1
|
Yu C, Wang Z, Fu X, Liu C, Li A, Lin Q, Lan T, Zhuang X. Aminated lignin improved enzymatic hydrolysis of cellulosic substrate treated by p-toluenesulfonic acid. J Biotechnol 2024; 395:44-52. [PMID: 39260703 DOI: 10.1016/j.jbiotec.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Lignin can affect the enzymatic hydrolysis efficiency of lignocellulose. In this study, the lignin isolated from sugarcane bagasse (SCB) pretreated with p-toluenesulfonic acid (PL) was firstly aminated, and then the effects of PL and aminated PL (APL) on the bagasse enzymatic hydrolysis efficiency (EHE) were investigated. The results showed that the addition of PL and APL promoted the EHE, and EHE with APL (73.82 %) was higher than PL (51.39 %). To explore the reason, the data were further analyzed including cellulase adsorption capacity, enzyme activity, cellulase-lignin interaction, and molecular docking. It was found that APL adsorbed more cellulase (27.83 mg protein/g lignin) than PL (4.96 mg protein/g lignin), resulting from the greater interaction force and lower binding free energy between APL and cellulase. The addition of APL more remarkably enhanced the cellobiohydrolase and endoglucanase activities than PL due to more effectively inducing cellulase conformation optimization.
Collapse
Affiliation(s)
- Chunyang Yu
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Rd., Tianxin District, Changsha 410004, China; Faculty of Food Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Rd., Chenggong District, Kunming 650500, China
| | - Zekang Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Rd., Chenggong District, Kunming 650500, China
| | - Xiangjin Fu
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Rd., Tianxin District, Changsha 410004, China
| | - Chun Liu
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Rd., Tianxin District, Changsha 410004, China
| | - Anping Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Rd., Tianxin District, Changsha 410004, China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Rd., Tianxin District, Changsha 410004, China
| | - Tianqing Lan
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Rd., Tianxin District, Changsha 410004, China; Faculty of Food Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Rd., Chenggong District, Kunming 650500, China.
| | - Xinshu Zhuang
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Tianhe District, 2 Energy Rd., Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Tianhe District, 2 Energy Rd., Guangzhou 510640, China
| |
Collapse
|
2
|
Zhu X, Jia M, Zi D, Zhou P, Du Y, Wang N, Dai H, Wang G, Bai Y. Biochar regulates the functions of keystone taxa to reduce p-coumaric acid accumulation in soil. Front Microbiol 2024; 15:1458185. [PMID: 39328907 PMCID: PMC11425655 DOI: 10.3389/fmicb.2024.1458185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Applying biochar (BC) to reduce toxic substance accumulation in soil, either through direct adsorption or modulation of the microbial community, has received considerable attention. However, a knowledge gap exists regarding how BC regulates microbial community structure and functions to mitigate toxic substance accumulation. Methods We previously identified p-coumaric acid (p-CA) as a representative autotoxin in tobacco rhizosphere soil. On this basis, this study simulated a soil environment with p-CA accumulation to investigate the impacts of BC on p-CA, soil physicochemical properties, and microbial community structure and function. Results The results showed that p-CA could be directly adsorbed onto BC, which followed the pseudo-second-order kinetic model (R 2 = 0.996). A pot experiment revealed that BC significantly reduced soil p-CA, altered soil microbial composition, and enhanced bacterial community diversity. A weighted correlation network analysis showed a close association between taxon 1 in the microbial network and p-CA, suggesting a pivotal role for this taxon in reducing p-CA, with Devosia and Nocardioides identified as potential key contributors to this process. The prediction of possible keystone taxa functions showed that BC increased the relative abundances of aromatic compound degraders. Mantel tests indicated that soil organic matter exerted the greatest influence on keystone taxa functions and hub genera. Discussion These findings suggest that BC may either directly chemisorb p-CA or indirectly facilitate p-CA degradation by regulating the functioning of keystone taxa. The results of this study provide a novel perspective for further investigation of the mechanisms through which BC reduces the accumulation of toxic substances in soil.
Collapse
Affiliation(s)
- Xuanquan Zhu
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Meng Jia
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Dingchun Zi
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Peng Zhou
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Yu Du
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Na Wang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Huijuan Dai
- China Tobacco Hebei Industrial Co., Ltd., Shijiazhuang, China
| | - Ge Wang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Yuxiang Bai
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
3
|
Sun C, Wang Z, Yu X, Zhang H, Cao J, Fang J, Wang J, Zhang L. The Phylogeny and Metabolic Potentials of an Aromatics-Degrading Marivivens Bacterium Isolated from Intertidal Seawater in East China Sea. Microorganisms 2024; 12:1308. [PMID: 39065077 PMCID: PMC11278965 DOI: 10.3390/microorganisms12071308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Lignocellulosic materials, made up of cellulose, hemicellulose, and lignin, constitute some of the most prevalent types of biopolymers in marine ecosystems. The degree to which marine microorganisms participate in the breakdown of lignin and their impact on the cycling of carbon in the oceans is not well understood. Strain LCG002, a novel Marivivens species isolated from Lu Chao Harbor's intertidal seawater, is distinguished by its ability to metabolize lignin and various aromatic compounds, including benzoate, 3-hydroxybenzoate, 4-hydroxybenzoate and phenylacetate. It also demonstrates a broad range of carbon source utilization, including carbohydrates, amino acids and carboxylates. Furthermore, it can oxidize inorganic gases, such as hydrogen and carbon monoxide, providing alternative energy sources in diverse marine environments. Its diversity of nitrogen metabolism is supported by nitrate/nitrite, urea, ammonium, putrescine transporters, as well as assimilatory nitrate reductase. For sulfur assimilation, it employs various pathways to utilize organic and inorganic substrates, including the SOX system and DSMP utilization. Overall, LCG002's metabolic versatility and genetic profile contribute to its ecological significance in marine environments, particularly in the degradation of lignocellulosic material and aromatic monomers.
Collapse
Affiliation(s)
- Chengwen Sun
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.S.); (Z.W.); (X.Y.); (H.Z.); (J.C.); (J.F.)
| | - Zekai Wang
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.S.); (Z.W.); (X.Y.); (H.Z.); (J.C.); (J.F.)
| | - Xi Yu
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.S.); (Z.W.); (X.Y.); (H.Z.); (J.C.); (J.F.)
| | - Hongcai Zhang
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.S.); (Z.W.); (X.Y.); (H.Z.); (J.C.); (J.F.)
| | - Junwei Cao
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.S.); (Z.W.); (X.Y.); (H.Z.); (J.C.); (J.F.)
| | - Jiasong Fang
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.S.); (Z.W.); (X.Y.); (H.Z.); (J.C.); (J.F.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jiahua Wang
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.S.); (Z.W.); (X.Y.); (H.Z.); (J.C.); (J.F.)
| | - Li Zhang
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.S.); (Z.W.); (X.Y.); (H.Z.); (J.C.); (J.F.)
| |
Collapse
|
4
|
Wang Y, Du K, Wang Q, Yang X, Meng D. A multidimensional strategy for characterization, distinction, and quality control of two Clinopodium medicinal plants. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118019. [PMID: 38467319 DOI: 10.1016/j.jep.2024.118019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clinopodium chinense Kuntze (CC) and Clinopodium polycephalum (Vaniot) C. Y. Wu & S. J. Hsuan (CP) are both included in the Pharmacopoeia of the People's Republic of China (edition 2020) as the legitimate source of "Duan Xue Liu" (DXL), which is a crucial traditional Chinese medicine used as a clinical remedy for bleeding diseases. However, the differences in plant endogenous metabolites and bioactivities between CC and CP are still unclear. AIM OF THE STUDY This study aims to provide a scientific basis to investigate the differences between CC and CP ensuring the efficient and safe use of DXL. MATERIALS AND METHODS A multidimensional strategy including plant metabolomics, digital reference standard (DRS) analyzer, and biological activities assay was creatively constructed for the characterization, distinction, and quality control of CC and CP. RESULTS There were apparent differences in the metabolites between CC and CP. 7 compounds contributing to the differences were successfully identified. On that basis, linear calibration using two reference substances (LCTRS) methods was proved as a more accurate and specific quality analysis method for CC and CP. In addition, bioactivity assays showed that both CC and CP exhibited obvious hemostatic activity, while CC showed greater potential to resist inflammation and free radicals. CONCLUSION In summary, it was the first time to investigate the chemical constituents and bioactivities differences between CC and CP with the help of plant metabolomics, DRS study, and biological activity assays. These two plants were significantly separated in the integrated analysis, suggesting that we should pay attention to the distinction to prevent unexpected risks caused by medicinal materials.
Collapse
Affiliation(s)
- Yumeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Kaicheng Du
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Quanyou Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Xinyong Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Dali Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
5
|
Saberi Riseh R, Fathi F, Lagzian A, Vatankhah M, Kennedy JF. Modifying lignin: A promising strategy for plant disease control. Int J Biol Macromol 2024; 271:132696. [PMID: 38823737 DOI: 10.1016/j.ijbiomac.2024.132696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/02/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Lignin is a complex polymer found in the cell walls of plants, providing structural support and protection against pathogens. By modifying lignin composition and structure, scientists aim to optimize plant defense responses and increase resistance to pathogens. This can be achieved through various genetic engineering techniques which involve manipulating the genes responsible for lignin synthesis. By either up regulating or down regulating specific genes, researchers can alter the lignin content, composition, or distribution in plant tissues. Reducing lignin content in specific tissues like leaves can improve the effectiveness of defense mechanisms by allowing for better penetration of antimicrobial compounds. Overall, Lignin modification through techniques has shown promising results in enhancing various plants resistance against pathogens. Furthermore, lignin modification can have additional benefits beyond pathogen resistance. It can improve biomass processing for biofuel production by reducing lignin recalcitrance, making the extraction of sugars from cellulose more efficient. The complexity of lignin biosynthesis and its interactions with other plant components make it a challenging target for modification. Additionally, the potential environmental impact and regulatory considerations associated with genetically modified organisms (GMOs) require careful evaluation. Ongoing research aims to further optimize this approach and develop sustainable solutions for crop protection.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Fariba Fathi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Arezoo Lagzian
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
6
|
Kawa D, Thiombiano B, Shimels MZ, Taylor T, Walmsley A, Vahldick HE, Rybka D, Leite MFA, Musa Z, Bucksch A, Dini-Andreote F, Schilder M, Chen AJ, Daksa J, Etalo DW, Tessema T, Kuramae EE, Raaijmakers JM, Bouwmeester H, Brady SM. The soil microbiome modulates the sorghum root metabolome and cellular traits with a concomitant reduction of Striga infection. Cell Rep 2024; 43:113971. [PMID: 38537644 PMCID: PMC11063626 DOI: 10.1016/j.celrep.2024.113971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 01/17/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Sorghum bicolor is among the most important cereals globally and a staple crop for smallholder farmers in sub-Saharan Africa. Approximately 20% of sorghum yield is lost annually in Africa due to infestation with the root parasitic weed Striga hermonthica. Existing Striga management strategies are not singularly effective and integrated approaches are needed. Here, we demonstrate the functional potential of the soil microbiome to suppress Striga infection in sorghum. We associate this suppression with microbiome-mediated induction of root endodermal suberization and aerenchyma formation and with depletion of haustorium-inducing factors, compounds required for the initial stages of Striga infection. We further identify specific bacterial taxa that trigger the observed Striga-suppressive traits. Collectively, our study describes the importance of the soil microbiome in the early stages of root infection by Striga and pinpoints mechanisms of Striga suppression. These findings open avenues to broaden the effectiveness of integrated Striga management practices.
Collapse
Affiliation(s)
- Dorota Kawa
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA; Plant Stress Resilience, Department of Biology, Utrecht University, 3508 TC Utrecht, the Netherlands; Environmental and Computational Plant Development, Department of Biology, Utrecht University, 3508 TC Utrecht, the Netherlands.
| | - Benjamin Thiombiano
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Mahdere Z Shimels
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, 6708 PB Wageningen, the Netherlands
| | - Tamera Taylor
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA; Plant Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Aimee Walmsley
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Hannah E Vahldick
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Dominika Rybka
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, 6708 PB Wageningen, the Netherlands
| | - Marcio F A Leite
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, 6708 PB Wageningen, the Netherlands
| | - Zayan Musa
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Alexander Bucksch
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA; Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - Francisco Dini-Andreote
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, 6708 PB Wageningen, the Netherlands; Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mario Schilder
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Alexander J Chen
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Jiregna Daksa
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Desalegn W Etalo
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, 6708 PB Wageningen, the Netherlands; Wageningen University and Research, Laboratory of Phytopathology, Wageningen, the Netherlands
| | - Taye Tessema
- Ethiopian Institute of Agricultural Research, 3G53+6XC Holeta, Ethiopia
| | - Eiko E Kuramae
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, 6708 PB Wageningen, the Netherlands; Ecology and Biodiversity, Department of Biology, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Jos M Raaijmakers
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, 6708 PB Wageningen, the Netherlands
| | - Harro Bouwmeester
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Xu L, Wei HM, Sun YN, Wu Q, Gao XY, Shen B, Sun JQ. Halomonas rhizosphaerae sp. nov. and Halomonas kalidii sp. nov., two novel moderate halophilic phenolic acid-degrading species isolated from saline soil. Syst Appl Microbiol 2024; 47:126488. [PMID: 38278082 DOI: 10.1016/j.syapm.2024.126488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/01/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Four vanillic acid-degrading bacterial strains, named LR5S13T, LR5S20, and M4R5S39T and LN1S58, were isolated from Kalidium cuspidatum rhizosphere and bulk soils, respectively. Phylogenetic analysis based on 16S rRNA gene as well as core genome revealed that LR5S13T and LR5S20 clustered closely with each other and with Halomonas ventosae Al12T, and that the two strains shared the highest similarities (both 99.3 %) with H. ventosae Al12T, in contrast, M4R5S39T and LN1S58 clustered together and with Halomonas heilongjiangensis 9-2T, and the two strains shared the highest similarities (99.4 and 99.2 %, respectively) with H. heilongjiangensis 9-2T. The average nucleotides identities based on BLAST (ANIb) and digital DNA-DNA hybridization (dDDH) values of strains LR5S13T to LR5S20, and M4R5S39T to LN1S58, were both higher than the threshold values for delineation of a species. The ANIb and dDDH values of the four strains to their closely relatives were lower than the threshold values. All four strains take phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol as the major polar lipids, Summed Feature 8, Summed Feature 3, and C16:0 as the major fatty acids. Based on the phylogenetic and phenotypic results, the four strains should be classified as two novel Halomonas species. Therefore, Halomonas rhizosphaerae sp. nov. (type strain LR5S13T = KCTC 8016T = CGMCC 1.62049T) and Halomonas kalidii (type strain M4R5S39T = KCTC 8015T = CGMCC 1.62047T) are proposed. The geographical distribution analysis based on 16S rRNA gene revealed that the two novel species are widely distributed across the globe, specifically in highly saline habits, especially in Central and Eastern Asia.
Collapse
Affiliation(s)
- Lian Xu
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China; Jiangsu Key Laboratory for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Hua-Mei Wei
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Ye-Nan Sun
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Qi Wu
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Xiao-Yan Gao
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Biao Shen
- Jiangsu Key Laboratory for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ji-Quan Sun
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
8
|
Dong Q, Wu Y, Li B, Chen X, Peng L, Sahito ZA, Li H, Chen Y, Tao Q, Xu Q, Huang R, Luo Y, Tang X, Li Q, Wang C. Multiple insights into lignin-mediated cadmium detoxification in rice (Oryza sativa). JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131931. [PMID: 37379605 DOI: 10.1016/j.jhazmat.2023.131931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
Cadmium (Cd) is readily absorbed by rice and enters the food chain, posing a health risk to humans. A better understanding of the mechanisms of Cd-induced responses in rice will help in developing solutions to reduce Cd uptake in rice. Therefore, this research attempted to reveal the detoxification mechanisms of rice in response to Cd through physiological, transcriptomic and molecular approaches. The results showed that Cd stress restricted rice growth, led to Cd accumulation and H2O2 production, and resulted cell death. Transcriptomic sequencing revealed glutathione and phenylpropanoid were the major metabolic pathways under Cd stress. Physiological studies showed that antioxidant enzyme activities, glutathione and lignin contents were significantly increased under Cd stress. In response to Cd stress, q-PCR results showed that genes related to lignin and glutathione biosynthesis were upregulated, whereas metal transporter genes were downregulated. Further pot experiment with rice cultivars with increased and decreased lignin content confirmed the causal relationship between increased lignin and reduced Cd in rice. This study provides a comprehensive understanding of lignin-mediated detoxification mechanism in rice under Cd stress and explains the function of lignin in production of low-Cd rice to ensure human health and food safety.
Collapse
Affiliation(s)
- Qin Dong
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xi Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Peng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Zulfiqar Ali Sahito
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yulan Chen
- Sichuan tobacco company, Liangshanzhou company, Xichang 615000, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Youlin Luo
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
9
|
Bang J, Kim JH, Park SW, Kim J, Jung M, Jung S, Kim JC, Choi IG, Kwak HW. Effect of chemically modified lignin addition on the physicochemical properties of PCL nanofibers. Int J Biol Macromol 2023; 240:124330. [PMID: 37023881 DOI: 10.1016/j.ijbiomac.2023.124330] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
In this study, a chemically modified lignin additive was successfully prepared to improve the physicochemical properties of biodegradable polycaprolactone (PCL)-based nanofibers. The molecular weight and surface functional group characteristics of lignin were effectively controlled through a solvent fractionation process using ethanol. Then, PCL-g-lignin was successfully synthesized by using ethanol-fractionated lignin as a platform for the PCL grafting process. Finally, PCL/PCL-g-lignin composite nanofibers were simply prepared by adding PCL-g-lignin to the PCL doping solution and performing a solution blow spinning process. The addition of PCL-g-lignin could dramatically improve the physical and chemical properties of PCL nanofibers, and in particular, the tensile strength (0.28 MPa) increased by approximately 280 % compared to the conventional PCL. In addition, the lignin moiety present in PCL-g-lignin was able to impart UV blocking properties to PCL nanofibers, and as a result, it was possible to effectively suppress the photolysis phenomenon that occurred rapidly in existing PCL nanofibers. Therefore, PCL-g-lignin may be widely used not only as a reinforcing agent of existing biodegradable nanofibers but also as a functional additive for UV protection.
Collapse
Affiliation(s)
- Junsik Bang
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jong-Hwa Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Sang-Woo Park
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jungkyu Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Minjung Jung
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Seungoh Jung
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jong Chan Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - In-Gyu Choi
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hyo Won Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
10
|
Mandal DD, Singh G, Majumdar S, Chanda P. Challenges in developing strategies for the valorization of lignin-a major pollutant of the paper mill industry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11119-11140. [PMID: 36504305 PMCID: PMC9742045 DOI: 10.1007/s11356-022-24022-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/01/2022] [Indexed: 05/27/2023]
Abstract
Apart from protecting the environment from undesired waste impacts, wastewater treatment is a crucial platform for recovery. The exploitation of suitable technology to transform the wastes from pulp and paper industries (PPI) to value-added products is vital from an environmental and socio-economic point of view that will impact everyday life. As the volume and complexity of wastewater increase in a rapidly urbanizing world, the challenge of maintaining efficient wastewater treatment in a cost-effective and environmentally friendly manner must be met. In addition to producing treated water, the wastewater treatment plant (WWTP) has a large amount of paper mill sludge (PMS) daily. Sludge management and disposal are significant problems associated with wastewater treatment plants. Applying the biorefinery concept is necessary for PPI from an environmental point of view and because of the piles of valuables contained therein in the form of waste. This will provide a renewable source for producing valuables and bio-energy and aid in making the overall process more economical and environmentally sustainable. Therefore, it is compulsory to continue inquiry on different applications of wastes, with proper justification of the environmental and economic factors. This review discusses current trends and challenges in wastewater management and the bio-valorization of paper mills. Lignin has been highlighted as a critical component for generating valuables, and its recovery prospects from solid and liquid PPI waste have been suggested.
Collapse
Affiliation(s)
- Dalia Dasgupta Mandal
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209 West Bengal India
| | - Gaurav Singh
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209 West Bengal India
| | - Subhasree Majumdar
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209 West Bengal India
- Department of Zoology, Sonamukhi College, Sonamukhi, Bankura, 722207 West Bengal India
| | - Protik Chanda
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209 West Bengal India
| |
Collapse
|
11
|
Dong Q, Tao Q, Li B, Huang R, Xu Q, Li H, Shen J, Chen X, Li Q, Tang X, Kačík F, Kováč J, Ďurkovič J, Wu Y, Wang C. The mechanism of enhanced lignin regulating foliar Cd absorption and yield in rice (Oryza sativa L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114481. [PMID: 38321693 DOI: 10.1016/j.ecoenv.2022.114481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 02/08/2024]
Abstract
The impact of atmospheric deposition of cadmium (Cd) in cereal crops has become a global concern. Enhanced lignin content was expected to benefit the plant performance against Cd exposure. To date, however, the underlying mechanisms of lignin regulating foliar Cd absorption in rice (Oryza sativa L.) and its effect on grain yield remains unclear. In present study, the effect and mechanism of rice in response to leaf Cd exposure were investigated using 113Cd stable isotope and a lignin-increased rice mutant. The highest Cd uptake efficiency and uptake amount was observed in wild type (WT) plant grown in the maturity period, which were 3-fold higher than in mutant plant. Compared to WT, the mutant exhibited 14.75% and 25.43% higher contents in G- and S-unit of lignin monomers. Lignin biosynthesis and polymerization related genes (OsPAL/OsCOMT/Os4CL3/OsLAC5/OsLAC15) were significantly up-regulated in mutants. In addition, the enzyme activities involved in the above process were also significantly increased by 1.24-1.49-fold. The increased Cd retention in cell wall and decreased gene expression levels of OsNRAMP5, OsHMA3 and OsIRT1 in mutant indicated that lignin effectively inhibited Cd transportion in plant tissues. Moreover, the antioxidant capacity and photosynthesis efficiency in mutant plant were obviously improved, leading to higher Cd tolerance and increased grain yield. Our results revealed the molecular and physiological mechanisms of enhanced lignin regulating foliar Cd absorption and yield in rice, and provided the valuable rice genotype to ensure food safety.
Collapse
Affiliation(s)
- Qin Dong
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanxiu Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Shen
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xi Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - František Kačík
- Department of Chemistry and Chemical Technologies, Technical University in Zvolen, 96001 Zvolen, Slovakia
| | - Ján Kováč
- Department of Phytology, Technical University in Zvolen, 96001 Zvolen, Slovakia
| | - Jaroslav Ďurkovič
- Department of Phytology, Technical University in Zvolen, 96001 Zvolen, Slovakia
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
12
|
Liu X, Qi Y, Lian J, Song J, Zhang S, Zhang G, Fan J, Zhang N. Construction of actinomycetes complex flora in degrading corn straw and an evaluation of their degradative effects. Biotechnol Lett 2022; 44:1477-1493. [DOI: 10.1007/s10529-022-03313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/02/2022]
|
13
|
Tang H, Wang MJ, Gan XF, Li YQ. Funneling lignin-derived compounds into polyhydroxyalkanoate by Halomonas sp. Y3. BIORESOURCE TECHNOLOGY 2022; 362:127837. [PMID: 36031122 DOI: 10.1016/j.biortech.2022.127837] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Lignin-derived compounds (LDCs) biological funneling for polyhydroxyalkanoate (PHA) synthesis has been attractive but elusive. Herein, the Halomonas sp. Y3 is isolated and developed for PHA production from LDCs. Of the tested 13 LDCs, 4-hydroxybenzoic acid (4-HBA), protocatechuate (PA), catechol (CAT), and vanillic acid (VA) exhibit a hyper-degradation and production with 87.2 %, 85.8 %, 84.7 %, and 83.4 % TOC removal rate and 535.2 mg/L, 506.5 mg/L, 435.6 mg/L, and 440.8 mg/L PHA concentration, respectively. The Halomonas sp. Y3 genome is sequenced by identifying numerous genes responsible for LDCs funneling, stress response, and PHA biosynthesis. An open unsterilized fermentation with optimal conditions of pH 9.0 and NaCl 60 g/L is investigated, achieving a completely aseptic effect and significantly improved PHA production from LDCs. Overall, the results indicate that the Halomonas sp. Y3 is an ideal candidate for LDC bioconversion and exhibits a great potential to realize black liquor valorization.
Collapse
Affiliation(s)
- Hao Tang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, Leshan Normal University, Leshan 614000, China
| | - Ming-Jun Wang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, Leshan Normal University, Leshan 614000, China
| | - Xiao-Feng Gan
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, Leshan Normal University, Leshan 614000, China
| | - Yuan-Qiu Li
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, Leshan Normal University, Leshan 614000, China; College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
14
|
Di Lella S, La Porta N, Tognetti R, Lombardi F, Nardin T, Larcher R. White rot fungal impact on the evolution of simple phenols during decay of silver fir wood by UHPLC-HQOMS. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:170-183. [PMID: 34322910 PMCID: PMC9290616 DOI: 10.1002/pca.3077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Silver fir (Abies alba Mill.) is one of the most valuable conifer wood species in Europe. Among the main opportunistic pathogens that cause root and butt rot on silver fir are Armillaria ostoyae and Heterobasidion abietinum. Due to the different enzymatic pools of these wood-decay fungi, different strategies in metabolizing the phenols were available. OBJECTIVE This work explores the changes in phenolic compounds during silver fir wood degradation. METHODOLOGY Phenols were analyzed before and after fungus inoculation in silver fir macerated wood after 2, 4 and 6 months. All samples were analyzed using high-performance liquid chromatography coupled to a hybrid quadrupole-orbitrap mass spectrometer. RESULTS Thirteen compounds, including simple phenols, alkylphenyl alcohols, hydroxybenzoketones, hydroxycinnamaldehydes, hydroxybenzaldehydes, hydroxyphenylacetic acids, hydroxycinnamic acids, hydroxybenzoic acids and hydroxycoumarins, were detected. Pyrocatechol, coniferyl alcohol, acetovanillone, vanillin, benzoic acid, 4-hydroxybenzoic acid and vanillic acid contents decreased during the degradation process. Methyl vanillate, ferulic acid and p-coumaric were initially produced and then degraded. Scopoletin was accumulated. Pyrocatechol, acetovanillone and methyl vanillate were found for the first time in both degrading and non-degrading wood of silver fir. CONCLUSIONS Despite differences in the enzymatic pool, both fungi caused a significant decrease in the amounts of phenolic compounds with the accumulation of the only scopoletin. Principal component analysis revealed an initial differentiation between the degradation activity of the two fungal species during degradation, but similar phenolic contents at the end of wood degradation.
Collapse
Affiliation(s)
- Stefania Di Lella
- Department of Biosciences and TerritoryUniversity of MolisePescheItaly
- Research and Innovation CentreFondazione Edmund MachSan Michele all'AdigeItaly
- Department of Agricultural, Environmental and Food SciencesUniversity of MoliseCampobassoItaly
| | - Nicola La Porta
- Research and Innovation CentreFondazione Edmund MachSan Michele all'AdigeItaly
- The EFI Project Centre on Mountain Forests (MOUNTFOR)Edmund Mach FoundationTrentoItaly
| | - Roberto Tognetti
- Department of Agricultural, Environmental and Food SciencesUniversity of MoliseCampobassoItaly
- The EFI Project Centre on Mountain Forests (MOUNTFOR)Edmund Mach FoundationTrentoItaly
| | - Fabio Lombardi
- Department of AgrariaUniversity Mediterranea of Reggio CalabriaReggio CalabriaItaly
| | - Tiziana Nardin
- Technology Transfer CentreFondazione Edmund MachSan Michele all'AdigeItaly
| | - Roberto Larcher
- Technology Transfer CentreFondazione Edmund MachSan Michele all'AdigeItaly
| |
Collapse
|
15
|
Margesin R, Ludwikowski TM, Kutzner A, Wagner AO. Low-Temperature Biodegradation of Lignin-Derived Aromatic Model Monomers by the Cold-Adapted Yeast Rhodosporidiobolus colostri Isolated from Alpine Forest Soil. Microorganisms 2022; 10:microorganisms10030515. [PMID: 35336090 PMCID: PMC8955795 DOI: 10.3390/microorganisms10030515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 01/12/2023] Open
Abstract
The contribution of cold-adapted yeasts to the emerging field of lignin biovalorization has not yet been studied. The red-pigmented basidiomycetous yeast strain Rhodosporidiobolus colostri DBVPG 10655 was examined for its potential to degrade five selected lignin-derived aromatic monomers (syringic acid, p-coumaric acid, 4-hydroxybenzoic acid, ferulic acid, and vanillic acid). The strain utilized p-coumaric acid, 4-hydroxybenzoic acid, and ferulic acid not only as the sole carbon source; full biodegradation occurred also in mixtures of multiple monomers. Vanillic acid was not utilized as the sole carbon source, but was degraded in the presence of p-coumaric acid, 4-hydroxybenzoic acid, and ferulic acid. Syringic acid was utilized neither as the sole carbon source nor in mixtures of compounds. Biodegradation of lignin-derived aromatic monomers was detected over a broad temperature range (1–25 °C), which is of ecological significance and of biotechnological relevance.
Collapse
|
16
|
Lyu L, Chu Y, Zhang S, Zhang Y, Huang Q, Wang S, Zhao ZK. Engineering the Oleaginous Yeast Rhodosporidium toruloides for Improved Resistance Against Inhibitors in Biomass Hydrolysates. Front Bioeng Biotechnol 2021; 9:768934. [PMID: 34869282 PMCID: PMC8634367 DOI: 10.3389/fbioe.2021.768934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Conversion of lignocellulosic biomass into lipids and related chemicals has attracted much attention in the past two decades, and the oleaginous yeast Rhodosporidiumtoruloides has been widely used in this area. While R. toruloides species naturally have physiological advantages in terms of substrate utilization, lipid accumulation, and inhibitor resistance, reduced lipid production and cell growth are noticed when biomass hydrolysates are used as feedstocks. To improve the robustness of R. toruloides, here, we devised engineered strains by overexpressing genes responsible for phenolic compound degradation. Specifically, gene expression cassettes of the manganese peroxidase gene (MNP) and versatile peroxidase gene (VP) were constructed and integrated into the genome of R. toruloides NP11. A series of engineered strains were evaluated for lipid production in the presence of typical phenolic inhibitors. The results showed that R. toruloides strains with proper expression of MNP or VP indeed grew faster in the presence of vanillin and 5-hydroxymethylfurfural than the parental strain. When cultivated in concentrated mode biomass hydrolysates, the strain VP18 had improved performance as the cell mass and lipid content increased by 30% and 25%, respectively. This study provides more robust oleaginous yeast strains for microbial lipid production from lignocellulosic biomass, and similar efforts may be used to devise more advanced lipid producers.
Collapse
Affiliation(s)
- Liting Lyu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics (CAS), Dalian, China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics (CAS), Dalian, China
| | - Yadong Chu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics (CAS), Dalian, China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics (CAS), Dalian, China
| | - Sufang Zhang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics (CAS), Dalian, China
| | - Yue Zhang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics (CAS), Dalian, China
| | - Qitian Huang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics (CAS), Dalian, China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics (CAS), Dalian, China
| | - Shuang Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics (CAS), Dalian, China
| | - Zongbao K Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics (CAS), Dalian, China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics (CAS), Dalian, China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
17
|
Yixuan L, Qaria MA, Sivasamy S, Jianzhong S, Daochen Z. Curcumin production and bioavailability: A comprehensive review of curcumin extraction, synthesis, biotransformation and delivery systems. INDUSTRIAL CROPS AND PRODUCTS 2021; 172:114050. [DOI: 10.1016/j.indcrop.2021.114050] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
18
|
Margesin R, Volgger G, Wagner AO, Zhang D, Poyntner C. Biodegradation of lignin monomers and bioconversion of ferulic acid to vanillic acid by Paraburkholderia aromaticivorans AR20-38 isolated from Alpine forest soil. Appl Microbiol Biotechnol 2021; 105:2967-2977. [PMID: 33687503 PMCID: PMC8007519 DOI: 10.1007/s00253-021-11215-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/10/2021] [Accepted: 02/28/2021] [Indexed: 11/24/2022]
Abstract
Abstract Lignin bio-valorization is an emerging field of applied biotechnology and has not yet been studied at low temperatures. Paraburkholderia aromaticivorans AR20-38 was examined for its potential to degrade six selected lignin monomers (syringic acid, p-coumaric acid, 4-hydroxybenzoic acid, ferulic acid, vanillic acid, benzoic acid) from different upper funneling aromatic pathways. The strain degraded four of these compounds at 10°C, 20°C, and 30°C; syringic acid and vanillic acid were not utilized as sole carbon source. The degradation of 5 mM and 10 mM ferulic acid was accompanied by the stable accumulation of high amounts of the value-added product vanillic acid (85–89% molar yield; 760 and 1540 mg l−1, respectively) over the whole temperature range tested. The presence of essential genes required for reactions in the upper funneling pathways was confirmed in the genome. This is the first report on biodegradation of lignin monomers and the stable vanillic acid production at low and moderate temperatures by P. aromaticivorans. Key points • Paraburkholderia aromaticivorans AR20-38 successfully degrades four lignin monomers. • Successful degradation study at low (10°C) and moderate temperatures (20–30°C). • Biotechnological value: high yield of vanillic acid produced from ferulic acid.
Collapse
Affiliation(s)
- Rosa Margesin
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria.
| | - Georg Volgger
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Andreas O Wagner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Dechao Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Caroline Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| |
Collapse
|
19
|
Zhu D, Xu L, Sethupathy S, Si H, Ahmad F, Zhang R, Zhang W, Yang B, Sun J. Decoding lignin valorization pathways in the extremophilic Bacillus ligniniphilusL1 for vanillin biosynthesis. GREEN CHEMISTRY 2021; 23:9554-9570. [DOI: 10.1039/d1gc02692e] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
An efficient bioconversion procedure for the accumulation of vanillin from lignin by pathway engineering and milking fermentation has been developed.
Collapse
Affiliation(s)
- Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lingxia Xu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Haibing Si
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Fiaz Ahmad
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Rongxian Zhang
- School of chemistry and chemical engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Bin Yang
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, Washington 99354, USA
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
20
|
Kumar A, Kumar D, Kumari K, Mkhize Z, Seru LK, Bahadur I, Singh P. Metal-ligand complex formation between ferrous or ferric ion with syringic acid and their anti-oxidant and anti-microbial activities: DFT and molecular docking approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Phale PS, Malhotra H, Shah BA. Degradation strategies and associated regulatory mechanisms/features for aromatic compound metabolism in bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2020; 112:1-65. [PMID: 32762865 DOI: 10.1016/bs.aambs.2020.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As a result of anthropogenic activity, large number of recalcitrant aromatic compounds have been released into the environment. Consequently, microbial communities have adapted and evolved to utilize these compounds as sole carbon source, under both aerobic and anaerobic conditions. The constitutive expression of enzymes necessary for metabolism imposes a heavy energy load on the microbe which is overcome by arrangement of degradative genes as operons which are induced by specific inducers. The segmentation of pathways into upper, middle and/or lower operons has allowed microbes to funnel multiple compounds into common key aromatic intermediates which are further metabolized through central carbon pathway. Various proteins belonging to diverse families have evolved to regulate the transcription of individual operons participating in aromatic catabolism. These proteins, complemented with global regulatory mechanisms, carry out the regulation of aromatic compound metabolic pathways in a concerted manner. Additionally, characteristics like chemotaxis, preferential utilization, pathway compartmentalization and biosurfactant production confer an advantage to the microbe, thus making bioremediation of the aromatic pollutants more efficient and effective.
Collapse
Affiliation(s)
- Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India.
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
22
|
Morya R, Kumar M, Singh SS, Thakur IS. Genomic analysis of Burkholderia sp. ISTR5 for biofunneling of lignin-derived compounds. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:277. [PMID: 31788027 PMCID: PMC6880542 DOI: 10.1186/s13068-019-1606-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/29/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Lignin is the second most abundant natural polymer on earth. Industries using lignocellulosic biomass as feedstock generate a considerable amount of lignin as a byproduct with minimal usage. For a sustainable biorefinery, the lignin must be utilized in improved ways. Lignin is recalcitrant to degradation due to the complex and heterogeneous structure. The depolymerization of lignin and its conversion into specific product stream are the major challenges associated with lignin valorization. The blend of oligomeric, dimeric and monomeric lignin-derived compounds (LDCs) generated during depolymerization can be utilized by microbes for production of bioproducts. RESULTS In the present study, a novel bacterium Burkholderia sp. strain ISTR5 (R5), a proteobacteria belonging to class betaproteobacteria, order Burkholderiales and family Burkholderiaceae, was isolated and characterized for the degradation of LDCs. R5 strain was cultured on 12 LDCs in mineral salt medium (MSM) supplemented with individual compounds such as syringic acid, p-coumaric acid, ferulic acid, vanillin, vanillic acid, guaiacol, 4-hydroxybenzoic acid, gallic acid, benzoic acid, syringaldehyde, veratryl alcohol and catechol. R5 was able to grow and utilize all the selected LDCs. The degradation of selected LDCs was monitored by bacterial growth, total organic carbon (TOC) removal and UV-Vis absorption spectra in scan mode. TOC reduction shown in the sample contains syringic acid 80.7%, ferulic acid 84.1%, p-coumaric acid 85.9% and benzoic acid 83.2%. In UV-Vis absorption spectral scan, most of the lignin-associated peaks were found at or near 280 nm wavelength in the obtained absorption spectra. Enzyme assay for the ligninolytic enzymes was also performed, and it was observed that lignin peroxidase and laccase were predominantly expressed. Furthermore, the GC-MS analysis of LDCs was performed to identify the degradation intermediates from these compounds. The genomic analysis showed the robustness of this strain and identified various candidate genes responsible for the degradation of aromatic or lignin derivatives, detoxification mechanism, oxidative stress response and fatty acid synthesis. The presence of peroxidases (13%), laccases (4%), monooxygenases (23%), dioxygenase (44%), NADPH: quinone oxidoreductases (16%) and many other related enzymes supported the degradation of LDCs. CONCLUSION Numerous pathway intermediates were observed during experiment. Vanillin was found during growth on syringic acid, ferulic acid and p-coumaric acid. Some other intermediates like catechol, acetovanillone, syringaldehyde and 3,4-dihydroxybenzaldehyde from the recognized bacterial metabolic pathways existed during growth on the LDCs. The ortho- and meta cleavage pathway enzymes, such as the catechol-1,2-dioxygenase, protocatechuate 3,4-dioxygenase, catechol-2,3-dioxygenase and toluene-2,3-dioxygenase, were observed in the genome. In addition to the common aromatic degradation pathways, presence of the epoxyqueuosine reductase, 1,2-epoxyphenylacetyl-CoA isomerase in the genome advocates that this strain may follow the epoxy Coenzyme A thioester pathway for degradation.
Collapse
Affiliation(s)
- Raj Morya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Madan Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Shashi Shekhar Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
23
|
Keman D, Soyer F. Antibiotic-Resistant Staphylococcus aureus Does Not Develop Resistance to Vanillic Acid and 2-Hydroxycinnamic Acid after Continuous Exposure in Vitro. ACS OMEGA 2019; 4:15393-15400. [PMID: 31572838 PMCID: PMC6761616 DOI: 10.1021/acsomega.9b01336] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/28/2019] [Indexed: 05/08/2023]
Abstract
Development of resistance to antibiotics is one of the major reasons of difficulties in treatments of diseases caused by antibiotic-resistant bacteria, and this resistance makes the investigation of alternative antimicrobials a key priority. Phenolic acids are plant- and fungi-originating natural antimicrobial products, and there is no known bacterial resistance after exposure to them. The purpose of this study was to investigate the resistance ability of bacteria against phenolic acids. Therefore, the ability of methicillin-resistant Staphylococcus aureus and methicillin-susceptible S. aureus to gain resistance against two phenolic acids and an antibiotic upon exposure to subinhibitory concentrations was tested. Herein, we evaluated the minimum inhibitory concentrations (MICs) of vanillic acid (VA), 2-hydroxycinnamic acid (2-HCA), and vancomycin in the beginning of the experiment and the MICs were found to be 2.5 mg/mL VA, 1.6 mg/mL 2-HCA, and 0.01 mg/mL vancomycin for both bacteria. Following continuous treatments with increasing subinhibitory concentrations, MICs were evaluated once more. Exposure to subinhibitory concentrations of vancomycin induced the development of resistance immediately; however, resistance to both phenolic acids could not be induced. These data indicated the potential of phenolic acids to be used as effective antimicrobials in the inhibition of antibiotic-resistant pathogenic bacteria.
Collapse
|
24
|
Cabrera F, Serrano A, Torres Á, Rodriguez-Gutierrez G, Jeison D, Fermoso FG. The accumulation of volatile fatty acids and phenols through a pH-controlled fermentation of olive mill solid waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:1501-1507. [PMID: 30677916 DOI: 10.1016/j.scitotenv.2018.12.124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/23/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
This work aims to compare the use of olive mill solid waste as substrate in pH-controlled fermentation at acid (pH = 5), neutral (uncontrolled, pH ≈ 7) and alkaline (pH = 9) operating pH levels. The results obtained in this study indicate that operating pH strongly affected the anaerobic microorganisms and, hence, different target compounds could be obtained by adjusting the operating pH. Fermentation at neutral pH resulted in the conversion of 93.5% of the fed chemical oxygen demand to methane. However, fermentations at pH 5 and 9 resulted in the inhibition of the methanogenic activity. At pH 9, volatile fatty acids reached a maximum concentration of 3.69 g O2/L, where acetic acid represented up to 79.3% of the total volatile fatty acids. Unlike volatile fatty acid production, an optimal operation of fermentation at pH 5 could allow the recovery of phenols such as vanillin.
Collapse
Affiliation(s)
- Francisco Cabrera
- Centro de manejo de residuos y bioenergía, Universidad de la Frontera, Temuco, Chile
| | - Antonio Serrano
- Instituto de Grasa, Spanish National Research Council (CSIC), Seville, Spain; School of Civil Engineering, The University of Queensland, QLD, Australia.
| | - Álvaro Torres
- Centro de manejo de residuos y bioenergía, Universidad de la Frontera, Temuco, Chile; Departamento Ingeniería Química, Universidad de La Frontera, Temuco, Chile
| | | | - David Jeison
- Escuela de Ingeniería Bioquímica, Pontifica Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Fernando G Fermoso
- Instituto de Grasa, Spanish National Research Council (CSIC), Seville, Spain
| |
Collapse
|