1
|
Dasgupta A, Saha S, Ganguli P, Das I, De D, Chaudhuri S. Characterization of pumilacidin, a lipopeptide biosurfactant produced from Bacillus pumilus NITDID1 and its prospect in bioremediation of hazardous pollutants. Arch Microbiol 2023; 205:274. [PMID: 37401995 DOI: 10.1007/s00203-023-03619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Highly hydrophobic compounds like petroleum and their byproducts, once released into the environment, can persist indefinitely by virtue of their ability to resist microbial degradation, ultimately paving the path to severe environmental pollution. Likewise, the accumulation of toxic heavy metals like lead, cadmium, chromium, etc., in the surroundings poses an alarming threat to various living organisms. To remediate the matter in question, the applicability of a biosurfactant produced from the mangrove bacterium Bacillus pumilus NITDID1 (Accession No. KY678446.1) is reported here. The structural characterization of the produced biosurfactant revealed it to be a lipopeptide and has been identified as pumilacidin through FTIR, NMR, and MALDI-TOF MS. The critical micelle concentration of pumilacidin was 120 mg/L, and it showed a wide range of stability in surface tension reduction experiments under various environmental conditions and exhibited a high emulsification index of as much as 90%. In a simulated setup of engine oil-contaminated sand, considerable oil recovery (39.78%) by this biosurfactant was observed, and upon being added to a microbial consortium, there was an appreciable enhancement in the degradation of the used engine oil. As far as the heavy metal removal potential of biosurfactant is concerned, as much as 100% and 82% removal was observed for lead and cadmium, respectively. Thus, in a nutshell, the pumilacidin produced from Bacillus pumilus NITDID1 holds promise for multifaceted applications in the field of environmental remediation.
Collapse
Affiliation(s)
- Arpan Dasgupta
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Department of Microbiology, Michael Madhusudan Memorial College, Durgapur, West Bengal, 713216, India
| | - Sourav Saha
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Parna Ganguli
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Ishita Das
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Debojyoti De
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Surabhi Chaudhuri
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
2
|
Zhao F, Wang Y, Hu X, Huang X. How to simply and efficiently screen microbial strains capable of anaerobic biosynthesis of biosurfactants: Method establishment, influencing factors and application example evaluation. Front Microbiol 2022; 13:989998. [PMID: 36171744 PMCID: PMC9511215 DOI: 10.3389/fmicb.2022.989998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Microbial resources capable of anaerobic biosynthesis of biosurfactants are increasingly interested for their application in oxygen-deficient environments, such as in-situ microbial enhanced oil recovery and anaerobic bioremediation. How to simply and efficiently screen microbial strains capable of anaerobic biosynthesis of biosurfactants need be further studied in depth. In this study, an efficient and simple screening method was established based on the oil displacement characteristic of biosurfactants combined with the anaerobic culture technology using microplate assays. Strains whose anaerobic culture in microwells can form oil displacement circles with diameters larger than 10 mm were screened for scale-up culture in anaerobic tubes. The screened strains which can reduce the surface tension of anaerobic culture to lower than 45 mN/m were verified as positive strains. Using this screening method, eight positive strains and thirteen positive strains were screened from oil reservoir produced water and oily sludge, respectively. Through phylogenetic analysis, some screened strains were identified as Pseudomonas sp., Bacillus sp., and Enterobacter sp. This study also found that more microbial strains might be isolated after enrichment culture of environmental samples, whereas more microbial species would be isolated without enrichment. Suspension of environmental samples prepared with distilled water or normal saline had no significant effect. The established screening method is highly targeted and efficient for microbial strains capable of anaerobic biosynthesis of biosurfactants. The diameter of oil displacement circle is a reliable screening indicator. This study will contribute to explore more microbial resources which can anaerobically biosynthesize biosurfactants.
Collapse
|
3
|
Sharma P, Rekhi P, Kumari S, Debnath M. Deciphering the molecular diversity of related halophilic
Bacillus
sp.
isolated from
Sambhar Lake
and the functional characterizations of surfactin. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Priyanka Sharma
- Department of Biosciences Manipal University Jaipur Jaipur India
| | - Pavni Rekhi
- Department of Biosciences Manipal University Jaipur Jaipur India
| | - Sapna Kumari
- Department of Biosciences Manipal University Jaipur Jaipur India
| | - Mousumi Debnath
- Department of Biosciences Manipal University Jaipur Jaipur India
| |
Collapse
|
4
|
Sharma J, Kapley A, Sundar D, Srivastava P. Characterization of a potent biosurfactant produced from Franconibacter sp. IITDAS19 and its application in enhanced oil recovery. Colloids Surf B Biointerfaces 2022; 214:112453. [PMID: 35305323 DOI: 10.1016/j.colsurfb.2022.112453] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 01/09/2023]
Abstract
Biosurfactants are surface-active molecules produced from microorganisms either on the cell surface or secreted extracellularly. Several biosurfactant producing microorganisms have been isolated to date, but they differ in their efficacy towards different types of hydrocarbons. Here, we report the isolation and characterization of a biosurfactant producing bacterium Franconibacter sp. IITDAS19 from crude oil contaminated soil. The biosurfactant was isolated, purified and characterized. It was identified as a glycolipid. It was found to be very stable at wide range of temperatures, pH and salt concentrations. It could reduce the surface tension of the water from 71 mN/m to 31 mN/m. IITDAS19 showed very high efficacy towards both aliphatic and aromatic hydrocarbons. It resulted in about 63% recovery of residual oil in a sand pack column. Our results suggested that the produced biosurfactant can be used for enhanced oil recovery. To our knowledge, this is the first report demonstrating the detailed characterization of a biosurfactant from Franconibacter spp.
Collapse
Affiliation(s)
- Jyoti Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, 110016, India
| | - Atya Kapley
- Council of Scientific and Industrial Research- National Environmental Engineering Research Institute (CSIR NEERI), Nehru Marg, Nagpur 440020, India
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, 110016, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, 110016, India.
| |
Collapse
|