1
|
Rosales-Cruz A, Reyes-Nicolau J, Minto-González E, Meneses-Carbajal A, Mondragón-Albarrán C, López-Pliego L, Castañeda M. A Homolog of the Histidine Kinase RetS Controls the Synthesis of Alginates, PHB, Alkylresorcinols, and Motility in Azotobacter vinelandii. Curr Microbiol 2024; 81:311. [PMID: 39153035 PMCID: PMC11330419 DOI: 10.1007/s00284-024-03835-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
The two-component system GacS/A and the posttranscriptional control system Rsm constitute a genetic regulation pathway in Gammaproteobacteria; in some species of Pseudomonas, this pathway is part of a multikinase network (MKN) that regulates the activity of the Rsm system. In this network, the activity of GacS is controlled by other kinases. One of the most studied MKNs is the MKN-GacS of Pseudomonas aeruginosa, where GacS is controlled by the kinases RetS and LadS; RetS decreases the kinase activity of GacS, whereas LadS stimulates the activity of the central kinase GacS. Outside of the Pseudomonas genus, the network has been studied only in Azotobacter vinelandii. In this work, we report the study of the RetS kinase of A. vinelandii; as expected, the phenotypes affected in gacS mutants, such as production of alginates, polyhydroxybutyrate, and alkylresorcinols and swimming motility, were also affected in retS mutants. Interestingly, our data indicated that RetS in A. vinelandii acts as a positive regulator of GacA activity. Consistent with this finding, mutation in retS also negatively affected the expression of small regulatory RNAs belonging to the Rsm family. We also confirmed the interaction of RetS with GacS, as well as with the phosphotransfer protein HptB.
Collapse
Affiliation(s)
- Araceli Rosales-Cruz
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria Puebla, Apdo. Postal 1622, C. P. 72000, Puebla, Pue, Mexico
| | - Jimena Reyes-Nicolau
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria Puebla, Apdo. Postal 1622, C. P. 72000, Puebla, Pue, Mexico
| | - Eduardo Minto-González
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria Puebla, Apdo. Postal 1622, C. P. 72000, Puebla, Pue, Mexico
| | - Alan Meneses-Carbajal
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria Puebla, Apdo. Postal 1622, C. P. 72000, Puebla, Pue, Mexico
| | - Claudia Mondragón-Albarrán
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria Puebla, Apdo. Postal 1622, C. P. 72000, Puebla, Pue, Mexico
| | - Liliana López-Pliego
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria Puebla, Apdo. Postal 1622, C. P. 72000, Puebla, Pue, Mexico
| | - Miguel Castañeda
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria Puebla, Apdo. Postal 1622, C. P. 72000, Puebla, Pue, Mexico.
| |
Collapse
|
2
|
O’Malley MR, Kpenu E, Peck SC, Anderson JC. Plant-exuded chemical signals induce surface attachment of the bacterial pathogen Pseudomonas syringae. PeerJ 2023; 11:e14862. [PMID: 37009160 PMCID: PMC10062345 DOI: 10.7717/peerj.14862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/17/2023] [Indexed: 03/29/2023] Open
Abstract
Many plant pathogenic bacteria suppress host defenses by secreting small molecule toxins or immune-suppressing proteins into host cells, processes that likely require close physical contact between pathogen and host. Yet, in most cases, little is known about whether phytopathogenic bacteria physically attach to host surfaces during infection. Here we report that Pseudomonas syringae pv. tomato strain DC3000, a Gram-negative bacterial pathogen of tomato and Arabidopsis, attaches to polystyrene and glass surfaces in response to chemical signals exuded from Arabidopsis seedlings and tomato leaves. We characterized the molecular nature of these attachment-inducing signals and discovered that multiple hydrophilic metabolites found in plant exudates, including citric acid, glutamic acid, and aspartic acid, are potent inducers of surface attachment. These same compounds were previously identified as inducers of P. syringae genes encoding a type III secretion system (T3SS), indicating that both attachment and T3SS deployment are induced by the same plant signals. To test if surface attachment and T3SS are regulated by the same signaling pathways, we assessed the attachment phenotypes of several previously characterized DC3000 mutants, and found that the T3SS master regulator HrpL was partially required for maximal levels of surface attachment, whereas the response regulator GacA, a negative regulator of T3SS, negatively regulated DC3000 surface attachment. Together, our data indicate that T3SS deployment and surface attachment by P. syringae may be co-regulated by the same host signals during infection, possibly to ensure close contact necessary to facilitate delivery of T3SS effectors into host cells.
Collapse
Affiliation(s)
- Megan R. O’Malley
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Eyram Kpenu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Scott C. Peck
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Jeffrey C. Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
3
|
Song H, Li Y, Wang Y. Two-component system GacS/GacA, a global response regulator of bacterial physiological behaviors. ENGINEERING MICROBIOLOGY 2023; 3:100051. [PMID: 39628522 PMCID: PMC11611043 DOI: 10.1016/j.engmic.2022.100051] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 12/06/2024]
Abstract
The signal transduction system of microorganisms helps them adapt to changes in their complex living environment. Two-component system (TCS) is a representative signal transduction system that plays a crucial role in regulating cellular communication and secondary metabolism. In Gram-negative bacteria, an unorthodox TCS consisting of histidine kinase protein GacS (initially called LemA) and response regulatory protein GacA is widespread. It mainly regulates various physiological activities and behaviors of bacteria, such as quorum sensing, secondary metabolism, biofilm formation and motility, through the Gac/Rsm (Regulator of secondary metabolism) signaling cascade pathway. The global regulatory ability of GacS/GacA in cell physiological activities makes it a potential research entry point for developing natural products and addressing antibiotic resistance. In this review, we summarize the progress of research on GacS/GacA from various perspectives, including the reaction mechanism, related regulatory pathways, main functions and GacS/GacA-mediated applications. Hopefully, this review will facilitate further research on GacS/GacA and promote its application in regulating secondary metabolism and as a therapeutic target.
Collapse
Affiliation(s)
- Huihui Song
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuying Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
4
|
Monteagudo-Cascales E, Santero E, Canosa I. The Regulatory Hierarchy Following Signal Integration by the CbrAB Two-Component System: Diversity of Responses and Functions. Genes (Basel) 2022; 13:genes13020375. [PMID: 35205417 PMCID: PMC8871633 DOI: 10.3390/genes13020375] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
CbrAB is a two-component system, unique to bacteria of the family Pseudomonaceae, capable of integrating signals and involved in a multitude of physiological processes that allow bacterial adaptation to a wide variety of varying environmental conditions. This regulatory system provides a great metabolic versatility that results in excellent adaptability and metabolic optimization. The two-component system (TCS) CbrA-CbrB is on top of a hierarchical regulatory cascade and interacts with other regulatory systems at different levels, resulting in a robust output. Among the regulatory systems found at the same or lower levels of CbrAB are the NtrBC nitrogen availability adaptation system, the Crc/Hfq carbon catabolite repression cascade in Pseudomonas, or interactions with the GacSA TCS or alternative sigma ECF factor, such as SigX. The interplay between regulatory mechanisms controls a number of physiological processes that intervene in important aspects of bacterial adaptation and survival. These include the hierarchy in the use of carbon sources, virulence or resistance to antibiotics, stress response or definition of the bacterial lifestyle. The multiple actions of the CbrAB TCS result in an important competitive advantage.
Collapse
Affiliation(s)
| | - Eduardo Santero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CSIC, Junta de Andalucía, 41013 Seville, Spain;
| | - Inés Canosa
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CSIC, Junta de Andalucía, 41013 Seville, Spain;
- Correspondence: ; Tel.: +34-954349052
| |
Collapse
|