1
|
Liu W, Zhang Z, Zhang B, Zhu Y, Zhu C, Chen C, Zhang F, Liu F, Ai J, Wang W, Kong W, Xiang H, Wang W, Gong D, Meng D, Zhu L. Role of bacterial pathogens in microbial ecological networks in hydroponic plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1403226. [PMID: 39290732 PMCID: PMC11405252 DOI: 10.3389/fpls.2024.1403226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/15/2024] [Indexed: 09/19/2024]
Abstract
Plant-associated microbial communities are crucial for plant growth and health. However, assembly mechanisms of microbial communities and microbial interaction patterns remain elusive across vary degrees of pathogen-induced diseases. By using 16S rRNA high-throughput sequencing technology, we investigated the impact of wildfire disease on the microbial composition and interaction network in plant three different compartments. The results showed that pathogen infection significantly affect the phyllosphere and rhizosphere microbial community. We found that the primary sources of microbial communities in healthy and mildly infected plants were from the phyllosphere and hydroponic solution community. Mutual exchanges between phyllosphere and rhizosphere communities were observed, but microbial species migration from the leaf to the root was rarely observed in severely infected plants. Moreover, wildfire disease reduced the diversity and network complexity of plant microbial communities. Interactions among pathogenic bacterial members suggested that Caulobacter and Bosea might be crucial "pathogen antagonists" inhibiting the spread of wildfire disease. Our study provides deep insights into plant pathoecology, which is helpful for the development of novel strategies for phyllosphere disease prediction or prevention.
Collapse
Affiliation(s)
- Wenyi Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Zhihua Zhang
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Bin Zhang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Yi Zhu
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Chongwen Zhu
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Chaoyong Chen
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Fangxu Zhang
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Feng Liu
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Jixiang Ai
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Wei Wang
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Wuyuan Kong
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Haoming Xiang
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Weifeng Wang
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Daoxin Gong
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
| | - Delong Meng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Li Zhu
- Changde Tobacco Company of Hunan Province, Changde, China
| |
Collapse
|
2
|
Zhang F, Xu N, Zhang Z, Zhang Q, Yang Y, Yu Z, Sun L, Lu T, Qian H. Shaping effects of rice, wheat, maize, and soybean seedlings on their rhizosphere microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35972-35984. [PMID: 36539666 DOI: 10.1007/s11356-022-24835-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The rhizosphere microbiome plays critical roles in plant growth and is an important interface for resource exchange between plants and the soil environment. Crops at various growing stages, especially the seedling stage, have strong shaping effects on the rhizosphere microbial community, and such community reconstruction will positively feed back to the plant growth. In the present study, we analyzed the variations of bacterial and fungal communities in the rhizosphere of four crop species: rice, soybean, maize, and wheat during successive cultivations (three repeats for the seedling stages) using 16S rRNA gene and internal transcribed spacer (ITS) high-throughput sequencing. We found that the relative abundances of specific microorganisms decreased after different cultivation times, e.g., Sphingomonas, Pseudomonas, Rhodanobacter, and Caulobacter, which have been reported as plant-growth beneficial bacteria. The relative abundances of potential plant pathogenic fungi Myrothecium and Ascochyta increased with the successive cultivation times. The co-occurrence network analysis showed that the bacterial and fungal communities under maize were much more stable than those under rice, soybean, and wheat. The present study explored the characteristics of bacteria and fungi in crop seedling rhizosphere and indicated that the characteristics of indigenous soil flora might determine the plant growth status. Further study will focus on the use of the critical microorganisms to control the growth and yield of specific crops.
Collapse
Affiliation(s)
- Fan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yaohui Yang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhitao Yu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
3
|
Ikeda S, Okazaki K, Takahashi H, Tsurumaru H, Minamisawa K. Seasonal Shifts in Bacterial Community Structures in the Lateral Root of Sugar Beet Grown in an Andosol Field in Japan. Microbes Environ 2023; 38. [PMID: 36754423 PMCID: PMC10037095 DOI: 10.1264/jsme2.me22071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
To investigate functional plant growth-promoting rhizobacteria in sugar beet, seasonal shifts in bacterial community structures in the lateral roots of sugar beet were examined using amplicon sequencing ana-lyses of the 16S rRNA gene. Shannon and Simpson indexes significantly increased between June and July, but did not significantly differ between July and subsequent months (August and September). A weighted UniFrac principal coordinate ana-lysis grouped bacterial samples into four clusters along with PC1 (43.8%), corresponding to the four sampling months in the order of sampling dates. Taxonomic ana-lyses revealed that bacterial diversity in the lateral roots was exclusively dominated by three phyla (Actinobacteria, Bacteroidetes, and Proteobacteria) in all samples examined. At the lower taxonomic levels, the dominant taxa were roughly classified into three groups. Therefore, the relative abundances of seven dominant genera (Janthinobacterium, Kribbella, Pedobacter, Rhodanobacter, Sphingobium, Sphingopyxis, and Streptomyces) were the highest in June and gradually decreased as sugar beet grew. The relative abundances of eight taxa (Bradyrhizobiaceae, Caulobacteraceae, Chitinophagaceae, Novosphingobium, Phyllobacteriaceae, Pseudomonas, Rhizobiaceae, and Sphingomonas) were mainly high in July and/or August. The relative abundances of six taxa (unclassified Comamonadaceae, Cytophagaceae, unclassified Gammaproteobacteria, Haliangiaceae, unclassified Myxococcales, and Sinobacteraceae) were the highest in September. Among the dominant taxa, 12 genera (Amycolatopsis, Bradyrhizobium, Caulobacter, Devosia, Flavobacterium, Janthinobacterium, Kribbella, Kutzneria, Pedobacter, Rhizobium, Rhodanobacter, and Steroidobacter) were considered to be candidate groups of plant growth-promoting bacteria based on their previously reported beneficial traits as biopesticides and/or biofertilizers.
Collapse
Affiliation(s)
- Seishi Ikeda
- Memuro Research Station, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization
| | - Kazuyuki Okazaki
- Memuro Research Station, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization
| | - Hiroyuki Takahashi
- Memuro Research Station, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization
| | | | | |
Collapse
|
4
|
Interactions between Soil Bacterial Diversity and Plant-Parasitic Nematodes in Soybean Plants. Appl Environ Microbiol 2022; 88:e0096322. [PMID: 36000866 PMCID: PMC9469712 DOI: 10.1128/aem.00963-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plant-parasitic nematodes are an important group of pests causing economic losses in agriculture worldwide. Among the plant-parasitic nematodes, the root-knot (Meloidogyne spp.) and root-lesion nematodes (Pratylenchus spp.) are considered the two most important ones affecting soybeans. In general, they damage soybean roots, causing a reduction of about one-third in productivity. The soil microbial community can exert a suppressive effect on the parasitism of plant-parasitic nematodes. Here, we investigated the effects of soil bacterial diversity on Meloidogyne javanica (Meloidogyne-assay) and Pratylenchus brachyurus (Pratylenchus-assay) suppression by manipulating microbial diversity using the dilution-to-extinction approach in two independent experiments under controlled conditions. Furthermore, we recorded the changes in the soil microbial community induced by plant-parasitic nematode infection. In Meloidogyne-assay, microbial diversity reduced the population density of M. javanica and improved plant performance. In Pratylenchus-assay, microbial diversity sustained the performance of soybean plants even at high levels of P. brachyurus parasitism. Each nematode population affected the relative abundance of different bacterial genera and altered the core microbiome of key groups within the bacterial community. Our findings provide fundamental insights into the interactions between soil bacterial diversity and plant-parasitic nematodes in soybean plants. IMPORTANCE Root-knot and root-lesion nematodes cause losses of billions of dollars every year to agriculture worldwide. Traditionally, they are controlled by using chemical nematicides, which in general have a negative impact on the environment and human health. Fortunately, the soil microbial community may suppress these pests, acting as an environmentally friendly alternative to control nematodes. However, the effects of soil microbial diversity on the parasitism of plant-parasitic nematodes still poorly understood. In this study, we provide fundamental insight into the interactions between soil bacterial diversity and plant-parasitic nematodes in soybean plants, which may be useful for the development of new strategies to control these phytopathogens.
Collapse
|
5
|
Berrios L. Examining the genomic features of human and plant-associated Burkholderia strains. Arch Microbiol 2022; 204:335. [PMID: 35587294 DOI: 10.1007/s00203-022-02953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 04/01/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022]
Abstract
Humans and plants have evolved in the near omnipresence of a microbial milieu, and the factors that govern host-microbe interactions continue to require scientific exploration. To better understand if and to what degree patterns between microbial genomic features and host association (i.e., human and plant) exist, I analyzed the genomes of select Burkholderia strains-a bacterial genus comprised of both human and plant-associated strains-that were isolated from either humans or plants. To this end, I uncovered host-specific, genomic patterns related to metabolic pathway potentials in addition to convergent features that may be related to pathogenic overlap between hosts. Together, these findings detail the genomic associations of human and plant-associated Burkholderia strains and provide a framework for future investigations that seek to link host-host transmission potentials.
Collapse
Affiliation(s)
- Louis Berrios
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
6
|
Plant-growth-promoting Caulobacter strains isolated from distinct plant hosts share conserved genetic factors involved in beneficial plant-bacteria interactions. Arch Microbiol 2021; 204:43. [PMID: 34932160 DOI: 10.1007/s00203-021-02702-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
The genus Caulobacter encompasses several strains that can enhance the biomass of several plant species. However, for many plant-growth-promoting (PGP) Caulobacter strains, their genomic factors that facilitate positive interactions with their plant hosts remain unknown. Given that leveraging comparative genomics analyses can establish a framework to understand these plant-bacteria interactions, the genomes of three PGP Caulobacter strains that were isolated from distinct geographical locations and have been shown to associate with distinct plant species were compared. Using previously reported analyses to contextualize the genomic patterns among PGP Caulobacter strains, each of these PGP Caulobacter strains (CBR1, RHG1, and RHGG3) was observed harboring similar metabolic potentials and previously reported PGP genetic factors in their genomes. Together, these findings reinforce previous analyses that identify the cyo operon as a general PGP factor for Caulobacter strains while establishing a framework for further investigations that seek to uncover the mechanistic details that govern interactions between Caulobacter strains and diverse plant species.
Collapse
|