1
|
Liaqat I, Qaiser I, Aftab MN, Ali S, Latif AA, Naseem S, Afzaal M, Khalid A. Anti-biofilm potential of some fish probiotics, alone and in combination with antibiotics against isolated aquaculture pathogens; A preliminary data. Microb Pathog 2025; 203:107437. [PMID: 40074047 DOI: 10.1016/j.micpath.2025.107437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
This study aims to isolate and identify both diseased and healthy fish pathogens of Ctenopharyngodon idella, Labeo rohita and Oreochromis niloticus and assess their antibacterial and biofilm supressing activities against fish pathogens. It explores their potential to inhibit and degrade biofilms, serving as an alternative to antibiotics in aquaculture while enhancing fish health and disease resistance. Furthermore, the research endeavors to assess the biofilm degradation potential of antibiotics and probiotics, both individually and in combination. The biofilm-forming potential of pathogens was assessed both qualitatively and quantitatively using the Congo red assay, cover slip, and test tube methods. Additionally, genomic sequencing through 16S rRNA ribotyping revealed the species level identification of four pathogenic and twelve probiotic strains. Three pathogens, Staphylococcus sciuri, Pseudomonas aeruginosa, and Staphylococcus xylosus, showed significant biofilm formation at day 5, while the pathogen Niallia circulans expressed maximum biofilm formation on day 7. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of antibiotics were evaluated against pathogenic strains. Antibiotic susceptibility testing revealed significant inhibition zones. MIC and MBC values ranged from 0.10 mg/ml to 85.00 mg/ml, with the agar well and disk diffusion methods demonstrating strong inhibitory effects against the pathogenic strains. Notably, fish probiotics either alone or in combination with antibiotics exhibited significant inhibition and anti-biofouling activity across three different concentrations (1/2 MIC, 1MIC, 2XMIC). The biofilm eradication values were statistically significant (p < 0.005). The findings affirm the effectiveness of the antibiotics (ampicillin, levofloxacin, kanamycin and oxytetracycline) and probiotics (Bacullus altitudinis, Bacillus pumilus, Mammaliicoccus sciuri) employed in preventing and dispersing biofilms formed by isolated fish pathogens (S. sciuri, P. aeruginosa and N. circulans). The current study explores the use of probiotics to enhance fish immunity, reduce disease risk without promoting antibiotic resistance, and disrupt pathogenic biofilms to control infections. Unlike antibiotics, probiotics are biodegradable and eco-friendly, minimizing harm to aquatic ecosystems and beneficial microbes.
Collapse
Affiliation(s)
- Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Ibtsam Qaiser
- Microbiology Lab, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Nauman Aftab
- Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan.
| | - Sikander Ali
- Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan.
| | - Asma Abdul Latif
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan.
| | - Sajida Naseem
- Department of Zoology, University of Education, Lahore, Pakistan.
| | - Muhammad Afzaal
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan.
| | - Awais Khalid
- Department of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| |
Collapse
|
2
|
Majithiya VR, Gohel SD. Agro-industrial Waste Utilization, Medium Optimization, and Immobilization of Economically Feasible Halo-Alkaline Protease Produced by Nocardiopsis dassonvillei Strain VCS-4. Appl Biochem Biotechnol 2025; 197:545-569. [PMID: 39207678 DOI: 10.1007/s12010-024-05057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The oceanic actinobacteria have strong potential to secrete novel enzymes with unique properties useful for biotechnological applications. The Nocardiopsis dassonvillei strain VCS-4, associated with seaweed Caulerpa scalpeliformis, was a halo-alkaline protease producer. Further investigation focuses on medium optimization and the use of agro-industrial waste for economically feasible, high-yield protease production. A total of 12 experimental runs were designed using Minitab-20 software and Placket-Burman design. Among the 7 physicochemical parameters analyzed, incubation time and gelatin were detected as significant factors responsible for higher protease production. Incubation time and gelatin were further analyzed using OVATs. Optimal protease production was achieved with 2% gelatin, 0.1% yeast extract, 0.1% bacteriological peptone, 7% NaCl, pH 8, 5% inoculum, and a 7-day incubation period, resulting in a maximum protease activity (Pmax) of 363.97 U/mL, generation time of 11.9 h, specific growth rate of 0.161 g/mL/h, and protease productivity (Qp) of 61.65 U/mL/h. Moreover, utilizing groundnut cake as an agro-industrial waste led to enhanced production parameters: Pmax of 408.42 U/mL, generation time of 9.74 h, specific growth rate of 0.361 g/mL/h, and Qp of 68.07 U/mL/h. The immobilization of crude protease was achieved using Seralite SRC 120 as a support matrix resulting in 470.38 U/g immobilization, 88.20% immobilization yield, and 28.90% recovery activity. Characterization of both crude and immobilized proteases revealed optimal activity at pH 10 and 70 °C. Immobilization enhanced the shelf-life, reusability, and stability of VCS-4 protease under extreme conditions.
Collapse
Affiliation(s)
- Vaishali R Majithiya
- Department of Biosciences, Saurashtra University, Rajkot, 360005, Gujarat, India
| | - Sangeeta D Gohel
- Department of Biosciences, Saurashtra University, Rajkot, 360005, Gujarat, India.
| |
Collapse
|
3
|
Wang Z, Yin B, Ao G, Yang L, Ma Y, Shi Y, Sun S, Ling H. Important ecophysiological roles of Nocardiopsis in lignocellulose degradation during aerobic compost with humic acid addition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123901. [PMID: 39731951 DOI: 10.1016/j.jenvman.2024.123901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/14/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Improving lignocellulose degradation and organic matter conversion in agricultural and livestock wastes remains a great challenge. Here, the contribution of humic acid (HA) to lignocellulose degradation was investigated, focusing on the abundance of key microbial species and carbohydrate-active enzymes during aerobic composting. The results demonstrated that the addition of HA not only increased the complexity of the microbial network, but also enhanced the positive interaction between microorganism. The abundance of phylum Actinobacteria related to lignin degradation was significantly increased, especially genus Nocardiopsis (50.97 %), and Nocardiopsis was significantly positively correlated with HA and humus (HS) (p < 0.05). Additionally, the abundance of GH (43.45%) and AA (5.88%) enzymes and the activation of metabolic pathways of AA, carbohydrates and energy were significantly increased (p < 0.05). Remarkably, the quantity of lignocellulose-degrading genes and carbohydrate-active enzymes experienced a marked boost (p < 0.05), with the peak abundance observed in Nocardiopsis. The structural equation model revealed that the addition of HA boosted the abundance of Nocardiopsis, which in turn amplified lignocellulose degradation by up-regulating lignocellulose degradation genes and enhancing carbohydrase activity, and facilitating the conversion of HA and FA. The lignocellulose degradation experiment verified that Nocardiopsis alba exhibited good ability in the degradation of cellulose and hemicellulose. These findings provided a novel perspective on the mechanisms underlying lignocellulose degradation, and broaden the understanding of the ecophysiological role of Nocardiopsis in composting system.
Collapse
Affiliation(s)
- Zhaoxuan Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Bo Yin
- Institute of Microbiology, Heilongjiang Academy of Sciences, No. 68, Zhaolin Street, Daoli District, Harbin, 150010, China
| | - Guoxu Ao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Liguo Yang
- Heilongjiang Province Daxinganling Ecological Envirnoment Monitoring Center, 87 Guangming Road, Jiagedaqi District, Heilongjiang Province, China
| | - Yue Ma
- Heilongjiang Province Daxinganling Ecological Envirnoment Monitoring Center, 87 Guangming Road, Jiagedaqi District, Heilongjiang Province, China
| | - Yueqi Shi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Shanshan Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| | - Hongzhi Ling
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
4
|
Bhairamkar S, Kadam P, Anjulal H, Joshi A, Chaudhari R, Bagul D, Javdekar V, Zinjarde S. Comprehensive updates on the biological features and metabolic potential of the versatile extremophilic actinomycete Nocardiopsis dassonvillei. Res Microbiol 2024; 175:104171. [PMID: 37995890 DOI: 10.1016/j.resmic.2023.104171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Nocardiopsis dassonvillei prevails under harsh environmental conditions and the purpose of this review is to highlight its biological features and recent biotechnological applications. The organism prevails in salt-rich soils/marine systems and some strains endure extreme temperatures and pH. A few isolates are associated with marine organisms and others cause human diseases. Comparative genomic analysis indicates its versatility in producing biotechnologically relevant metabolites. Antimicrobial, cytotoxic, anticancer and growth promoting biomolecules are obtained from this organism. It also synthesizes biotechnologically important enzymes. Bioactive compounds and enzymes obtained from this actinomycete provide evidence regarding its metabolic competence and its potential economic value.
Collapse
Affiliation(s)
- Shivani Bhairamkar
- Department of Biotechnology (With Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Pratik Kadam
- Department of Biotechnology (With Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - H Anjulal
- Department of Biotechnology (With Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Avani Joshi
- Department of Biotechnology (With Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Riddhi Chaudhari
- Department of Biotechnology (With Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Dimpal Bagul
- Department of Biotechnology (With Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Vaishali Javdekar
- Department of Biotechnology (With Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Smita Zinjarde
- Department of Biotechnology (With Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
5
|
Liaqat I, Muhammad N, Ara C, Hanif U, Andleeb S, Arshad M, Aftab MN, Raza C, Mubin M. Bioremediation of heavy metals polluted environment and decolourization of black liquor using microbial biofilms. Mol Biol Rep 2023; 50:3985-3997. [PMID: 36840848 DOI: 10.1007/s11033-023-08334-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/14/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND With increased urbanization and industrialization, modern life has led to an anthropogenic impact on the biosphere. Heavy metals pollution and pollutants from black liquor (BL) have caused severe effects on environment and living organisms. Bacterial biofilm has potential to remediate heavy metals and remove BL from the environment. Hence, this study was planned to investigate the potential of microbial biofilms for the bioremediation of heavy metals and BL polluted environments. METHODS AND RESULTS Eleven biofilm forming bacterial strains (SB1, SB2, SC1, AF1, 5A, BC-1, BC-2, BC-3, BC-4, BC-5 and BC-6) were isolated and identified upto species level via 16S rRNA gene sequencing. Biofilm strains belonging to Bacillus and Lysinibacillus sphaericus were used to remediate heavy metals (Pb, Ni, Mn, Zn, Cu, and Co). Atomic absorption spectroscopy showed significantly high (P ≤ 0.05) bioremediation potential by L. sphaericus biofilm (1462.0 ± 0.67 µgmL-1) against zinc (Zn). Similarly, Pseudomonas putida biofilm significantly (P ≤ 0.05) decolourized (65.1%) BL. Fourier transform infrared (FTIR) analysis of treated heavy metals showed the shifting of major peaks (1637 & 1629-1647, 1633 & 1635-1643, and 1638-1633 cm-1) corresponding to specific amide groups due to C = O stretching. CONCLUSION The study suggested that biofilm of the microbial flora from tanneries and pulp paper effluents possesses a strong potential for heavy metals bioremediation and BL decolourization. To our knowledge, this is the first report showing promising biofilm remediation potential of bacterial flora of tanneries and pulp-paper effluent from Kasur and Sheikhupura, Punjab, Pakistan, against heavy metals and BL.
Collapse
Affiliation(s)
- Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Noor Muhammad
- Microbiology Lab, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Chaman Ara
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Uzma Hanif
- Department of Botany, Government College University, Lahore, Pakistan
| | - Saiqa Andleeb
- Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Muhammad Arshad
- University of Veterinary and Animal Sciences Lahore, CVAS, Jhang Campus, Jhang, Pakistan
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Chand Raza
- Microbiology Lab, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Mubin
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
6
|
Purohit MK, Rathore DS, Koladiya G, Pandey S, Singh SP. Comparative analysis of the catalysis and stability of the native, recombinant and metagenomic alkaline proteases in organic solvents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80968-80982. [PMID: 35725880 DOI: 10.1007/s11356-022-21411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The effect of organic solvents on alkaline proteases was assessed for native, recombinant, and metagenomically derived alkaline proteases. Their stability and the effects of physicochemical parameters were studied in the presence of hexane. The native enzyme was comparatively more resistant against the organic solvents than the recombinant counterparts. On the other hand, the metagenomically derived alkaline protease was minimally resistant against solvents. A similar trend was apparent for the stability of enzyme in organic solvents. The novelty of this study lies in the fact that the majority of the studies on the solvent tolerance have focused on the mesophilic enzymes, while those from the haloalkaliphilic bacteria have received little attention. The comparative tolerance of the native, recombinant, and metagenomic alkaline proteases against the organic solvent has practical importance. The phylogenetic relatedness among the various protease sequences will be described.
Collapse
Affiliation(s)
- Megha K Purohit
- Department of Biosciences, UGC-CAS, Saurashtra University, Rajkot, 360 005, India
- Current Address: DNA Investigating Laboratory, Toronto, ON, Canada
| | - Dalip Singh Rathore
- Department of Biosciences, UGC-CAS, Saurashtra University, Rajkot, 360 005, India
| | - Gopi Koladiya
- Department of Biosciences, UGC-CAS, Saurashtra University, Rajkot, 360 005, India
| | | | - Satya P Singh
- Department of Biosciences, UGC-CAS, Saurashtra University, Rajkot, 360 005, India.
| |
Collapse
|
7
|
Raval VH, Rathore DS, Singh SP. Comparative Studies of the Characteristics of Two Alkaline Proteases from Haloalkaliphilic bacterium D-15-9 and Oceanobacillus onchorynchii Mi-10-54. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822050131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Phenotypic characteristics, phylogenetic analysis and characterization of alkaline proteases of marine bacteria Geomicrobium halophilum, Oceanobacillus oncorhynchi, and Oceanobacillus khimchii. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|