacterial isolates obtained from six different tea species. 16S rRNA sequencing and blast analysis showed that these isolates belonged to different genera, that is, Bacillus, Brevibacterium, Paenibacillus and Lysinibacillus. Lysinibacillus sp. S24 showed the highest phosphate solubilization and IAA acid production efficiency of 268·4 ± 14·3 and 13·5 ± 0·5 µg ml-1 , respectively. Brevibacterium sp. S91 showed the highest ammonia production of 6·2 ± 0·5 µmol ml-1 . Chitinase, cellulase, protease and pectinase activities were shown by 4·6, 34·1, 27·13 and 13·14% of the total isolates, respectively. Similarly, 41% of the total isolates were positive for 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. Further, the potent PGP isolates, S24 and S91 were able to enhance the vegetative parameters such as dry/fresh weight of root and shoot of tea plants in nursery conditions. CONCLUSION Our findings corroborate that tea endophytic bacteria possess the potential to demonstrate multiple PGP traits both, in vivo and in vitro and have the potential for further large-scale trials. SIGNIFICANCE AND IMPACT OF THE STUDY The exploration of tea endophytic bacterial community is suitable for the development of bioformulations for an integrated nutrient management and thus sustainable crop production and decreasing the hazardous effects of chemical fertilizers on the environment and human health.
Collapse
Affiliation(s)
- A Borah
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - R Das
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - R Mazumdar
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - D Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| |
Collapse
|
17
|
Sabu R, Aswani R, Prabhakaran P, Krishnakumar B, Radhakrishnan EK. Differential Modulation of Endophytic Microbiome of Ginger in the Presence of Beneficial Organisms, Pathogens and Both as Identified by DGGE Analysis. Curr Microbiol 2018; 75:1033-1037. [PMID: 29600411 DOI: 10.1007/s00284-018-1485-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/26/2018] [Indexed: 10/17/2022]
Abstract
Endophytic microorganisms play a significant role in plants response to beneficial organisms and pathogens. In the current study, endophytic microorganisms from Zingiber officinale were screened for in vitro inhibition against Pythium myriotylum. From this, Burkholderia vietnamiensis ZoB74 was selected as an organism with remarkable antifungal effect. Further, the study focussed on analysis of in vivo changes in endophytic bacterial community of Z. officinale in presence of selected organisms and the pathogen P. myriotylum by PCR-DGGE. 16S rDNA sequencing of bacterial community after DGGE has resulted in the identification of a group of uncultured bacteria as the predominant microbial community of rhizome under various conditions of treatment. High frequency dominance of these endophytic bacteria suggests their role in disease resistance to soft rot in ginger. This also revealed the variation of endophytic microbiome of Z. officinale under biotic stress. Hence the study provides molecular insight into uncultured microbiome and its stress-inducible variation in ginger rhizome.
Collapse
Affiliation(s)
- Rohini Sabu
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, 686560, India
| | - R Aswani
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, 686560, India
| | - Priya Prabhakaran
- Environmental Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Thiruvananthapuram, 695019, India
| | - B Krishnakumar
- Environmental Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Thiruvananthapuram, 695019, India
| | - E K Radhakrishnan
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, 686560, India.
| |
Collapse
|
18
|
Beneficial Changes in Capsicum frutescens Due to Priming by Plant Probiotic Burkholderia spp. Probiotics Antimicrob Proteins 2018; 11:519-525. [PMID: 29943378 DOI: 10.1007/s12602-018-9438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Plant probiotic mechanisms of endophytic microorganisms are highly remarkable as it play key role in growth and health of plants. Even though Burkholderia spp. have been studied for their role in plant growth and disease management, report on their field performance is very limited. Hence, the objective of the study was to investigate the plant probiotic performance of selected Burkholderia spp. on Capsicum frutescens. The results of the study showed bacterial influence on growth of C. frutescens with remarkable induction of early flowering and fruiting. Most interestingly, the plants treated with Burkholderia strains, ZoB74 and ZoB82 were found to have limited infestation with Bemisia tabaci. However, the control plants and those treated with Burkholderia ZoB86 were observed to have stunted growth with crumpled and curled leaves with no flowers or fruits. Hence, the study confirmed the strain specific potential of Burkholderia spp. in triggering the early flowering and fruiting in C. frutescens with associated protection from insect attack.
Collapse
|