1
|
Huang Y, Abdugheni R, Ma J, Wang R, Gao L, Liu Y, Li W, Cai M, Li L. Halomonas flagellata sp. nov., a halophilic bacterium isolated from saline soil in Xinjiang. Arch Microbiol 2023; 205:340. [PMID: 37750964 DOI: 10.1007/s00203-023-03670-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023]
Abstract
A Gram-stain-negative, strictly aerobic, motile, slightly curved rod-shaped bacterium with multiple flagella, designated strain EGI 63088T, was isolated from a bulk soil of Kalidium foliatum, collected from Wujiaqu in Xinjiang Uighur Autonomous Region, PR China. The optimal growth temperature, salinity, and pH for strain EGI 63088T growth were 30 °C, 3% (w/v) NaCl and 8, respectively. Phylogenetic analysis using 16S rRNA gene sequences indicated that strain EGI 63088T showed the highest sequence similarities to Halomonas heilongjiangensis 9-2T (97.94%), H. lysinitropha 3(2)T (97.51%), and H. daqiaonensis CGMCC 1.9150T (97.08%). The average nucleotide identity and digital DNA-DNA hybridization values between the strain EGI 63088T and H. heilongjiangensis 9-2T were 89.03 and 41.10%, respectively. The DNA G + C content of the genome for strain EGI 63088T was 66.3 mol%. The most prevalent antibiotic resistance and virulence-related genes in Halomonas genomes were Streptomyces cinnamoneu EF-Tu mutant, pilT, and cheY, respectively. The predominant fatty acids of strain EGI 63088T were summed feature 8 (C18: 1 ω6c and/or C18: 1 ω7c), summed feature 3 (C16: 1 ω6c and/or C16: 1 ω7c), and C16: 0; its major respiratory quinone was ubiquinone-9 (Q-9), and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. According to the above results, strain EGI 63088T is considered a novel species of the genus Halomonas, for which the name Halomonas flagellata sp. nov. is proposed. The type strain is EGI 63088T (= KCTC 92047T = CGMCC 1.19133T).
Collapse
Affiliation(s)
- Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Jinbiao Ma
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Rui Wang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, People's Republic of China
| | - Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yonghong Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Wenjun Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Man Cai
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
2
|
Liu W, Cong B, Lin J, Zhao L, Liu S. Complete genome sequencing and comparison of two nitrogen-metabolizing bacteria isolated from Antarctic deep-sea sediment. BMC Genomics 2022; 23:713. [PMID: 36261793 PMCID: PMC9580203 DOI: 10.1186/s12864-022-08942-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacteria are an essential component of the earth`s biota and affect circulation of matters through their metabolic activity. They also play an important role in the carbon and nitrogen cycle in the deep-sea environment. In this paper, two strains from deep-sea sediments were investigated in order to understand nitrogen cycling involved in the deep-sea environment. RESULTS In this paper, the basic genomic information of two strains was obtained by whole genome sequencing. The Cobetia amphilecti N-80 and Halomonas profundus 13 genome sizes are 4,160,095 bp with a GC content of 62.5% and 5,251,450 bp with a GC content of 54.84%. Through a comparison of functional analyses, we predicted the possible C and N metabolic pathways of the two strains and determined that Halomonas profundus 13 could use more carbon sources than Cobetia amphilecti N-80. The main genes associated with N metabolism in Halomonas profundus 13 are narG, narY, narI, nirS, norB, norC, nosZ, and nirD. On the contrast, nirD, using NH4+ for energy, plays a main role in Cobetia amphilecti N-80. Both of them have the same genes for fixing inorganic carbon: icd, ppc, fdhA, accC, accB, accD, and accA. CONCLUSION In this study, the whole genomes of two strains were sequenced to clarify the basic characteristics of their genomes, laying the foundation for further studying nitrogen-metabolizing bacteria. Halomonas profundus 13 can utilize more carbon sources than Cobetia amphilecti N-80, as indicated by API as well as COG and KEGG prediction results. Finally, through the analysis of the nitrification and denitrification abilities as well as the inorganic carbon fixation ability of the two strains, the related genes were identified, and the possible metabolic pathways were predicted. Together, these results provide molecular markers and theoretical support for the mechanisms of inorganic carbon fixation by deep-sea microorganisms.
Collapse
Affiliation(s)
- Wenqi Liu
- School of Advanced Manufacturing, Fuzhou University, Fuzhou, 350108, China
| | - Bailin Cong
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
| | - Jing Lin
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Linlin Zhao
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Shenghao Liu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| |
Collapse
|
3
|
Microbial Diversity and Adaptation under Salt-Affected Soils: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14159280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The salinization of soil is responsible for the reduction in the growth and development of plants. As the global population increases day by day, there is a decrease in the cultivation of farmland due to the salinization of soil, which threatens food security. Salt-affected soils occur all over the world, especially in arid and semi-arid regions. The total area of global salt-affected soil is 1 billion ha, and in India, an area of nearly 6.74 million ha−1 is salt-stressed, out of which 2.95 million ha−1 are saline soil (including coastal) and 3.78 million ha−1 are alkali soil. The rectification and management of salt-stressed soils require specific approaches for sustainable crop production. Remediating salt-affected soil by chemical, physical and biological methods with available resources is recommended for agricultural purposes. Bioremediation is an eco-friendly approach compared to chemical and physical methods. The role of microorganisms has been documented by many workers for the bioremediation of such problematic soils. Halophilic Bacteria, Arbuscular mycorrhizal fungi, Cyanobacteria, plant growth-promoting rhizobacteria and microbial inoculation have been found to be effective for plant growth promotion under salt-stress conditions. The microbial mediated approaches can be adopted for the mitigation of salt-affected soil and help increase crop productivity. A microbial product consisting of beneficial halophiles maintains and enhances the soil health and the yield of the crop in salt-affected soil. This review will focus on the remediation of salt-affected soil by using microorganisms and their mechanisms in the soil and interaction with the plants.
Collapse
|
4
|
Genomic analysis of a novel species Halomonas shambharensis isolated from hypersaline lake in Northwest India. Mol Biol Rep 2021; 48:1045-1053. [PMID: 33479827 DOI: 10.1007/s11033-020-06131-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
Genome analysis of Halomonas shambharensis, a novel species, was performed to understand the osmoprotectant strategies used by the strain to overcome the salinity stress and to explore the prospective industrial uses. It will also help to better understand the ecological roles of Halomonas species in hypersaline habitats. Ultrastructure of the cell was determined by using transmission electron microscopy. Standard microbiological methods were used to find out growth parameters and heterotrophic mode of nutrition. For Genome analysis, complete bacterial genome sequencing was performed using the Oxford Nanopore MinION DNA Sequencer. Assembly, annotation and finishing of the obtained sequence were done by using a Prokaryotic Genome Annotation Pipeline (PGAP) (SPAdes v. 3.10.1). Predicted Coading sequences (CDSs) obtained through the PGAP were used for functional annotation using Clusters of Orthologous Groups and Kyoto Encyclopedia of Genes and Genomes (KEGG) platforms. The H. shambharensis was found to be a Gram-stain-negative, rod-shaped bacterium, motile with a peritrichous flagella. The H. shambharensis bacterium can grow in a wide range of temperature (from 25 to 65 °C), pH (pH 4 to pH 12.0) and salt concentration (5.0% NaCl to 30.0% NaCl). After annotation and assembly, the total genome size obtained was 1,533,947 bp, which revealed 146 subsystems, 3847 coding sequences, and 19RNAs with G+C content of 63.6%. Gene annotation identified the genes related to various metabolic pathways, including carbohydrate metabolism, fatty acid metabolism and stress tolerance. The genomic dataset of H. shambharensis will be useful for analysis of protein-coding gene families and how these coding genes are significant for the survival and metabolism among the different species of Halomonas. The complete genome sequence presented here will help to unravel the biotechnological potential of H. shambharensis for production of the high-value products such as betaine, or as a source of gene-mining for individual enzymes.
Collapse
|