1
|
Liu G, Li M, Hua J, Wei J, Zhou Y, Deng S, Long T, Chen N, Fang G, Zhang S. Organic acid-enhanced production of hydroxyl radicals during H 2O 2-based chemical oxidation for the remediation of contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137793. [PMID: 40043391 DOI: 10.1016/j.jhazmat.2025.137793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 04/16/2025]
Abstract
Hydrogen peroxide (H2O2)-based in situ chemical oxidation (ISCO) is widely used for remediating contaminated groundwater and soil. However, its effectiveness can be limited by a low efficiency of H2O2 utilization, leading to increased costs. In this study, we showed that ascorbic acid (AA), citric acid, and hydroxylamine hydrochloride (used for comparison) significantly increased •OH production (by 2.3-108.0-fold) and chlorobenzene degradation (by 6.4-30.5-fold) in H2O2/site soil systems. Further analysis revealed that AA significantly enhanced the formation and oxidation of active Fe(II) species (e.g., 0.5 M HCl-, 5 M HCl-, and HF-Fe(II)) via the mechanisms of acid dissolution, complexation, and reduction. As a result, these processes inhibited the transformation of low-crystallinity Fe phases into high-crystallinity forms, thereby preserving the activity of the Fe phases. The different capacities of these ligands for acidification and complexation or reduction are significantly influenced by their characteristics, such as the presence of specific functional groups, as well as their concentration. This variation, in turn, affects •OH production and the degradation of contaminants in treatment systems. This study provides valuable insights into how low-molecular-weight organic acids enhance the formation of •OH and contaminant degradation during H2O2-based ISCO. These findings also contribute to the development of efficient, environmentally friendly, and cost-effective remediation technologies for the treatment of contaminated groundwater and soil.
Collapse
Affiliation(s)
- Guangxia Liu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, China
| | - Mei Li
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, China
| | - Jing Hua
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, China
| | - Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, China
| | - Yan Zhou
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, China.
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, China
| | - Tao Long
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, China
| | - Ning Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 211135, China.
| | - Guodong Fang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 211135, China
| | - Shengtian Zhang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, China
| |
Collapse
|
2
|
Ewere EE, White S, Mauleon R, Benkendorff K. Soil microbial communities and degradation of pesticides in greenhouse effluent through a woodchip bioreactor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124561. [PMID: 39019308 DOI: 10.1016/j.envpol.2024.124561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Pesticides, including insecticides and fungicides, are major contaminants in the effluent from intensive agricultural systems, such as greenhouses. Because of their constant use and persistence, some pesticides can accumulate in soil and/or run off into adjacent waterways. Microbial communities in soil can degrade some pesticides, and bioreactors with enhanced microbial communities have the potential to facilitate decontamination before the effluent is released into the environment. In this study, we sampled the soil along a gradient from immediately below greenhouses, into, through and below a bioreactor. Multi-analyte pesticide screening was undertaken along with shotgun metagenomic sequencing, to assess microbial community taxonomic profiles and metabolic pathway responses for functional analysis. Two insecticides (imidacloprid and fipronil) and nine fungicides were identified in the soil samples, with a general decrease in most pesticides with increasing distance from the greenhouses. Diversity indexes of taxonomic profiles show changes in the microbial community along the gradient. In particular, microbial communities were significantly different in the bioreactor, with lower Shannon diversity compared to immediately below the greenhouses, in the channels leading into the bioreactor and further downstream. Metabolic pathway analysis revealed significant changes in a wide range of core housekeeping genes such as protein/amino acid synthesis and lipid/fatty acid biosynthesis among the sampling sites. The result demonstrates that the composition and potential functional pathways of the microbial community shifted towards an increased tendency for phytol and contaminant degradation in the bioreactor, facilitated by high organic matter content. This highlights the potential to use enhanced microbial communities within bioreactors to reduce contamination by some pesticides in sediment receiving run-off from greenhouses.
Collapse
Affiliation(s)
- Endurance E Ewere
- National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW, 2450, Australia
| | - Shane White
- National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW, 2450, Australia
| | - Ramil Mauleon
- Faculty of Science and Engineering, Southern Cross University, East Lismore, NSW, 2480, Australia
| | - Kirsten Benkendorff
- National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW, 2450, Australia.
| |
Collapse
|
3
|
Zhu M, Su Y, Wang Y, Bo Y, Sun Y, Liu Q, Zhang H, Zhao C, Gu Y. Biodegradation characteristics of p-Chloroaniline and the mechanism of co-metabolism with aniline by Pseudomonas sp. CA-1. BIORESOURCE TECHNOLOGY 2024; 406:131086. [PMID: 38977036 DOI: 10.1016/j.biortech.2024.131086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Co-metabolism is a promising method to optimize the biodegradation of p-Chloroaniline (PCA). In this study, Pseudomonas sp. CA-1 could reduce 76.57 % of PCA (pH = 8, 70 mg/L), and 20 mg/L aniline as the co-substrate improved the degradation efficiency by 12.50 %. Further, the response and co-metabolism mechanism of CA-1 to PCA were elucidated. The results revealed that PCA caused deformation and damage on the surface of CA-1, and the -OH belonging to polysaccharides and proteins offered adsorption sites for the contact between CA-1 and PCA. Subsequently, PCA entered the cell through transporters and was degraded by various oxidoreductases accompanied by deamination, hydroxylation, and ring-cleavage reactions. Thus, the key metabolite 4-chlorocatechol was identified and two PCA degradation pathways were proposed. Besides, aniline further enhanced the antioxidant capacity of CA-1, stimulated the expression of catechol 2,3-dioxygenase and promoted meta-cleavage efficiency of PCA. The findings provide new insights into the treatment of PCA-aniline co-pollution.
Collapse
Affiliation(s)
- Mingjun Zhu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yuhua Su
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yaru Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yonglin Bo
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yufeng Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China.
| | - Hang Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| | - Yingying Gu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| |
Collapse
|
4
|
Sun Y, Teng Y, Li R, Wang X, Zhao L. Microbiome resistance mediates stimulation of reduced graphene oxide to simultaneous abatement of 2,2',4,4',5-pentabromodiphenyl ether and 3,4-dichloroaniline in paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133121. [PMID: 38056279 DOI: 10.1016/j.jhazmat.2023.133121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Paddy soils near electrical and electronic waste recycling sites generally suffer from co-pollution of polybrominated diphenyl ethers and 3,4-dichloroaniline (3,4-DCA). This study tested the feasibility of reduced graphene oxide (rGO) to stimulate the simultaneous abatement of 2,2',4,4',5-pentabromodiphenyl ether (BDE99) and 3,4-DCA in percogenic paddy soil (PPS) and hydromorphic paddy soil (HPS). rGO improved the debromination extent of BDE99 and the transformation rate of 3,4-DCA in PPS, but did not affect their abatement in HPS. The inhibition of specific fermenters, acetogens, and methanogens after rGO addition contributed to BDE99 debromination by obligate organohalide-respiring bacteria (OHRB) in PPS, but relevant soil microbiomes (e.g., fermenters, acetogens, methanogens, and obligate OHRB) responded little to rGO in HPS. For 3,4-DCA, the enhanced activities of nitrogen-metabolic chloroaniline degraders by rGO increased its transformation rate in PPS, but was compensated by the decreased biotransformation from 3,4-DCA to 3,4-dichloroacetanilide after the addition of rGO to HPS. The discrepant stimulation of rGO between PPS and HPS was mediated by soil microbiome resistance. rGO has the application potential to stimulate the simultaneous abatement of polybrominated diphenyl ethers and chloroanilines in paddy soils with relatively low microbiome resistance.
Collapse
Affiliation(s)
- Yi Sun
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ran Li
- State Key Laboratory of Nutrient Use and Management, Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xia Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Suchana S, Edwards E, Mack EE, Lomheim L, Melo N, Gavazza S, Passeport E. Compatibility of polar organic chemical integrative sampler (POCIS) with compound specific isotope analysis (CSIA) of substituted chlorobenzenes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167628. [PMID: 37804973 DOI: 10.1016/j.scitotenv.2023.167628] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Compound specific isotope analysis (CSIA) is a powerful technique to demonstrate in situ degradation of traditional groundwater contaminants when concentrations are typically in the mg/L range. Currently, an efficient preconcentration method is lacking to expand CSIA to low aqueous concentration environmental samples. Specially for the H- and N-CSIA of heteroatom-bearing non-traditional compounds, the CSIA analytical detection limits are significantly higher than that of the C-CSIA. This work demonstrates the compatibility of polar organic chemical integrative sampler (POCIS) with C-, H-, and N-CSIA using four nitro- and amino-substituted chlorobenzenes that are common industrial feedstocks for numerous applications and are commonly detected in the environment at mg/L to μg/L range. Using lab experiments, we showed isotopic equilibrium in POCIS was achieved after 30 days with either a negligible (<0.5 ‰) or a constant shift for C (<1 ‰) and N (<2 ‰). Similar negligible (<5 ‰) or constant shift (<20 ‰) was evident for H isotope except for 3,4-dichloroaniline. The method quantification limits for the combined sorbent and membrane of one POCIS were comparable to that of the solid phase extraction (SPE) using 10 L water. Next, we demonstrated the field applicability of POCIS for C- and N-CSIA after a 60-day deployment in a pilot constructed wetland by showing <1 ‰ difference between the δ13C and δ15N obtained from POCIS and SPE. Finally, we evaluated whether the biofilm development on POCIS membrane could affect the isotope signature of the sampled compounds during field deployment. Although a diverse microbial community was identified on the membrane after a 60-day deployment, we did not observe significant isotope fractionation. This was likely due to either slower diffusion in the biofilm or microbial degradation of the sampled compounds. This work demonstrates the potential of using POCIS-CSIA as a simple, fast, and sensitive method for low-concentration contaminants, such as pesticides, pharmaceuticals, and flame-retardants.
Collapse
Affiliation(s)
- Shamsunnahar Suchana
- Department of Civil & Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Elizabeth Edwards
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - E Erin Mack
- Corteva Environmental Remediation, Corteva Agriscience, Wilmington, DE 19805, USA
| | - Line Lomheim
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Natanna Melo
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Recife, PE 50740-530, Brazil
| | - Sávia Gavazza
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Recife, PE 50740-530, Brazil
| | - Elodie Passeport
- Department of Civil & Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada; Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada.
| |
Collapse
|
6
|
Duc HD. Anaerobic degradation of thiobencarb by mixed culture of isolated bacteria. FEMS Microbiol Lett 2023; 370:6912244. [PMID: 36521844 DOI: 10.1093/femsle/fnac123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Thiobencarb is a highly effective thiocarbamate herbicide frequently used in rice fields globally. In this study, three bacterial strains (Dechloromonas sp. Th1, Thauera sp. Th2, and Azoarcus sp. Th3) isolated from immobilized biomass were analyzed for thiobencarb degradation under anaerobic conditions, with nitrate serving as an electron acceptor. The experimental results showed that thiobencarb was transformed by Dechloromonas sp. Th1 and Thauera sp. Th2 to produce high concentrations of metabolites in a mineral medium. Dechloromonas sp. Th1 dechlorinated the herbicide to benzyl mercaptan, which was then degraded by Thauera sp. Th2 and Azoarcus sp. Th3. Azoarcus sp. Th3 effectively degraded intermediates, i.e. 4-chlorobenzyl alcohol, 4-chlorobenzoic acid, and benzoic acid, produced from the degradation by Dechloromonas sp. Th1 and Thauera sp. Th2. The cross-feeding, nutrient sharing, and cooperation of all isolates in the degradation process decreased the concentrations of intermediate products. The determination of the degradation kinetics showed that the utilization in the exponential phase of the mixed bacteria was consistent with the Michaelis-Menten model, with a maximum degradation rate of 1.56 ± 0.16 µM day-1. This study showed the degradation mechanisms in bacteria and the synergistic process in the degradation of thiobencarb and its metabolites.
Collapse
Affiliation(s)
- Ha Danh Duc
- Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, 81100, Viet Nam
| |
Collapse
|
7
|
Composition of bacterial community and isolation of bacteria responsible for diuron degradation in sediment and soil under anaerobic condition. Arch Microbiol 2022; 204:418. [PMID: 35737117 DOI: 10.1007/s00203-022-03040-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
The herbicide diuron is extensively used in the agriculture sector and is detected widely in the environment. Although several studies on the degradation of diuron by aerobic microorganisms have been reported, the degradation of diuron by anaerobic microorganisms has not been received much attention. Also, no pure culture that can degrade diuron under anaerobic conditions has yet been reported. The evaluation of diuron degradation in the soil and sediment slurries showed that diuron led to a decrease in the biodiversity of the bacterial communities. Two mixed bacterial cultures, one from the soil and the other from sediment slurries, were isolated from the enrichment media under anaerobic conditions. After 30 days of incubation at 30 °C, the mixed bacterial culture from the soil degraded 84.5 ± 5.5%, and that from the sediment slurry degraded 94.5 ± 3.0% of diuron in liquid mineral medium at an initial concentration of 20 mg/L. 1-(3,4-dichlorophenylurea (DCPU), 3-(3-chlorophenyl)-1,1-dimethylurea (CPDMU), and 3,4-dichloroaniline (3,4-DCA) were the major diuron metabolites produced by both the indigenous microorganisms and the isolated bacteria.
Collapse
|
8
|
Duc HD, Hung NV, Oanh NT. Anaerobic Degradation of Endosulfans by a Mixed Culture of Pseudomonas sp. and Staphylococcus sp. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821030030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Ha DD, Nguyen TO. Application of Methylopila sp. DKT for Bensulfuron-methyl Degradation and Peanut Growth Promotion. Curr Microbiol 2020; 77:1466-1475. [PMID: 32219473 DOI: 10.1007/s00284-020-01953-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/13/2020] [Indexed: 11/24/2022]
Abstract
Bensulfuron-methyl is an herbicide widely used for weed control although its residues cause damage to other crops during crop rotations. In this study, the biodegrading activity of bensulfuron-methyl by a plant growth-promoting bacterial strain was carried out. Methylopila sp. DKT isolated from soil was determined for bensulfuron-methyl degradation and phosphate solubilization in the liquid media and soil. Moreover, the effects of the herbicide on peanut development and the role of Methylopila sp. DKT on the growth promotion of peanut were investigated. The results showed that the isolate effectively utilized the compound as a sole carbon source and solubilized low soluble inorganic phosphates. Methylopila sp. DKT also utilized 2-amino-4,6-dimethoxypyrimidine, a metabolite of bensulfuron-methyl degradation, as a sole carbon and energy source, and released ammonium and nitrate. The supplementation with Methylopila sp. DKT in soil increased the peanut biomass and the phosphorus content in the plant. In addition, the inoculation with Methylopila sp. DKT in soil and peanut cultivation increased the bensulfuron-methyl degradation by 57.7% for 1 month, which suggests that both plants and the bacterial isolate play a key role in herbicide degradation. These results indicate that the studied strain has a high potential for soil remediation and peanut growth promotion.
Collapse
Affiliation(s)
- Danh Duc Ha
- Dong Thap University, Pham Huu Lau Str., Cao Lanh City, 870000, Dong Thap Province, Viet Nam.
| | - Thị Oanh Nguyen
- Dong Thap University, Pham Huu Lau Str., Cao Lanh City, 870000, Dong Thap Province, Viet Nam
| |
Collapse
|
10
|
Oanh NT, Duc HD, Ngoc DTH, Thuy NTD, Hiep NH, Van Hung N. Biodegradation of propanil by Acinetobacter baumannii DT in a biofilm-batch reactor and effects of butachlor on the degradation process. FEMS Microbiol Lett 2020; 367:5698327. [PMID: 31913459 DOI: 10.1093/femsle/fnaa005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
The herbicide, propanil, has been extensively applied in weed control, which causes serious environmental pollution. Acinetobacter baumannii DT isolated from soil has been used to determine the degradation rates of propanil and 3,4-dichloroaniline by freely suspended and biofilm cells. The results showed that the bacterial isolate could utilize both compounds as sole carbon and nitrogen sources. Edwards's model could be fitted well to the degradation kinetics of propanil, with the maximum degradation of 0.027 ± 0.003 mM h-1. The investigation of the degradation pathway showed that A. baumannii DT transformed propanil to 3,4-dichloroaniline before being completely degraded via the ortho-cleavage pathway. In addition, A. baumannii DT showed high tolerance to butachlor, a herbicide usually mixed with propanil to enhance weed control. The presence of propanil and butachlor in the liquid media increased the cell surface hydrophobicity and biofilm formation. Moreover, the biofilm reactor showed increased degradation rates of propanil and butachlor and high tolerance of bacteria to these chemicals. The obtained results showed that A. baumannii DT has a high potential in the degradation of propanil.
Collapse
Affiliation(s)
- Nguyen Thi Oanh
- Center of chemical analysis, Dong Thap University, 783 Pham Huu Lau, Cao Lanh city, Dong Thap Province, 870000, Vietnam
| | - Ha Danh Duc
- Center of chemical analysis, Dong Thap University, 783 Pham Huu Lau, Cao Lanh city, Dong Thap Province, 870000, Vietnam
| | - Dau Thi Hong Ngoc
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Ha Noi City, 100000, Vietnam
| | - Nguyen Thi Dieu Thuy
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Ha Noi City, 100000, Vietnam
| | - Nguyen Huu Hiep
- Institute of Biotechnology, Vietnam Academy of Science and Technology Campus II, 3/2 Street, Xuan Khanh, Nink Kieu, Can Tho City, 90000, Vietnam
| | - Nguyen Van Hung
- Center of chemical analysis, Dong Thap University, 783 Pham Huu Lau, Cao Lanh city, Dong Thap Province, 870000, Vietnam
| |
Collapse
|
11
|
Duc HD. Anaerobic degradation of 2-chloro-4-nitroaniline by Geobacter sp. KT7 and Thauera aromatica KT9. FEMS Microbiol Lett 2019; 366:5548772. [DOI: 10.1093/femsle/fnz174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/06/2019] [Indexed: 11/12/2022] Open
Abstract
ABSTRACT
2-chloro-4-nitroaniline is a nitroaromatic compound widely used in industrial and agricultural sectors, causing serious environmental problems. This compound and some of its analogs were utilized by two Fe3+-reducing microbial strains Geobacter sp. KT7 and Thauera aromatica KT9 isolated from contaminated sediment as sole carbon and nitrogen sources under anaerobic conditions. The anaerobic degradation of 2-chloro-4-nitroaniline by the mixed species was increased approximately by 45% compared to that of individual strains. The two isolates’ crossfeeding, nutrient sharing and cooperation in the mixed culture accounted for the increase in degradation rates. The determination of degradation pathways showed that Geobacter sp. KT7 transformed the nitro group in 2-chloro-4-nitroaniline to the amino group following by the dechlorination process, while T. aromatica KT9 dechlorinated the compound before removing the nitro group and further transformed it to aniline. This study provided an intricate network of 2-chloro-4-nitroaniline degradation in the bacterial mixture and revealed two parallel routes for the substrate catabolism.
Collapse
Affiliation(s)
- Ha Danh Duc
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|