1
|
Majid M, Ganai BA, Wani AH. Antifungal, Antioxidant Activity, and GC-MS Profiling of Diaporthe amygdali GWS39: A First Report Endophyte from Geranium wallichianum. Curr Microbiol 2024; 82:40. [PMID: 39680205 DOI: 10.1007/s00284-024-04023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024]
Abstract
Endophytic fungi serve as vital reservoirs of natural products. This study investigates the role of the endophytic fungus, Diaporthe amygdali GWS39, isolated from Geranium wallichianum D. Don Ex Sweet aerial stem. Showing a notable resemblance to Diaporthe amygdali, as confirmed through microscopic, molecular and phylogenetic techniques, this fungal endophyte displays promising antifungal and antioxidant capabilities. Remarkably, the present research marks the first report of D. amygdali as a stem inhabiting endophyte in an herbaceous perennial, Geranium wallichianum D. Don Ex Sweet on a global scale. This study pioneers the documentation of broad-spectrum antifungal activity exhibited by endophyte D. amygdali GWS39 against some economically important pathogens. The antioxidant activity of D. amygdali GWS39 crude extracts showed strong positive correlation, with R2 values of 0.99 for the methanolic extract and 0.93 for the ethyl acetate extract, indicating high antioxidant potential. In addition, the current investigation likely signifies the initial record of the bioactive chemical constituents of the endophyte D. amygdali GWS39 using GC-MS. In the GC-MS chromatogram of ethyl acetate extract, cyclohexaneamine, phenol, 2,6, dimethoxy-, benzenesulphonamide, N-(2,6, dimethylphenyl)-2-ethoxy-5-(tetrazol-1-yl), morpholine, 1-, beta, -d-Ribofuranosyl-3-[5-tetraazolyl]-1,2,4, triazole were identified. These compounds are previously reported for potent antibacterial, antifungal, antioxidant, antiviral, anticancer activities. The analysis of methanolic crude extract uncovers the presence of compounds such as arsenous acid tris(trimethylsilyl) ester, n-Hexadecanoic acid, methyl 10,11-octadecadienoate with noted antibiotic, antifungal, anti-inflammatory, antiviral, antihistaminic and anticancer activities.
Collapse
Affiliation(s)
- Misbah Majid
- Plant Pathology, Mycology and Microbiology Research Laboratory, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| | - Bashir Ahmad Ganai
- Center of Research for Development, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Abdul Hamid Wani
- Plant Pathology, Mycology and Microbiology Research Laboratory, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| |
Collapse
|
2
|
Ali S, Wright AH, Tanney JB, Renaud JB, Sumarah MW. Fungal Endophytes: Discovering What Lies within Some of Canada's Oldest and Most Resilient Grapevines. J Fungi (Basel) 2024; 10:105. [PMID: 38392777 PMCID: PMC10890244 DOI: 10.3390/jof10020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Plant diseases and pests reduce crop yields, accounting for global crop losses of 30% to 50%. In conventional agricultural production systems, these losses are typically controlled by applying chemical pesticides. However, public pressure is mounting to curtail agrochemical use. In this context, employing beneficial endophytic microorganisms is an increasingly attractive alternative to the use of conventional chemical pesticides in agriculture. A multitude of fungal endophytes are naturally present in plants, producing enzymes, small peptides, and secondary metabolites due to their bioactivity, which can protect hosts from pathogens, pests, and abiotic stresses. The use of beneficial endophytic microorganisms in agriculture is an increasingly attractive alternative to conventional pesticides. The aim of this study was to characterize fungal endophytes isolated from apparently healthy, feral wine grapes in eastern Canada that have grown without agrochemical inputs for decades. Host plants ranged from unknown seedlings to long-lost cultivars not widely propagated since the 1800s. HPLC-MS was used to identify unique endophyte-derived chemical compounds in the host plants, while dual-culture competition assays showed a range in endophytes' ability to suppress the mycelial growth of Botrytis, which is typically controlled in viticulture with pesticides. Twelve of the most promising fungal endophytes isolated were identified using multilocus sequencing and morphology, while DNA barcoding was employed to identify some of their host vines. These fungal endophyte isolates, which consisted of both known and putative novel strains, belonged to seven genera in six families and five orders of Ascomycota. Exploring the fungal endophytes in these specimens may yield clues to the vines' survival and lead to the discovery of novel biocontrol agents.
Collapse
Affiliation(s)
- Shawkat Ali
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main St., Kentville, NS B4N 1J5, Canada
| | - A Harrison Wright
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main St., Kentville, NS B4N 1J5, Canada
| | - Joey B Tanney
- Natural Resources Canada, Pacific Forestry Centre, 506 Burnside Road West, Victoria, BC V8Z 1M5, Canada
| | - Justin B Renaud
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford St., London, ON N5V 4T3, Canada
| | - Mark W Sumarah
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford St., London, ON N5V 4T3, Canada
| |
Collapse
|
3
|
do Espírito Santo BC, Oliveira JADS, Ribeiro MADS, Schoffen RP, Polli AD, Polonio JC, da Silva AA, de Abreu Filho BA, Heck MC, Meurer EC, Constantin PP, Pileggi M, Vicentini VEP, Golias HC, Pamphile JA. Antitumor and antibacterial activity of metabolites of endophytic Colletotrichum siamense isolated from coffee (Coffea arabica L. cv IAPAR-59). Braz J Microbiol 2023; 54:2651-2661. [PMID: 37642890 PMCID: PMC10689633 DOI: 10.1007/s42770-023-01104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Endophytic fungi produce a range of known metabolites and several others, not yet explored, which present important biological activities from the pharmaceutical and industrial perspective. Several studies have reported the diversity of endophytes in Coffea arabica plants, although few have been described in organic cultures. In the current paper, we describe the chemical profile of specialized metabolites in the ethyl acetate phase in a strain of the endophytic fungus Colletotrichum siamense associated with coffee (Coffea arabica L.) (Rubiaceae) and its potential against tumor cells and bacteria of medical and food importance. Cytotoxicity assays in tumor cells MCF-7 and HepG2/C3A were performed by MTT and microdilution in broth to evaluate the antibacterial action of metabolic extract. The antiproliferative assay showed promising results after 24 h of treatment, with 50% injunction concentrations for the two cell types. UHPLC-MS/MS analyses with an electrospray ionization source were used to analyze the extracts and identify compounds of species Colletotrichum siamense, which is still little explored as a source of active metabolites. Many of these compounds observed in the endophytic need to be chemically synthesized in industry, at high costs, while production by the fungus becomes a chemically and economically more viable alternative. Pyrocatechol, gentisyl alcohol, and alpha-linolenic acid, associated with different mechanisms of action against tumor cells, were detected among the main compounds. The extract of the endophytic fungus Colletotrichum siamense presented several compounds with pharmacological potential and antibacterial activity, corroborating its potential in biotechnological applications.
Collapse
Affiliation(s)
- Bruno César do Espírito Santo
- Department of Biotechnology, Genetics and Cell Biology, LBioMic, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | | | | | - Rodrigo Pawloski Schoffen
- Department of Biotechnology, Genetics and Cell Biology, LBioMic, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Andressa Domingos Polli
- Department of Biotechnology, Genetics and Cell Biology, LBioMic, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Julio Cesar Polonio
- Department of Biotechnology, Genetics and Cell Biology, LBioMic, Universidade Estadual de Maringá, Maringá, PR, Brazil.
| | - Angela Aparecida da Silva
- Department of Biotechnology, Genetics and Cell Biology, LBioMic, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Benício Alves de Abreu Filho
- Center for Health Sciences, Department of Basic Health Sciences, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Michele Cristina Heck
- Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | | | - Paola Pereira Constantin
- Department of Structural, Molecular and Genetic Biology, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Marcos Pileggi
- Department of Structural, Molecular and Genetic Biology, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | | | - Halison Correia Golias
- Department of Biotechnology, Genetics and Cell Biology, LBioMic, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | | |
Collapse
|
4
|
Ibrahim E, Nasser R, Hafeez R, Ogunyemi SO, Abdallah Y, Khattak AA, Shou L, Zhang Y, Ahmed T, Atef Hatamleh A, Abdullah Al-Dosary M, M Ali H, Luo J, Li B. Biocontrol Efficacy of Endophyte Pseudomonas poae to Alleviate Fusarium Seedling Blight by Refining the Morpho-Physiological Attributes of Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:2277. [PMID: 37375902 DOI: 10.3390/plants12122277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Some endophyte bacteria can improve plant growth and suppress plant diseases. However, little is known about the potential of endophytes bacteria to promote wheat growth and suppress the Fusarium seedling blight pathogen Fusarium graminearum. This study was conducted to isolate and identify endophytic bacteria and evaluate their efficacy for the plant growth promotion and disease suppression of Fusarium seedling blight (FSB) in wheat. The Pseudomonas poae strain CO showed strong antifungal activity in vitro and under greenhouse conditions against F. graminearum strain PH-1. The cell-free supernatants (CFSs) of P. poae strain CO were able to inhibit the mycelium growth, the number of colonies forming, spore germination, germ tube length, and the mycotoxin production of FSB with an inhibition rate of 87.00, 62.25, 51.33, 69.29, and 71.08%, respectively, with the highest concentration of CFSs. The results indicated that P. poae exhibited multifarious antifungal properties, such as the production of hydrolytic enzymes, siderophores, and lipopeptides. In addition, compared to untreated seeds, wheat plants treated with the strain showed significant growth rates, where root and shoot length increased by about 33% and the weight of fresh roots, fresh shoots, dry roots, and dry shoots by 50%. In addition, the strain produced high levels of indole-3-acetic acid, phosphate solubilization, and nitrogen fixation. Finally, the strain demonstrated strong antagonistic properties as well as a variety of plant growth-promoting properties. Thus, this result suggest that this strain could be used as an alternate to synthetic chemicals, which can serve as an effective method of protecting wheat from fungal infection.
Collapse
Affiliation(s)
- Ezzeldin Ibrahim
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Department of Vegetable Diseases Research, Plant Pathology Research Institute, Agriculture Research Centre, Giza 12916, Egypt
| | - Raghda Nasser
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zoology and Entomology Department, Faculty of Science, Minia University, Elminya 61519, Egypt
| | - Rahila Hafeez
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yasmine Abdallah
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Arif Ali Khattak
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Linfei Shou
- Station for the Plant Protection & Quarantine and Control of Agrochemicals Zhejiang Province, Hangzhou 310004, China
| | - Yang Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Munirah Abdullah Al-Dosary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Hilário S, Gonçalves MFM. Endophytic Diaporthe as Promising Leads for the Development of Biopesticides and Biofertilizers for a Sustainable Agriculture. Microorganisms 2022; 10:2453. [PMID: 36557707 PMCID: PMC9784053 DOI: 10.3390/microorganisms10122453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Plant pathogens are responsible for causing economic and production losses in several crops worldwide, thus reducing the quality and quantity of agricultural supplies. To reduce the usage of chemically synthesized pesticides, strategies and approaches using microorganisms are being used in plant disease management. Most of the studies concerning plant-growth promotion and biological agents to control plant diseases are mainly focused on bacteria. In addition, a great portion of registered and commercialized biopesticides are bacterial-based products. Despite fungal endophytes having been identified as promising candidates for their use in biological control, it is of the utmost importance to develop and improve the existing knowledge on this research field. The genus Diaporthe, encompasses plant pathogens, saprobes and endophytes that have been screened for secondary metabolite, mainly due to their production of polyketides and a variety of unique bioactive metabolites with agronomic importance. Some of these metabolites exhibit antifungal and antibacterial activity for controlling plant pathogens, and phytotoxic activity for the development of potential mycoherbicides. Moreover, species of Diaporthe are reported as promising agents in the development of biofertilizers. For this reason, in this review we summarize the potential of Diaporthe species to produce natural products with application in agriculture and describe the benefits of these fungi to promote their host plant's growth.
Collapse
Affiliation(s)
- Sandra Hilário
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Micael F. M. Gonçalves
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
6
|
Khan SS, Zargar SA, Gupta VK, Verma V, Rasool S. Isolation and Identification of Bacterial and Fungal Endophytes from Selected Plants of Western Himalayas in Prospect for Bioactivities of Economic Importance. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022050090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Seddouk L, Jamai L, Tazi K, Ettayebi M, Alaoui-Mhamdi M, Aleya L, Janati-Idrissi A. Isolation and characterization of a mesophilic cellulolytic endophyte Preussia africana from Juniperus oxycedrus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45589-45600. [PMID: 35146609 DOI: 10.1007/s11356-022-19151-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The medicinal plant Juniperus oxycedrus is less recognized for the diversity of its fungal endophytes and their potential to produce extracellular enzymes. The present study is the first report on the isolation and identification of a mesophilic endophytic strain JO-A, Preussia africana, from fresh stems of the J. oxycedrus endemic tree in the Ifrane region-Morocco, and the evaluation of its ability to produce cellulases. A one-time multi-parameter one-factor screening was optimized to select factors that enhance cellulase production in P. africana. The maximum production of both CMCase and FPase activities were 1.913 IU.mL-1 and 0.885 IU.mL-1, respectively, when the medium was supplemented with 2% w/v glucose. These remarkable titers were tenfold greater than those obtained under the initial non-optimized conditions. This mesophilic P. africana JO-A strain grows and actively produces cellulases at 37 °C demonstrating its great potential for various biotechnology applications. The cellulolytic extract showed the highest enzymatic activities at pH 5.0 and 50 °C with a half-life of 24 h at 50 °C.
Collapse
Affiliation(s)
- Loubna Seddouk
- Laboratory of Biotechnology, Conservation and Valorization of Natural Resources, Faculty of Sciences DM, Sidi Mohammed Ben Abdellah University, P.O. Box 1796 Atlas, Fez, Morocco
| | - Latifa Jamai
- Laboratory of Biotechnology, Conservation and Valorization of Natural Resources, Faculty of Sciences DM, Sidi Mohammed Ben Abdellah University, P.O. Box 1796 Atlas, Fez, Morocco
| | - Karima Tazi
- Laboratory of Biotechnology, Conservation and Valorization of Natural Resources, Faculty of Sciences DM, Sidi Mohammed Ben Abdellah University, P.O. Box 1796 Atlas, Fez, Morocco
| | - Mohamed Ettayebi
- The Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| | - Mohammed Alaoui-Mhamdi
- Laboratory of Biotechnology, Conservation and Valorization of Natural Resources, Faculty of Sciences DM, Sidi Mohammed Ben Abdellah University, P.O. Box 1796 Atlas, Fez, Morocco.
| | - Lotfi Aleya
- CNRS 6249-Université de Franche-Comté, 16, route de Gray F-25030, Besançon cedex, France
| | - Abellatif Janati-Idrissi
- Laboratory of Biotechnology, Conservation and Valorization of Natural Resources, Faculty of Sciences DM, Sidi Mohammed Ben Abdellah University, P.O. Box 1796 Atlas, Fez, Morocco
| |
Collapse
|
8
|
Baron NC, Rigobelo EC. Endophytic fungi: a tool for plant growth promotion and sustainable agriculture. Mycology 2022. [PMID: 35186412 DOI: 10.1080/215012031945699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Endophytic fungi are found in most, if not all, plant species on the planet. They colonise inner plant tissues without causing symptoms of disease, thus providing benefits to the host plant while also benefiting from this interaction. The global concern for the development of more sustainable agriculture has increased in recent years, and research has been performed to decipher ecology and explore the potential of endophytic interactions in plant growth. To date, many studies point to the positive aspects of endophytic colonisation, and in this review, such research is summarised based on the direct (acquisition of nutrients and phytohormone production) and indirect (induced resistance, production of antibiotics and secondary metabolites, production of siderophores and protection for abiotic and biotic stresses) benefits of endophytic colonisation. An in-depth discussion of the mechanisms is also presented.
Collapse
Affiliation(s)
- Noemi Carla Baron
- Agricultural and Livestock Microbiology Post Graduation Program, Department of Plant Production Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Way Prof. Paulo Donato Castellane, São Paulo, Brazil
| | - Everlon Cid Rigobelo
- Agricultural and Livestock Microbiology Post Graduation Program, Department of Plant Production Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Way Prof. Paulo Donato Castellane, São Paulo, Brazil
| |
Collapse
|
9
|
Abstract
Endophytic fungi are found in most, if not all, plant species on the planet. They colonise inner plant tissues without causing symptoms of disease, thus providing benefits to the host plant while also benefiting from this interaction. The global concern for the development of more sustainable agriculture has increased in recent years, and research has been performed to decipher ecology and explore the potential of endophytic interactions in plant growth. To date, many studies point to the positive aspects of endophytic colonisation, and in this review, such research is summarised based on the direct (acquisition of nutrients and phytohormone production) and indirect (induced resistance, production of antibiotics and secondary metabolites, production of siderophores and protection for abiotic and biotic stresses) benefits of endophytic colonisation. An in-depth discussion of the mechanisms is also presented.
Collapse
Affiliation(s)
- Noemi Carla Baron
- Agricultural and Livestock Microbiology Post Graduation Program, Department of Plant Production Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Way Prof. Paulo Donato Castellane, São Paulo, Brazil
| | - Everlon Cid Rigobelo
- Agricultural and Livestock Microbiology Post Graduation Program, Department of Plant Production Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Way Prof. Paulo Donato Castellane, São Paulo, Brazil
| |
Collapse
|
10
|
Diale MO, Kayitesi E, Serepa-Dlamini MH. Genome In Silico and In Vitro Analysis of the Probiotic Properties of a Bacterial Endophyte, Bacillus Paranthracis Strain MHSD3. Front Genet 2021; 12:672149. [PMID: 34858466 PMCID: PMC8631869 DOI: 10.3389/fgene.2021.672149] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/11/2021] [Indexed: 01/25/2023] Open
Abstract
Spore-forming Bacillus species are gaining interest in human health recently, due to their ability to withstand the harsh environment of the gastrointestinal tract. The present study explores probiotic features of Bacillus paranthracis strain MHSD3 through genomic analysis and in vitro probiotic assays. The draft genome of strain MHSD3 contained genes associated with tolerance to gastrointestinal stress and adhesion. Cluster genes responsible for the synthesis of antimicrobial non-ribosomal peptide synthetases, bacteriocins, and linear azole-containing peptides were identified. Additionally, strain MHSD3 was able to survive in an acidic environment, had the tolerance to bile salt, and exhibited the capability to tolerate gastric juices. Moreover, the isolate was found to possess strong cell surface traits such as high auto-aggregation and hydrophobicity indices of 79 and 54%, respectively. Gas chromatography-mass spectrometry analysis showed that the strain produced secondary metabolites such as amino acids, phenolic compounds, and organic acid, known to exert health-promoting properties, including the improvement of gastrointestinal tract health.
Collapse
Affiliation(s)
- Mamonokane Olga Diale
- Department of Biotechnology and Food Technology, University of Johannesburg, Johannesburg, South Africa
| | - Eugenie Kayitesi
- Department of Consumer and Food Science, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
11
|
da Silva Ribeiro A, Polonio JC, Dos Santos Oliveira JA, Ferreira AP, Alves LH, Mateus NJ, Mangolin CA, de Azevedo JL, Pamphile JA. Retrotransposons and multilocus sequence analysis reveals diversity and genetic variability in endophytic fungi-associated with Serjania laruotteana Cambess. Braz J Microbiol 2021; 52:2179-2192. [PMID: 34491570 DOI: 10.1007/s42770-021-00605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 08/30/2021] [Indexed: 11/28/2022] Open
Abstract
The composition of endophytic communities is dynamic and demonstrates host specificity; besides, they have great intra- and interspecific genetic variability. In this work, we isolated leaf endophytic fungi from Serjania laruotteana, identify them using multilocus analysis, and evaluate the genetic variability using IRAP (inter-retrotransposon amplified polymorphism) and REMAP (retrotransposon-microssatellite amplified polymorphism). A total of 261 fungi were isolated and 58 were identified. Multilocus phylogenetic analysis using the partial sequences from the ITS1-5.8S-ITS2 regions, elongation factor 1-alpha, β-tubulin, actin, glyceraldehyde-3-phosphate dehydrogenase, and calmodulin genes identify that most strains belonged to the Colletotrichum and Diaporthe genera, other isolated genera were Xylaria, Phyllosticta, Muyocopron, Fusarium, Nemania, Plectosphaerella, Corynespora, Bipolaris, and Curvularia. The IRAP and REMAP analyzes were performed with Colletotrichum and Diaporthe genera and showed 100% of polymorphism and high intra- and interspecific variability. This is the first report of the diversity of endophytic fungi from S. laruotteana. In addition, it demonstrated that the IRAP and REMAP can be used to distinguish morphologically similar lineages, revealing differences even strains of the same species.
Collapse
Affiliation(s)
- Amanda da Silva Ribeiro
- Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Avenida Colombo, 5790, Maringa, Paraná, 87020-900, Brazil
| | - Julio Cesar Polonio
- Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Avenida Colombo, 5790, Maringa, Paraná, 87020-900, Brazil.
| | - João Arthur Dos Santos Oliveira
- Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Avenida Colombo, 5790, Maringa, Paraná, 87020-900, Brazil
| | - Ana Paula Ferreira
- Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Avenida Colombo, 5790, Maringa, Paraná, 87020-900, Brazil
| | - Leonardo Hamamura Alves
- Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Avenida Colombo, 5790, Maringa, Paraná, 87020-900, Brazil
| | - Natieli Jenifer Mateus
- Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Avenida Colombo, 5790, Maringa, Paraná, 87020-900, Brazil
| | - Claudete Aparecida Mangolin
- Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Avenida Colombo, 5790, Maringa, Paraná, 87020-900, Brazil
| | - João Lúcio de Azevedo
- Department of Genetics, Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, São Paulo, 13418-900, Brazil
| | - João Alencar Pamphile
- Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Avenida Colombo, 5790, Maringa, Paraná, 87020-900, Brazil
| |
Collapse
|
12
|
Screening of Antagonistic Bacteria from Endophytes against Walnut Blight Pathogen Xanthomonas arboricola pv. juglandis. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Walnut blight caused by Xanthomonas arboricola pv. juglandis (Xaj) is the most important bacterial disease in walnut production worldwide. To seek biocontrol agents against Xaj, we screened 152 endophytic bacteria isolated from 87 plants. Through dual-culture method screening, we obtained four antagonistic bacteria, ATE17, BME17, CIE17, and OFE17 which were isolated from Amaranthus tricolor, Bambusa multiplex, Canna indica, and Osmanthus fragrans plants respectively. The inhibition ratios of ATE18, BME17, CIE18, and OFE17 against Xaj on plates were 1.5, 1.6, 1.3, and 1.6, respectively. These indicated they have good biocontrol potential for walnut bacterial blight. Subsequently, the four endophytic bacteria were identified by morphology, Gram staining, Microbial Identification System (fatty acid methyl ester analysis), as well as 16S rDNA and gyrB sequencing. It turns out that all four strains were identified as Bacillus sp. Furthermore, the two strains BME17 and OFE17 can suppress multiple plant fungal pathogens and bacterial pathogens on plates.
Collapse
|
13
|
Ismail MA, Amin MA, Eid AM, Hassan SED, Mahgoub HAM, Lashin I, Abdelwahab AT, Azab E, Gobouri AA, Elkelish A, Fouda A. Comparative Study between Exogenously Applied Plant Growth Hormones versus Metabolites of Microbial Endophytes as Plant Growth-Promoting for Phaseolus vulgaris L. Cells 2021; 10:cells10051059. [PMID: 33946942 PMCID: PMC8146795 DOI: 10.3390/cells10051059] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Microbial endophytes organize symbiotic relationships with the host plant, and their excretions contain diverse plant beneficial matter such as phytohormones and bioactive compounds. In the present investigation, six bacterial and four fungal strains were isolated from the common bean (Phaseolus vulgaris L.) root plant, identified using molecular techniques, and their growth-promoting properties were reviewed. All microbial isolates showed varying activities to produce indole-3-acetic acid (IAA) and different hydrolytic enzymes such as amylase, cellulase, protease, pectinase, and xylanase. Six bacterial endophytic isolates displayed phosphate-solubilizing capacity and ammonia production. We conducted a field experiment to evaluate the promotion activity of the metabolites of the most potent endophytic bacterial (Bacillus thuringiensis PB2 and Brevibacillus agri PB5) and fungal (Alternaria sorghi PF2 and, Penicillium commune PF3) strains in comparison to two exogenously applied hormone, IAA, and benzyl adenine (BA), on the growth and biochemical characteristics of the P. vulgaris L. Interestingly, our investigations showed that bacterial and fungal endophytic metabolites surpassed the exogenously applied hormones in increasing the plant biomass, photosynthetic pigments, carbohydrate and protein contents, antioxidant enzyme activity, endogenous hormones and yield traits. Our findings illustrate that the endophyte Brevibacillus agri (PB5) provides high potential as a stimulator for the growth and productivity of common bean plants.
Collapse
Affiliation(s)
- Mohamed A. Ismail
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.I.); (M.A.A.); (A.M.E.); or (H.A.M.M.); (I.L.); (A.T.A.)
| | - Mohamed A. Amin
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.I.); (M.A.A.); (A.M.E.); or (H.A.M.M.); (I.L.); (A.T.A.)
| | - Ahmed M. Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.I.); (M.A.A.); (A.M.E.); or (H.A.M.M.); (I.L.); (A.T.A.)
| | - Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.I.); (M.A.A.); (A.M.E.); or (H.A.M.M.); (I.L.); (A.T.A.)
- Correspondence: (S.E.-D.H.); (A.F.); Tel.: +20-102-3884804 (S.E.-D.H.); +20-111-3351244 (A.F.)
| | - Hany A. M. Mahgoub
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.I.); (M.A.A.); (A.M.E.); or (H.A.M.M.); (I.L.); (A.T.A.)
| | - Islam Lashin
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.I.); (M.A.A.); (A.M.E.); or (H.A.M.M.); (I.L.); (A.T.A.)
- Department of Biology, Faculty of Science and Arts, Al Mandaq, Albaha University, Al-Baha 1988, Saudi Arabia
| | - Abdelrhman T. Abdelwahab
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.I.); (M.A.A.); (A.M.E.); or (H.A.M.M.); (I.L.); (A.T.A.)
- Department of Botany Science, Faculty of Science, Northern Border University, Arar 73211, Saudi Arabia
| | - Ehab Azab
- Department of Nutrition and Food Science, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Adil A. Gobouri
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amr Elkelish
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41511, Egypt; or
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.I.); (M.A.A.); (A.M.E.); or (H.A.M.M.); (I.L.); (A.T.A.)
- Correspondence: (S.E.-D.H.); (A.F.); Tel.: +20-102-3884804 (S.E.-D.H.); +20-111-3351244 (A.F.)
| |
Collapse
|
14
|
Santos CMD, Ribeiro ADS, Garcia A, Polli AD, Polonio JC, Azevedo JL, Pamphile JA. Enzymatic and Antagonist Activity of Endophytic Fungi from Sapindus saponaria L. (Sapindaceae). ACTA BIOLÓGICA COLOMBIANA 2019. [DOI: 10.15446/abc.v24n2.74717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Endophyte microorganisms have great biotechnological interest, with features applicable to different areas and are potentially useful in agriculture. The current study determines the biotechnological potential of endophytic fungi, isolated from leaves of Sapindus saponaria, to control phytopathogenic fungi and evaluate their enzyme production. Molecular taxonomy was performed by sequencing of the ITS1-5.8S-ITS2 ribosomal DNA region, identifying the genera Phomopsis, Sordariomycetes, Diaporthe, and Colletotrichum. In vitro antagonism against phytopathogens showed better results against Fusarium solani and provided inhibition indices between 41.8 % and 67.5 %. The endophytic strain SS81 (Diaporthe citri) presented the highest antagonism index against the pathogen. Against Glomerella sp. and Moniliophthora perniciosa, inhibition rates ranged between 18.7 % and 57.4 % and between 38.3 % and 64.8 %, respectively. Enzyme assays revealed that strain SS65 (Diaporthe sp.) produced 1.16 UI µmol/min of amylase; strain SS77 (Diaporthe sp.) produced 2.74 UI µmol/min of pectinase, and strain SS08 (Diaporthe sp.) produced 1.51 UI µmol/min of cellulase. Thus, the current study shows evidence the importance of isolated endophytes with phytoprotective properties of plants with medicinal properties as alternatives for biological control and natural sources of products with biotechnological interest.
Collapse
|
15
|
Agrobacterium-Mediated Transformation of Diaporthe schini Endophytes Associated with Vitis labrusca L. and Its Antagonistic Activity Against Grapevine Phytopathogens. Indian J Microbiol 2019; 59:217-224. [PMID: 31031437 DOI: 10.1007/s12088-019-00787-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/19/2019] [Indexed: 10/27/2022] Open
Abstract
Fungus-caused diseases are among the greatest losses in grapevine culture. Biological control of pathogens by endophytes may be used to decrease fungicide application rates and environmental impacts. Previously, Diaporthe sp. B46-64 and C27-07 were highlighted as antagonists of grapevine phytopathogens. Herein, molecular multigene (ITS-TUB-TEF1) identification and phylogenetic analysis allowed the identification of these endophytes as belonging to Diaporthe schini species. Agrobacterium tumefaciens-mediated transformation was employed for obtaining 14 stable and traceable gfp- or DsRed-expressing transformants, with high transformation efficiency: 96% for the pFAT-GFP plasmid and 98% for pCAM-DsRed plasmid. Transformants were resistant to hygromycin B with gene hph confirmed by polymerase chain reaction and proved to be mitotically stable, expressing the fluorescent phenotype, with morphological differences in the colonies when compared with wild strains. In vitro antagonism tests revealed an increased antagonistic activity of some transformant strains. The current genetic transformation of D. schini mediated by A. tumefaciens proved to be an efficient technique within the randomized insertion of reporter genes for the monitoring of the strain in the environment.
Collapse
|
16
|
Ouyang J, Mao Z, Guo H, Xie Y, Cui Z, Sun J, Wu H, Wen X, Wang J, Shan T. Mollicellins O⁻R, Four New Depsidones Isolated from the Endophytic Fungus Chaetomium sp. Eef-10. Molecules 2018; 23:molecules23123218. [PMID: 30563178 PMCID: PMC6321418 DOI: 10.3390/molecules23123218] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/02/2018] [Accepted: 12/04/2018] [Indexed: 01/22/2023] Open
Abstract
Four new depsidones, mollicellins O⁻R (compounds 1⁻4), along with three known compounds 5⁻7, were isolated from cultures of the fungus Chaetomium sp. Eef-10, an endophyte isolated from Eucalyptus exserta. The structures of the new compounds were elucidated by analysis of the 1D and 2D NMR and HR-ESI-MS spectra. The known compounds were identified by comparison of their spectral data with published values. Compounds 1⁻7 were evaluated for antibacterial activities against Staphylococcus aureus (sensitive and resistant strains), Escherichia coli, Agrobacterium tumefaciens, Salmonella typhimurium, Pseudomonas lachrymans, Ralstonia solanacearum, Xanthomonas vesicatoria and cytotoxic activities against two human cancer cell lines (HepG2 and Hela). Mollicellin H (6) displayed best antibacterial activity, with IC50 values of 5.14 µg/mL against S. aureus ATCC29213 and 6.21 µg/mL against S. aureus N50, MRSA, respectively. Mollicellin O (1) and mollicellin I (7) also exhibited antibacterial activities against S. aureus ATCC29213 and S. aureus N50. Mollicellin G (5) was active against both two human cancer cell lines, with IC50 values of 19.64 and 13.97 µg/mL while compounds 6 and 7 only showed cytotoxic activity against one cell line. In addition, mollicellin O (1) showed antioxidant activity based on DPPH radical scavenging, with an IC50 value of 71.92 µg/mL.
Collapse
Affiliation(s)
- Jinkui Ouyang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| | - Ziling Mao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Hui Guo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yunying Xie
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peaking Union Medical College, Beijing 100050, China.
| | - Zehua Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China.
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China.
| | - Huixiong Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| | - Xiujun Wen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| | - Jun Wang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Tijiang Shan
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|