1
|
Pratama SA, Purnomo AS, Ediati R, Asranudin A, Kusumawardhani NA. Novel biocomposite of Pseudomonas aeruginosa supported by metal-organic framework UiO-66 in sodium alginate-polyvinyl alcohol matrices for methylene blue decolorization: Effect of crosslinking agents and optimization using response surface methodology. Int J Biol Macromol 2025; 305:141016. [PMID: 39956218 DOI: 10.1016/j.ijbiomac.2025.141016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
The excessive use of synthetic dyes in textile industry is significantly causing water pollution due to their toxicity and resistance to degradation. Therefore, this study aimed to investigate the immobilization of the dye-degrading bacterium Pseudomonas aeruginosa supported by the metal-organic framework (MOF) UiO-66 in sodium alginate-polyvinyl alcohol (SA-PVA) matrices to enhance methylene blue (MB) decolorization. Different crosslinkers, such as CaCl2, CaCl2/boric acid (CaCl2/BA), CaCl2/glutaraldehyde (CaCl2/GA), and CaCl2/boric acid/glutaraldehyde (CaCl2/BA/GA) were used to fabricate the SA/PVA@UiO-66/P. aeruginosa beads. XRD, FTIR, SEM-EDS, and zeta potential analyzer were also used to examine chemical structure, composition, and morphology of beads. This was followed by beads screening through MB decolorization assay and reusability tests that were carried out to determine the most optimal variant. The results showed that beads crosslinked by CaCl2/BA had the highest decolorization efficiency (92.28%) within 24 h and remained reusable for 7 cycles with efficiency >40% compared to beads crosslinked by CaCl2 (85.91%), CaCl2/BA/GA (84.02%), and CaCl2/GA (70.46%). Further optimization using Response Surface Methodology (RSM) showed the ideal MB decolorization conditions by SA/PVA@UiO-66/P. aeruginosa beads at pH 7.40, 36.16°C, 54.82 h. Decolorization efficiency of 96.54% was obtained by experimental verification under these conditions, which was consistent with RSM prediction of 96.45%. These results suggested a substantial potential application of the composite material for MB removal in textile wastewater treatment.
Collapse
Affiliation(s)
- Silvia Abdi Pratama
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Adi Setyo Purnomo
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia.
| | - Ratna Ediati
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Asranudin Asranudin
- Research Center for Applied Microbiology, National Research and Innovation Agency of Indonesia (BRIN), Cibinong 16911, Indonesia
| | - Nur Annisa Kusumawardhani
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| |
Collapse
|
2
|
Guerrero Ramírez JR, Ibarra Muñoz LA, Balagurusamy N, Frías Ramírez JE, Alfaro Hernández L, Carrillo Campos J. Microbiology and Biochemistry of Pesticides Biodegradation. Int J Mol Sci 2023; 24:15969. [PMID: 37958952 PMCID: PMC10649977 DOI: 10.3390/ijms242115969] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Pesticides are chemicals used in agriculture, forestry, and, to some extent, public health. As effective as they can be, due to the limited biodegradability and toxicity of some of them, they can also have negative environmental and health impacts. Pesticide biodegradation is important because it can help mitigate the negative effects of pesticides. Many types of microorganisms, including bacteria, fungi, and algae, can degrade pesticides; microorganisms are able to bioremediate pesticides using diverse metabolic pathways where enzymatic degradation plays a crucial role in achieving chemical transformation of the pesticides. The growing concern about the environmental and health impacts of pesticides is pushing the industry of these products to develop more sustainable alternatives, such as high biodegradable chemicals. The degradative properties of microorganisms could be fully exploited using the advances in genetic engineering and biotechnology, paving the way for more effective bioremediation strategies, new technologies, and novel applications. The purpose of the current review is to discuss the microorganisms that have demonstrated their capacity to degrade pesticides and those categorized by the World Health Organization as important for the impact they may have on human health. A comprehensive list of microorganisms is presented, and some metabolic pathways and enzymes for pesticide degradation and the genetics behind this process are discussed. Due to the high number of microorganisms known to be capable of degrading pesticides and the low number of metabolic pathways that are fully described for this purpose, more research must be conducted in this field, and more enzymes and genes are yet to be discovered with the possibility of finding more efficient metabolic pathways for pesticide biodegradation.
Collapse
Affiliation(s)
- José Roberto Guerrero Ramírez
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Lizbeth Alejandra Ibarra Muñoz
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreon 27275, Coahuila, Mexico; (L.A.I.M.); (N.B.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreon 27275, Coahuila, Mexico; (L.A.I.M.); (N.B.)
| | - José Ernesto Frías Ramírez
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Leticia Alfaro Hernández
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Javier Carrillo Campos
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chihuahua, Mexico
| |
Collapse
|
3
|
Chen J, Zhao S, Gan Y, Wu J, Dai J, Chao HJ, Yan D. Dichlorodiphenyltrichloroethane inhibits soil ammonia oxidation by altering ammonia-oxidizing archaeal and bacterial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122063. [PMID: 37330184 DOI: 10.1016/j.envpol.2023.122063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Dichlorodiphenyltrichloroethane (DDT), a persistent organic pollutant, has known effects on natural microbes. However, its effects on soil ammonia-oxidizing microbes, significant contributors to soil ammoxidation, remain unexplored. To address this, we conducted a 30-day microcosm experiment to systematically study the effects of DDT contamination on soil ammonia oxidation and the communities of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Our findings revealed that DDT inhibited soil ammonia oxidation in the early stage (0-6 days), but it gradually recovered after 16 days. The copy numbers of amoA gene of AOA decreased in all DDT-treated groups from 2 to 10 days, while that of AOB decreased from 2 to 6 days but increased from 6 to 10 days. DDT influenced the diversity and community composition of AOA but had no significant effect on AOB. Further, the dominant AOA communities comprised uncultured_ammonia-oxidizing_crenarchaeote and Nitrososphaera sp. JG1: while the abundance of the latter significantly and negatively correlated with NH 4+-N (P ≤ 0.001), DDT (0.001 < P ≤ 0.01), and DDD (0.01 < P ≤ 0.05) and positively correlated with NO3--N (P ≤ 0.001), that of the former significantly and positively correlated with DDT (P ≤ 0.001), DDD (P ≤ 0.001), and NH 4+-N (0.01 < P ≤ 0.05) and negatively correlated with NO3--N (P ≤ 0.001). Among AOB, the dominant group was the unclassified Nitrosomonadales in Proteobacteria, which showed significant negative correlation with NH 4+-N (0.01 < P ≤ 0.05) and significant positive correlation with NO3--N (0.001 < P ≤ 0.01). Notably, among AOB, only Nitrosospira sp. III7 exhibited significant negative correlations with DDE (0.001 < P ≤ 0.01), DDT (0.01 < P ≤ 0.05), and DDD (0.01 < P ≤ 0.05). These results indicate that DDT and its metabolites affect soil AOA and AOB, consequently affecting soil ammonia oxidation.
Collapse
Affiliation(s)
- Jing Chen
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shuo Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yating Gan
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Jing Wu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Jingcheng Dai
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hong-Jun Chao
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Dazhong Yan
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
4
|
Rizqi HD, Purnomo AS, Ulfi A. The effect of bacteria addition on DDT biodegradation by BROWN-ROT fungus Gloeophyllum trabeum. Heliyon 2023; 9:e18216. [PMID: 37519755 PMCID: PMC10372667 DOI: 10.1016/j.heliyon.2023.e18216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/21/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
DDT (1,1,1-trichloro-2,2 bis(4-chlorophenyl) ethane) is a synthetic insecticide that has several negative effects on the environment and humans. Therefore, determining an effective method to reduce DDT may give a beneficial impact. Brown-rot fungus, Gloeophyllum trabeum, is well known to have the ability to degrade DDT, even though it might require long-term remediation. In this study, the effect of the addition of bacteria on the biodegradation of DDT by G. trabeum had been investigated. Bacillus subtilis, Pseudomonas aeruginosa, and Ralstonia pickettii were screened for the bacteria which the volume of bacteria at 1, 3, 5, and 10 mL and the time range of addition of bacteria on days 0, 1, 3, and 5. The addition of B. subtilis, P. aeruginosa, and R. pickettii bacteria into the G. trabeum culture increased DDT biodegradation to approximately 62.02; 74.66; and 75.72%, respectively, in which G. trabeum was only able to degrade DDT by 54.52% for 7 days of incubation. R. pickettii enhanced the degradation process, in which the addition of 10 mL of this bacterium at day 1 possessed the highest value of 92.41% within 7 days of incubation. DDD was detected to be a product metabolite through a dechlorination reaction. This study indicated that mixed cultures of G. trabeum and R. pickettii can be used to degrade DDT.
Collapse
|
5
|
Asim N, Hassan M, Shafique F, Ali M, Nayab H, Shafi N, Khawaja S, Manzoor S. Characterizations of novel pesticide-degrading bacterial strains from industrial wastes found in the industrial cities of Pakistan and their biodegradation potential. PeerJ 2021; 9:e12211. [PMID: 34707929 PMCID: PMC8500106 DOI: 10.7717/peerj.12211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/05/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Lack of infrastructure for disposal of effluents in industries leads to severe pollution of natural resources in developing countries. These pollutants accompanied by solid waste are equally hazardous to biological growth. Natural attenuation of these pollutants was evidenced that involved degradation by native microbial communities. The current study encompasses the isolation of pesticide-degrading bacteria from the vicinity of pesticide manufacturing industries. METHODS The isolation and identification of biodegrading microbes was done. An enrichment culture technique was used to isolate the selected pesticide-degrading bacteria from industrial waste. RESULTS Around 20 different strains were isolated, among which six isolates showed significant pesticide biodegrading activity. After 16S rRNA analysis, two isolated bacteria were identified as Acinetobacter baumannii (5B) and Acidothiobacillus ferroxidans, and the remaining four were identified as different strains of Pseudomonas aeruginosa (1A, 2B, 3C, 4D). Phylogenetic analysis confirmed their evolution from a common ancestor. All strains showed distinctive degradation ability up to 36 hours. The Pseudomonas aeruginosa strains 1A and 4D showed highest degradation percentage of about 80% for DDT, and P. aeruginosa strain 3C showed highest degradation percentage, i.e., 78% for aldrin whilst in the case of malathion, A. baumannii and A. ferroxidans have shown considerable degradation percentages of 53% and 54%, respectively. Overall, the degradation trend showed that all the selected strains can utilize the given pesticides as sole carbon energy sources even at a concentration of 50 mg/mL. CONCLUSION This study provided strong evidence for utilizing these strains to remove persistent residual pesticide; thus, it gives potential for soil treatment and restoration.
Collapse
Affiliation(s)
- Noreen Asim
- Division of Genomics and Bioinformatics Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Mahreen Hassan
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, Yorkshire, United Kingdom
- Microbiology, Shaheed Benazir Bhutto Women University, Peshawar, KPK, Pakistan
| | - Farheen Shafique
- Department of Biomedical Science, University of Sheffield, Sheffield, Yorkshire, United Kingdom
- Department of Zoology, University of Azad Jammu and Kashmir Muzaffarabad, Muzaffarabad, Azad Kashmir, Pakistan
| | - Maham Ali
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Hina Nayab
- Institute of Biological Sciences, Sarhad University of Science and Information Technology, Peshawar, Khyber pakhtunkhwa, Pakistan
| | - Nuzhat Shafi
- Department of Zoology, University of Azad Jammu and Kashmir Muzaffarabad, Muzaffarabad, Azad Kashmir, Pakistan
| | - Sundus Khawaja
- Department of Biotechnology, University of Azad Jammu and Kashmir Muzaffarabad, Muzaffarabad, Azad kashmir, Pakistan
| | - Sadaf Manzoor
- Department of Statistics, Islamia College University, Peshawar, Khyber Pakhtunkha, Pakistan
| |
Collapse
|